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Abstract: Owing to the robustness of large sparse corruptions and the discrimination of 

class labels, sparse signal representation has been one of the most advanced techniques in 

the fields of pattern classification, computer vision, machine learning and so on. This paper 

investigates the problem of robust face classification when a test sample has missing 

values. Firstly, we propose a classification method based on the incomplete sparse 

representation. This representation is boiled down to an l1 minimization problem and an 

alternating direction method of multipliers is employed to solve it. Then, we provide a 

convergent analysis and a model extension on incomplete sparse representation. Finally, 

we conduct experiments on two real-world face datasets and compare the proposed method 

with the nearest neighbor classifier and the sparse representation-based classification. The 

experimental results demonstrate that the proposed method has the superiority in 

classification accuracy, completion of the missing entries and recovery of noise. 

Keyword: sparse representation; robust; face classification; alternating direction method of 

multipliers; incomplete; l1 minimization 

 

1. Introduction 

As a parsimony method, the sparse signal representation means that we desire to represent a signal 

by the linear combination of a few basis elements in an over-complete dictionary. The emerging theory 

of sparse representation and compressed sensing [1,2] has made exciting breakthroughs and received a 

great deal of attention in the past decade. Nowadays, the sparse representation has already been a 
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powerful technique for efficiently acquiring, compressing and reconstructing a signal. Besides, the sparse 

representation also has two powerful functions, that is, it is robust to large sparse corruptions and 

discriminative to class labels. These two distinguished functions promote its extensive and successful 

applications in areas such as pattern classification [3–5], computer vision [6] and machine learning [7]. 

It is worth mentioning that Wright et al. [3] proposed a novel method for robust face classification. 

They applied the idea of sparse representation to pattern classification and demonstrated that this 

unorthodox method can obtain significant improvements in classification accuracy over traditional 

methods. Subsequently, Yin et al. [8] extended the aforementioned classification method to the kernel 

version. Moreover, Huang et al. [9] and Qiao et al. [4] performed respectively face classification and 

signal classification by combining the discriminative methods with sparse representation. In [7],  

Cheng et al., constructed a robust and datum-adaptive l1-graph on the basis of sparse representation. 

Compared with k-nearest graph and ε-ball graph, the l1-graph is more robust to large sparse noise and 

more discriminative to neighbors. Zhang et al. [10] presented a robust seminonnegative graph 

embedding framework, and Chen et al. [11] applied non-negative sparse coding to facial expression 

classification. Elhamifar et al. [12] proposed a framework of sparse subspace clustering, which 

harnessed the sparse representation to cluster data drawn from multiple low dimensional subspaces. 

In the community of pattern classification and machine learning, we mainly restrict our attention to 

the situation that all samples do not have any missing entries. However, the datasets with missing 

values are ubiquitous in many practical applications such as image in-painting, video encoding and 

collaborative filtering. A commonly-used modeling assumption in data analysis is that the investigated 

dataset is (approximately) low-rank. Based on this assumption, Candès et al. [13] proposed a technique of 

matrix completion via convex optimization and showed that most low-rank matrices can be exactly 

completed under certain conditions. If we make a further clustering analysis on these datasets,  

Shi et al. [14] proposed the method of incomplete low-rank representation, which is validated to be 

very robust to missing values.  

For the task of pattern classification, we usually stipulate that all samples from the same class lie in 

a low dimensional subspace. If the training samples have missing entries, the matrix completion or the 

incomplete low-rank representation can be employed to complete or recover all missing values. This 

paper considers the pattern classification problem that the test samples have missing values while the 

training samples are complete. To address it, we propose a method of incomplete sparse representation. 

This method treats each incomplete test sample as the linear combination of all training samples and 

searches the sparest representation. 

