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Abstract: In recent years, a large portion of smartphone applications (Apps) has targeted 

context-aware services. They aim to perceive users’ real-time context like his/her location, 

actions, or even emotion, and to provide various customized services based on the inferred 

context. However, context-awareness in mobile environments has some challenging issues 

due to limitations of devices themselves. Limited power is regarded as the most critical 

problem in context-awareness on smartphones. Many studies have tried to develop low-power 

methods, but most of them have focused on the power consumption of H/W modules of 

smartphones such as CPU and LCD. Only a few research papers have recently started to 

present some S/W-based approaches to improve the power consumption. That is, previous 

works did not consider energy consumed by context-awareness of Apps. Therefore, in this 

paper, we focus on the power consumption of context-aware Apps. We analyze the 

characteristics of context-aware Apps in a perspective of the power consumption, and then 

define two main factors which significantly influence the power consumption: a sort of 

context that context-aware Apps require for their services and a type of ways that a user uses 

them. The experimental result shows the reasonability and the possibility to develop  

low-power methods based on our analysis. That is, our analysis presented in this paper will 

be a foundation for energy-efficient context-aware services in mobile environments. 
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1. Introduction 

Mobile devices, in particular, smartphones have the advantages in context-awareness and intelligent 

services [1]. They have the high performance in the aspect of hardware such as various embedded sensors 

like GPS and Accelerometer. Besides, smartphones are everywhere in the hands of millions of people 

all over the world. Users of smartphones actively use them without any coercion or discomfort all the 

time. Due to these strong points, applications of smartphones for context-aware services have been 

actively developed [2,3]. Context-awareness is an essential technique which can detect changes of 

context and provide useful relevant information [4–8]. A Context-aware smartphone application (App) 

means a computer program running on smartphones and provides various customized services based on 

context-awareness. In general, a process of context-aware Apps has three phases as follows [9]: 

(1) Context data acquisition: context-aware Apps collect low-level sensing data and simply  

pre-process them. 

(2) Context analysis: they infer the high-level context by modeling, training, analyzing and mining 

low-level data. 

(3) Service integration: they provide their own services according to the inferred real-time context. 

Recently, in the area of context-aware services in mobile environments, many studies presented 

methods to gather sensing data from embedded sensors and to infer the high-level context by applying 

various data mining methodologies [2,10–12]. They aimed just for the precise inference of the  

real-time context. 

However, context-awareness in mobile environments has some difficulties due to limitations of 

devices such as limited computing, limited storage capabilities, and limited battery power. Among these 

issues, the power or energy problem is the most critical one that has to be seriously considered [13].  

In order to improve the energy-efficiency in mobile environments, some studies proposed their own 

methods to reduce power consumed by display or LCD [14], and by CPU [15], and by GPS module [16]. 

In addition, there are many research about the power consumption in the related areas like wireless sensor 

networks [17,18]. That is, previous works just have focused on the low-power or energy efficiency of 

H/W modules or networks. A few studies recently started to do research on S/W-based approaches in 

order to improve the power consumption. As one of them, Smartphone Energizer is a context-aware 

technique to extend battery life [19]. It aims to save the device’s energy by offloading computation 

according to the contextual information. However, it should work with an offloading server and still has 

some issues like communication and privacy. Also, these previous works for measuring or reducing the 

consumed power did not target individual applications of smartphones. A study [20] tried to calculate 

the power consumption of mobile device as well as mobile applications. It presented a power model to 

meter a few applications and showed its accuracy with experimental results. A power estimation method 

based on battery traces [21] was proposed to calculate accurate power dissipation rate for smartphone 

applications. In recent research [22], the power consumption of various mobile cloud computing applications 
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was investigated by using existing energy and performance measurement tools. However, these studies 

just measured the power consumed by each application, but did not analyze the patterns or causes. 