The remainder of this paper is organized as follows. Section 2 reviews the classification problem 

based on sparse representation. In Section 3, we propose a model of incomplete sparse representation 

and develop an alternating direction method of multipliers (ADMM) [15] to solve it. Convergence 

analysis and model extension are made in Section 4. In Section 5, we carry out experiments on two 

well-known face datasets and validate the superiority of the proposed method by comparing with other 

techniques. The last section draws the conclusions. 
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2. Sparse Representation for Classification 

A fundamental problem in pattern classification is how to determine the class label of a test sample 

according to labeled training samples from distinct classes. Given a training set collected by C classes, 

we express all samples from the i-th class as  
1

iNd
ij j
a  , where d is the dimensionality of each 

sample, and iN  is the sample number of the i-th class, 1,2,...,i C . Denote 
1

C

ii
N N


  and 

 1 2, , ,
ii i i iNA a a a . Thus, the entire training samples can be concatenated into a d N  matrix 

 1 2, , , CA A A A . 

We assume that the samples from the same class lie in a low-dimensional linear subspace and there 
are sufficient training samples for each class. Given a new test sample 1 2( , ,..., )T d

dy y y y   with 

label i, we can express it as the linear combination of the training samples from the i-th class: 

1 1 2 2 i ii i i i iN iNw w w   y a a a  (1)

for some real scalars , 1, 2,...,ij iw j N . Set 1 2(0,...,0, , ,..., ,0,...,0)
i

T N
i i iNw w w w  . Then the linear 

representation of y  can be re-expressed in terms of N training samples as 

.y Aw  (2)

In view of the assumption that the training samples are enough, the coefficient vector w  satisfying 
Equation (2) is not unique. Moreover, the vector w  is also sparse if /iN N  is very small. 

If the class label of y  is unknown, we still desire to obtain its label on the basis of the linear 

representation coefficients w . The sparse representation is essentially discriminative to classification 

and robust to large sparse noise or outliers. Considering these advantages, we will construct a sparse 

representation model to perform classification. For the given dictionary matrix A , the sparse 
representation of y  can be reached by solving an l1-minimization problem 

1
min , s.t . 

w
w y Aw  (3)

or its stable version 

1 2
min , s.t .  

w
w y Aw  (4)

where the error bound 0  , 
1
  and 

2
  are the l1-norm and the l2-norm of vectors respectively. 

Sparse representation is a global method and it has superiority in determining the class label over other 

local methods such as nearest neighbor (NN) and nearest subspace (NS) [3]. 

Denote the optimal solution of Problem (3) or (4) by ŵ . Sparse representation-based classification 
(SRC) [3] utilizes ŵ  to judge which class y  belongs to. The following will present the detailed 

implementation process. We first introduce C characteristic functions : N N
i    as below 

 
1

0 0
, if

( )
0, otherwise

i i

j k kk k
i j

x N j N




 
   


 x  (5)

for arbitrary 1 2( , ,..., )T N
Nx x x x  , where 0 0N  , 1,2,...,i C . Then we computed C residuals 

2
ˆ( ) ( ) , 1, 2,...,i ir i C  y y A w . Finally, the class of y  is labeled as arg min ( )ii

r y . 
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3. Incomplete Sparse Representation for Classification 

As the second orders generalization of the compressed sensing and sparse representation theory, the 

low-rank matrix completion is a technique to complete all missing or unknown entries of a matrix by 

means of the low-rank structure. If all training samples are complete and the test sample has missing 

entries, we can not effectively recover the missing values through the use of the low rank property.  

In other words, the available matrix completion methods become invalid. To solve this problem, we 

propose a method of incomplete sparse representation for classification. The proposed method not only 

completes effectively the missing entries but also obtains better classification performance. 

3.1. Model of Incomplete Sparse Representation 

Considering the existence of noise, we decompose a given test sample y  into the sum of two terms: 

 y Aw e , where de   is the noise vector. Let {1, 2,..., }d  be an index set, then ky  is missing if 

and only if k  . For the convenience of description, we define an orthogonal projector operator 
( ) : d dP     as follows 

 
, if ,

( )
0, otherwise .

k

k

y k
P


 


y  (6)

Thus, the known entries of y  can be written as 0 ( )Py y .  

For the incomplete test sample 0y , we hope to complete all missing entries and obtain the sparsest 

linear representation on the basis of A  and  . To this end, we construct an l1-minimization problem 
2

1 2, ,

0

min

s. t . , ( )P







  
w e y

w e

y Aw e y y
 (7)

where the tradeoff factor 0  . As a matter of fact, the objective function in the above problem can be 

replaced by 
2

1 2
( )P w e . This conclusion means that it is impossible to recover the noise 

corresponding to the missing positions. Problem (7) is a convex and non-smooth minimization with 

equality constraints. We will employ the alternating direction method of multipliers (ADMM) to solve 

this problem. 

3.2. Generic Formulation of ADMM 

The ADMM [15] is a simple and easily implemented optimization method proposed in 1970s. It is 

well suited to distributed convex optimization, and, in particular, to large scale optimization problems 

with multiple non-smooth terms in the objective functions. Hence, the method has received a lot of 

attention in recent years. 

Generally, ADMM solves the constrained optimization problem taking the following generic form: 

,
min ( ) ( ), s . t .

m n
f g

 
  

x y
x y Bx Cy d

 
 (8)

where : mf   , : ng   , and they are proper and convex. The augmented Lagrange function 

of Problem (8) is defined as follows 
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2

2
( , , ) ( ) ( ) , / 2L f g          x y x y Bx Cy d Bx Cy d  (9)

where   is a positive scalar,   is the Lagrange multiplier vector and ,   is the inner operator of vectors.  

ADMM updates alternatively each block of variables. The iterative formulations of blocks of 

variables are outlined as follows 

: arg min ( , , )

: arg min ( , , )

: arg max ( , , ).

x
L

L

L











 

 
 




y

x x y

y x y

x y

 (10)

Moreover, the values of   will be increased during the procedure of iterations. 

3.3. Algorithm for Incomplete Sparse Representation 

We adopt the method of ADMM with multiple blocks of variables to solve the problem of 

incomplete sparse representation. By introducing two auxiliary variables dz   and Nu  , we 

reformulate Problem (7) as follows: 
2

1 2, , , ,

0

min ,

s. t . , , , ( ) .P







    
w e y z u

w e

z Au e w u z y y y
 (11)

Without considering the constraint 0( )P y y , the augmented Lagrange function of the above 

optimization problem is constructed as 

 
1 2 3

2 2 2 2

1 2 2 2 2

1 2 3

( , , , , , , , )

2
, , ,

L

        

      

w e y z u λ λ λ

w e z Au e w u z y

λ z Au e λ w u λ z y

 (12)

where the penalty coefficient 0  , 1 2,  d N λ λ   and 3
dλ   are three Lagrange multipliers 

vectors. Let  1 2 3, ,λ λ λ λ , then Equation (12) is equivalent to  

 2 2 2 2

1 2 31 2 2 2 2

( , , , , , )

/ / / .
2

L

              

w e y z u λ

w e z Au e λ w u λ z y λ
 (13)

ADMM updates alternatively each block of variables by minimizing or maximizing L . We 

subsequently give the detailed iterative procedure for Problem (11). 

Computing w . When w  is unknown and other blocks of variables are fixed, the calculation 

formulation of w  is as follows:  

  2

21 2

1/ 2

: arg min

1 1
arg min /

2

= ( / )

L

S












   



w

w

w

w w u λ

u λ

 (14)
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where 1/ ( ): N NS      is the absolute shrinkage operator [16] defined by  

   1/ ( ) max 1/ ,0 sgn( )j jj
S x x  x  (15)

for arbitrary Nx  . 
Computing e . If e  is unknown and other variables are given, e  is updated by minimizing L : 

 

 

22

12 2

1

: arg min

arg min /
2

/ .
2

L

 

 
 



    

  


e

e

e

e z Au λ e

z Au λ

 (16)

Computing u . The update formulation of u  is calculated as follows: 

: arg min arg min ( )L f 
u u

u u  (17)

where    2 2

1 22 2
( ) / /f        u z e λ Au w λ u . By setting the derivative of ( )f u  to zeros,  

we have  

   1 2/ / 0T T        A Au A z e λ u w λ  (18)

or, equivalently, 

      1

1 2/ /T T
N  


     u A A I A z e λ w λ  (19)

where NI  is an N-order identity matrix. 