Therefore, in this paper, we focus on the energy-efficiency in terms of software, and then analyze 

characteristics of the power consumption of context-aware Apps which are the biggest consumers on 

mobile devices. We define two main factors related to the power consumption: sorts of context and types 

of App usage. The first factor means that a sort of context used by context-aware Apps can affect the 

amount of consumed power, so this is an App-dependent factor. The second one is a user-dependent 

factor, and a type of ways that a user actually uses a context-aware App. Our analysis presented in this 

paper will be the cornerstone for energy-efficient context-awareness in mobile environments.  

The paper is structured as follows. Section 2 provides our analysis about characteristics of the power 

consumption of context-aware Apps. Experimental results to prove the significance of our analysis are 

presented in Section 3. Section 4 concludes this paper with proposals for future works. 

2. Analysis of Characteristics of the Power Consumption 

We analyzed characteristics of the power consumption of context-aware Apps in order to define 

related factors. When a user uses context-aware Apps, they mostly consume power in two phases. In the 

first phase, they collect and process raw data from various embedded sensors, and then generate context. 

The second phase is to provide App services based on the inferred context. Therefore, we focused on 

consuming power in these two phases. Figure 1 shows two categories of factors influential in consuming 

energy of context-aware Apps: sorts of context and characteristics of App usage. 

Figure 1. Two main factors related to the power consumption of context-aware Apps. 

 

2.1. An App-Dependent Factor: Sorts of Context  

In the first phase, a sort of context necessary for context-aware App services is an important factor. 

Depending on the type of context, the sort of embedded sensors to be used is determined, and the power 

consumed by each sensor is different. As shown in Figure 1, we referred a basic context model [23] 

which includes four types: spatial, temporal, behavioral, and personal context. Table 1 shows short 

descriptions and related sensors for each type of context. For example, in the case of an App which uses 
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the spatial context like in/out or home, it activates GPS or Wi-Fi to gather sensing data. Generally, GPS 

and Wi-Fi sensors are known as the biggest energy consumers or energy-drain components [24]. 

Therefore, we can analyze that Apps using context related to GPS or Wi-Fi may consume relatively 

more energy than ones activating other sorts of sensors. 

This factor is App-dependent. Based on this analysis, it is possible to reduce power consumed by 

context-aware Apps by controlling activations of sensors which require relatively more power when they 

generate context. 

Table 1. A simple four categories of mobile context and related sensors. 

Type of context Description (example) Sensor 

Spatial context 
Location and location-related information of the 
mobile user (the latitude/longitude coordinates, the 
street address, the home, a friend’s place, etc.) 

GPS, Wi-Fi, Time 

Temporal context Time and date information (time, date, season, etc.) Time, Light 

Behavioral context 
Physical movements of the mobile user (walking, 
running, staying quietly, etc.) 

Accelerometer, 
Compass, Gyroscope 

Personal context 
Data inputted by the mobile user (updated calendar 
events, the phone contact lists, etc.) 

- 

2.2. A User-Dependent Factor: Types of App Usage  

According to the real-time context inferred in the first phase, context-aware Apps provide appropriate 

services for a user. In this second phase, the way a user use Apps affects the power consumption. Even 

if a user uses the same App, the amount of consumed power will be different if it is actually used in 

different ways. Focusing on this point, we defined the following four properties about the way of using 

Apps. Here, we distinguished the terms “execution” and “activation”. “Execution” refers to the working 

state of Apps on smartphones (from their starts until their complete stops). “Activation” of Apps means 

the state of actuating some embedded sensors to get raw data during an execution. 

• Periodicity: this factor considers whether an App is executed with regular intervals. If a user 

executes an App regularly (with reasonable intervals, not exact), its periodicity is “Periodic”. 

And we defined that the usage of an App is “Aperiodic” when it is used irregularly. 

• Frequency of execution: this factor considers whether an App is used frequently or infrequently. 

For example, if an App is used 10 times (>α) a day, then we can say that it is used in a “Frequent” 

way. In contrast, if a user runs an App just 2 times (≤α) a day, it is “Infrequent” usage. 

• Execution time (duration): this factor is whether an App is executed for long time or short time. 

That is, this is about the temporal length of each execution of Apps. We classified characteristics 

of this property into two cases based on a certain threshold (time unit β), “Long” execution and 

“Short” execution. 