Computing z . Fix , , ,w e y u  and λ , and minimize L  with respect to z : 

   

  

2 2

1 32 2

1 3

: arg min

arg min / /

1
/ .

2

z

L

 





      

    

z
z

z Au e λ z y λ

Au e y λ λ

 
(20)

Computing y . Given , , ,w e z u  and λ , we calculate y  as follows 

  2

3 2

3

: arg min

arg min /

/ .

L







  

 

y

y

y

z λ y

z λ

 (21)

Considering the constraint 0( )P y y , we further obtain the iterative formulation of y : 

 0 3: /P   y y z λ  (22)

where   is the complementary set of  . 
Computing λ . Given , , , ,w e y z u , we update λ  as follows 
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1 1

2 2

3 3

:

:

:







   


  
   

λ λ z Au e

λ λ w u

λ λ z y

 (23)

The whole iterative process for solving Problem (11) is outlined in Algorithm 1. In the initialization 
step, the blocks of variables can be chosen as follows: 00,  ,  0,  0   e y y z u , 1 2 30,  0,  0  λ λ λ . 

We set the stopping condition of Algorithm 1 to be  

 2 2 2
max , ,     z Au e w u z y  (24)

where   is a sufficiently small positive number. The inverse matrix   1T 
A A I  is computed only 

once and the corresponding computational complexity is 2 3( )O N d N . In addition, the complexity of 

Algorithm 1 is also 2 3( )O N d N  for each outer loop.  

Algorithm 1. Solving Problem (11) via ADMM. 

Input: the dictionary matrix A  constructed by all training samples, an incomplete test sample 

0y  and the sampling index set  . 

Output: y , w  and e .  

Initialize: 1 2 3, , , , , , , , , , 1    e y z u λ λ λ . 

While not converged do 

1: Update w  according to (14). 

2: Update e  according to (16). 

3: Update u  according to (19). 

4: Update z  according to (20). 
5: Update y  according to (22). 

6: Update λ  according to (23). 
7: Update   as min( , )  .  

End while 

Let ŷ , ŵ  and ê  be the output variables of Algorithm 1. The vector ŷ  denotes the completed 

sample of 0y  and ŵ  indicates the sparse representation of ŷ  over the basis matrix A. In view of the 

discriminative performance of ŵ , this sparse vector can be employed to obtain the class label of 0y . 

More specially, we first compute C residuals 0 0 2
ˆ( ) ( ( ))i ir P  y y A w  and then label the class of 0y  

to be 0arg min ( )ii
r y . The above method is called incomplete SRC (ISRC), a variant of SRC.  

4. Convergence Analysis and Model Extension 

Although the minimization Problem (11) is convex and continuous, it is still difficult to straightly 

prove the convergence of Algorithm 1. The main reason for this difficulty is that the number of blocks 

of variables is more than two. If there is no missing value, we can design an exact ADMM for solving 

Problem (11). The following theorem shows the convergence of the modified method. 
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Theorem 1. If {1,2,..., }d   and 0 0( , , , , , )L w e y z u λ  has a saddle point, then the iterative 

formulations on the basis of an exact ADMM  

 
 
 

1 1
0,

1 1 1 1
0,

1 1 1 1
1 1

1 1 1
2 2

1 1
3 3 0

( , ) : arg min ( , , , , , )

( , ) : arg min ( , , , , , )

:

:

:

k k k k k

k k k k k

e

k k k k k

k k k k

k k k

L

L











 

   

   

  

 

 

 

    


  


  


z w

u

w z w e y z u λ

u e w e y z u λ

λ λ z Au e

λ λ w u

λ λ z y

 (25)

satisfy that 0( , , , , , )L w e y z u λ  converges to the optimal value. 