• Frequency of activation: this factor means whether an App frequently runs sensors to collect 

and to generate context during its execution. After an App is executed, if it actuates related 

sensors many times (>γ) until it is completely stopped, its frequency of activation is “intensive”. 

Otherwise, the value of this property is “Not intensive”. 
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Periodicity is a property about the interval between executions, and Frequency of execution means 

the number of executions during the certain period (time). And Frequency of activation is the number of 

activations while an App is being executed. 

Based on these four features, we categorized nine types of the way of App usage (b) ~ (j), as shown 

in Table 2. 

Table 2. Types of App usage. 

Properties of the way of using Apps 
Types 

Periodicity 
Frequency 

of execution 
Execution time 

(duration) 
Frequency of 

activation 

Periodic 

Infrequent 
Long 

intensive 
- (a) Not intensive 

Short (both) 

Frequent 
Long 

intensive PFLT (b) 
Not intensive PFLN (c) 

Short (both) PFS (d) 

Aperiodic 

Infrequent 
Long 

intensive AILT (e) 
Not intensive AILN (f) 

Short (both) AIS (g) 

Frequent 
Long 

intensive AFLT (h) 
Not intensive AFLN (i) 

Short (both) AFS (j) 

(a) Ignorable cases: we can ignore four cases (PILT, PILN, PIST, and PISN) due to an assumption 

that the usage of an App is frequent when it is executed with reasonable intervals. Therefore, we 

ignored the cases of “Periodic” and “Infrequent” usage. 

(b) PFLT: in the way of this type, an App is executed multiple times (>α) (F) with periodic intervals 

(P) for a day, and its each execution lasts for a long time (>β) (L), and it intensively collects and 

generates context during each execution (T).  

(c) PFLN: when a user uses an App in the way of this type, it is periodically (P) executed many 

times (>α) (F) and each execution has long duration (>β) (L), but context collection and 

generation by related sensors is occurred infrequently (N). 

(d) PFS: an App is periodically (P) and frequently (>α) executed (F), but each execution has short 

duration (≤β) (S). In this case, there is no significant influence of the number of activation 

because the execution time is short. 

(e) AILT: a user aperiodically (A) executes an App a few times (≤α) (I), but he/she uses it for a long 

time (>β) (L) and it activates sensors frequently (T). 

(f) AILN: an App is aperiodically (A) executed a few times (≤α) (I) during a long time (>β) (L) and 

it rarely collects/generates context (N). 

(g) AIS: an App is executed a few times (≤α) (I) with aperiodic intervals (A) for a day and it is 

stopped after a short time (≤β) (S). The influence of the frequency of activation on power 

consumption can be ignored, since the execution time is short. 
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(h) AFLT: a user executes an App many times (>α) (F) aperiodically (A). The App is executed for 

long time (>β) (L) and often run sensors to get/generate context (T). 

(i) AFLN: an App is executed multiple times (>α) (F) with irregular intervals (A) for a day and each 

execution lasts for a long time (>β) (L), but context collection and generation is occurred less 

times (N). 

(j) AFS: in the way of this type, an App is executed multiple times (>α) (F) aperiodically (A) during 

a short time (≤β) (S). In this case, we can ignore the effect of the number of activation. 

3. Experiment and Discussion 

The goal of this paper is to discover a room for saving energy consumed by context-aware Apps of 

mobile devices. For this goal, we analyzed characteristics of the power consumption of context-aware 

Apps in Section 2. In this Section 3, some experimental results show reasonability of the analysis as well 

as the possibility of our goal. The experiment environment is Nexus 4 equipped with Android 4.4.2. On 

the test smartphone, we did not start any Apps at all, except our test program. We kept the brightness of 

the screen to the minimum. 