Proof. The objective function of Problem (11) can be rewritten as ( , ) ( , )f gz w u e , where 

1
( , )f z w w  and 

2

2
( , )g u e e . It is obvious that ( , )f z w  and ( , )g u e  are two closed, proper and 

convex functions.  
Since {1,2,..., }d  , we have 0y y , which means it is not necessary to consider the update of y . 

Under this circumstance, the constraints in Problem (11) are equivalent to 

0

0

0

d d N d

d d N d N d d

N d N N N d



  

 

     
                         

     

I O A I
z u

I O O O y
w e

O I I O

 (26)

where d NO  is a zero matrix with size of d N . 

In consideration of the characteristics of the objective function 0 1 2 3( , , , , , , , )L w e y z u λ λ λ  and the 

constraints (26), we have the following results for the iterative formulations (25): 
lim( ) 0,k k k

k
  z Au e  lim( ) 0,k k

k
 w u  0lim( ) 0k

k
 z y  and 0 1 2 3( , , , , , , , )L w e y z u λ λ λ  converges to 

the optimal value [15]. This completes the proof. □ 

For the aforementioned ISRC, we only consider one incomplete test sample. In the following, we 

will extent it to the case of a batch of test samples with missing values. Given a set of m incomplete 

test samples  0 1

md
i i
y  , we can construct a matrix  0 01 02 0, ,..., d m

m
 Y y y y   and a two-

dimensional index set {1,2,..., } {1,2,..., }d m   , where   indicates the positions of missing values 

for 0Y .  

We establish the batch learning model of incomplete sparse representation:  
2

1, , , ,

0

min ,

s. t . , , , ( )

F

P







    
W E Y Z U

W E

Z AU E W U Z Y Y Y
 (27)

where , , , ,N m N m d m d m d m        W U E Y Z     , ( ) : d m d mP  
     is a two-dimensional 

generalization of ( )P  , 
1
  and 

F
  are the component-wise l1-norm and the Frobenius norm of 

matrices respectively. Without considering the constraints 0( )P  Y Y , the augmented Lagrange 

function for Problem (27) is  
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 2 2 2 2

1 2 31

( , , , , , )

/ / /
2F F F F

L

   



             

W E Y Z U

W E Z AU E W U Z Y
 (28)

where 0  , 1 2 3, ,d m N m d m           and  1 2 3, ,     . When solving Problem (27), we 

adopt the similar iterative procedure with Problem (11) by minimizing or maximizing alternatively 
( , , , , , )L W E Y Z U .  

5. Experiments 

This section demonstrates the effectiveness and the efficiency of ISRC by conducting experiments 

on Olivetti Research Laboratory (ORL) and Yale face datasets. We compare the results of the 

proposed method with that of NN and SRC. 

5.1. Datasets Description and Experimental Setting 

ORL dataset contains 10 different face images of each of 40 individuals [17]. These 400 images 

were captured at different time with different illuminations and varying facial details. The Yale face 

dataset consists of 165 images from 15 persons and there are 11 images for each person [18]. The 

images were taken with different illuminations, varying facial expressions and details. All images in 

both datasets are in grayscale and resized to be 64 × 64 for computational convenience. Hence, the 

dimensionality of each sample is 4096d  . Moreover, each sample is normalized to a unit vector in 

the sense of the l2-norm due to the existence of variable illumination conditions and poses. 

In ORL dataset, five images per person are randomly selected for training and the remaining five 

images for testing. In Yale dataset, we randomly choose six images per person as the training samples 
and the other images as the testing samples. For any sample y  from the testing set, we generate 

randomly an index set   according to the Bernoulli distribution, i.e., the probability of i  is 
stipulated as p for arbitrary {1,2,..., }i d , where (0,1]p . The probability p is also named the 

sampling probability and 1p   means that no entry is missing. Thus, an incomplete sample of y  is 

expressed as 0 ( )Py y . The generating manner of   indicates that the number of missing entries is 

approximately pd . 