As mentioned in Section 2.1, an App-dependent factor “sorts of context” is significantly related to 

the power consumption. Our analysis and study will be a foundation for the development of low-power 

methods. As an example, Apps using spatial context generally use GPS and Wi-Fi sensors. Figure 2a 

shows a typical pattern of the power consumption for generating indoor or outdoor context which is a 

kind of spatial context. Generally, context-aware Apps activate a GPS sensor in outdoor (zone (1) in 

Figure 2a) and a Wi-Fi sensor in indoor (zone (2) in Figure 2a). However, if it is difficult to determine 

indoor and outdoor, then context-aware Apps consumes extremely more energy since they activate both 

of GPS and Wi-Fi (shaded zones in Figure 2a). In this case, we can apply some low-power methods to 

control the activation of sensors related to spatial context in order to reduce the power consumption. In 

Figure 2b, there is just slight difference of the power consumption in zones (1) and (2). However, as 

shown in the shaded zones of Figure 2b, this strategy can effectively reduce the amount of consumed 

power by limiting the context generation under situation hard to infer the real-time context. The result 

of our experiments was about 13% savings of the power consumption. Therefore, we can assure that it 

is possible for context-aware Apps to efficiently consume energy of mobile devices by energy-aware 

context-awareness methods derived from the first factor “sorts of context”. 

The second experiment was to check the usefulness of a user-dependent factor “types of App usage”. 

For experiment, we selected typical five Apps (Family Safety [25], SeoulBus [26], Kimgisa [27], Noom 

Walk [28], and DialApp), and measured the amount of power consumed while using each App in the 

way of each App usage type. Figure 3 shows the experimental result. The default case is when we kept 

lock screen of the test smartphone and did not execute any Apps at all. The second bar means the amount 

of consumed power per unit time when an App “Family Safety” is used in the PFLT way. That is, for a 

day, we used “Family Safety” many times with some temporal intervals, and kept each usage for a long 

time intentionally. This App continuously actuates a GPS sensor to trace the location of their family 

members. From this experimental result, we can draw some conclusions: an App consumes more power 

when an App is used such that the frequency of activation is relatively high. However, other factors 

(kinds of context used by an App, etc.) also have big influences on the power consumption.  
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Figure 2. The power consumption for context-awareness. 

 

Figure 3. The power consumption of five types of App usage. 
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Therefore, in order to reduce power consumed by context-aware Apps, we can propose some ideas 

of minimizing the number of generating context or reducing the frequency of activation of sensors, and 

so on. Based on our analysis, the following challenging issues or future works can be considered: 

• A method to control the context generation: actually, the above first experiment is a pilot 

experiment for our idea. A possible low-power method can be to control the generation of context 

used by context-aware Apps. We can define context generation patterns or models of each “type 

of context”, and then control or limit the useless generation based on the model. For example, 

the first experiment applied a context generation control method to hold down the context 

generation in uncertain situations that indoor or outdoor, one of the “spatial context”, is unsure. 

This method can be expanded to other types of context. 

• A method to control the frequency of activation: as another low-power method, context-aware 

Apps apply an algorithm for controlling their “frequency of activation”. According to our study 

in this paper, the frequency of activation of sensors is the most influential factor. Therefore, if an 

App is used in a way of “intensively frequent activation”, it can consider a method to effectively 

run sensors. For example, if the interval of activations is not reasonably long, it does not sense 

new sensing data and then can refer to the last one. Of course, this method should consider a type 

of context or characteristics of services provided by Apps. 

4. Conclusions  

Context-aware services are emerging in mobile environments, and context-awareness is an essential 

technique. However, smartphones have some constraints for context-awareness, and limited power is a 

critical issue. Therefore, in this paper, we analyzed the characteristics of the power consumption of 

context-aware smartphone applications. There are two main factors which have a strong influence on 

the power consumption. A sort of context affects the amount of consumed power, since it determines the 

sort of embedded sensors to actuate. As a user-dependent factor, the way of using an App is also an 

influential factor. Our paper can provide an analysis for improving the energy-efficiency of context-aware 

Apps. With two experimental results, we showed that our analysis of characteristics of the power 

consumption for context-aware Apps can be useful for developing energy-saving methods. Based on our 

analysis, we plan to classify context-aware Apps, to analyze the style of their usage, to predict their 

power consumption, and to develop low-power methods. Before that, we are going to expand the analysis 

of power consumption and to compare the power consumed in all cases considering related factors. 
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