In Algorithm 1, the parameters are set as 3 8 10 810 , 10 , 10 , 1.1, 10          . For each 

dataset, we consider different values of p. For fixed p, the experiments are repeated 10 times and the 

average classification accuracies are reported. When carrying out NN, we compute the distance between 

0y  and ija  as follows: 0 2
( )ijPy a . In addition, all missing values are replaced with zeros in 

implementing SRC.  

5.2. Experimental Analysis 

We first compare the sparsity of the coefficient vectors obtained by SRC and ISRC respectively.  

Two different sampling probabilities are considered, that is, p = 0.1 and p = 0.3. The comparison 

results are partially shown in Figure 1. From this figure, we can see that each linear representation 

vector of ISRC has only a few relatively large components in the sense of absolute values and other 
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values are close to zero. Compared with ISRC, SRC has worse sparsity performance due to the fact 

that its amplitude is relatively small. These observations show that ISRC has superiority over SRC in 

obtaining sparse representations. 
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Figure 1. Sparsity comparisons of the linear representations between SRC and ISRC. 

Then, we compare the classification performance of ISRC with that of SRC and NN on the two 

given datasets. To this end, we vary the values of p from 0.1 to 1 with an interval of 0.1. When p = 1, 

ISRC becomes SRC. Figure 2 shows the comparison results of classification accuracy, where (a) and 

(b) represent the results of ORL and Yale respectively. It can be seen from this figure that ISRC 

achieves the best classification accuracy compared with SRC and NN, and it is relatively stable for 

different values of p. SRC is very sensitive to the choice of p and its classification accuracy 

degenerates steeply with the decreasing of p. In addition, NN has lower classification accuracy although 

it is stable. To sum it up, ISRC is the most robust method and has the best classification performance. 
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Figure 2. Classification performance comparisons among NN, SRC and ISRC. 

For a test sample with missing values, both SRC and ISRC can recover all missing entries and noise 

to some extent. Finally, we compare their performance in completing missing entries and recovering 

the sparse noise. Here, we only consider two sampling probabilities, i.e., p = 0.1 and p = 0.3. For these 

two given probabilities, we compare the completed images and the recovered noise images obtained by 

SRC and ISRC respectively, as shown partially in Figures 3 and 4. 
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Figure 3. Completion and recovery performance comparisons on ORL. 

(a) Original images (b) Incomplete images (c) Images completed
 by SRC

(d) Noises recovered
 by SRC

(e) Images completed
 by ISRC

(f) Noises recovered
 by ISRC  

Figure 4. Completion and recovery performance comparisons on Yale. 
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In the above two figures, the sample probability is set to 0.1 in the first two lines of images and 0.3 

in the latter two lines. For each figure, the first two columns of images display the original and the 

incomplete images respectively, where the positions with missing entries are shown in white. The third 

and the fifth columns of images give the completed images by SRC and ISRC respectively. The fourth 

and the last columns of images show the noise recovered by SRC and ISRC respectively. By 

comparing the completed images with the original images, we can see that ISRC not only has the 

better completion performance, but also automatically corrects the corruptions to a certain extent. 

Moreover, ISRC is more efficient in recovering noise than SRC. In summary, ISRC has better 

recovery performance than SRC. 

6. Conclusions 

This paper studies the problem of robust face classification with incomplete test samples. To 

address this problem, we propose a classification model based on incomplete sparse representation, 

which can be regarded as the generalization of sparse representation-based classification. Firstly, the 

incomplete sparse representation is described as an l1-minimization and the alternating direction 

method of multipliers is employed to solve this optimization problem. Then, we analyze the 

convergence of the proposed algorithm and extend the model to the case of a batch of test samples. 

Finally, the experimental results on two well-known face datasets demonstrate that the proposed 

classification method is very effective in improving classification performance and recovering the 

missing entries and noise. It still needs further research on the model and algorithm of incomplete 

sparse representation. In the future, we will consider the sparse representation-based classification 

problem that both training and testing samples have missing values.  
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