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Abstract: The protocols for controlled remote state preparation of a single qubit and a
general two-qubit state are presented in this paper. The general pure three-qubit states
are chosen as shared quantum channel, which are not Local operations and classical
communication (LOCC) equivalent to the mostly used GHz state. This is the first
time that general pure three-qubit states have been introduced to complete remote state
preparation. The probability of successful preparation is presented. Moreover, in some
special cases, the successful probability could reach a unit value.

Keywords: controlled remote state preparation; pure three-qubit state; generalised
schmidt-decomposition

1. Introduction

Quantum teleportation (QT for short) is the first quantum information processing protocol
presented by Bennett [1] to achieve the transmission of information contained in quantum state
determinately. Many theoretical schemes have been proposed since then [2–6]. It has also been realized
experimentally [7–14]. To save resources needed in the process of information transmission, Lo put
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forward a scheme for remote preparation of quantum state (RSP for short) [15]. Compared with QT,
in RSP the sender does not own the particle itself but owns all the classical information of the state
he or she wants to prepare for the receiver, who is located separately from the sender. The resource
consumption is reduced greatly in RSP, as the sender do not need to prepare the state beforehand. The
RSP has already attracted much attention. A number of RSP protocols were presented, such as RSP
with or without oblivious conditions, optimal RSP, RSP using noisy channel, low-entanglement RSP,
continuous variable RSP, and so on [16–26]. Experimental realization was also proved [27,28].

Besides the usual RSP, sometimes controllers are introduced to the process of remote state
preparation, which is the so called controlled remote state preparation (CRSP for short), and it has
drawn the attention of many researchers. In contrast to the usual RSP, the CRSP needs to incorporate
a controller. The information could be transmitted if and only if both the sender and receiver cooperate
with the controller or supervisor. CRSP for an arbitrary qubit has been presented in a network via many
agents [29]. A two-qubit state CRSP with multi-controllers using two non-maximally GHz states as a
shared channel is shown in [30]. CRSP with two receivers via asymmetric channel [31], using POVM
are presented [32,33]. The five-qubit Brown state as quantum channel to realize the CRSP of three-qubit
state is elaborated in [34]. Recently, the joint CRSP [37] and CRSP with partially entangled quantum
channel [38] are also presented. Most of the existing schemes chose to use the GHz-type state, W-type
state, Bell state or the composite of these states as the shared quantum channel. However in this paper,
we choose the general pure three-qubit state as quantum channel, which is not LOCC equivalent to the
GHz state. For some special cases, the probability for successful CRSP can reach a unit value.

In [35], the authors proved that for any pure three-qubit state, there exists a local base, which
allows one to express a pure three-qubit state in a unique form using a set of five orthogonal
state. It is the called generalised Schmidt-Decomposition for three-qubit state. Using the generalised
Schmidt-Decomposition, Gao et al. [36] proposed a controlled teleportation protocol for an unknown
qubit and gave analytic expressions for the maximal successful probabilities. They also gave an explicit
expression for the pure three-qubit state with unit probability of controlled teleportation [36]. Motivated
by the ideas of the two papers, we try to investigate the controlled remote state preparation using the
general pure three-qubit states and their generalised Schmidt-Decomposition.

The paper is arranged as follows. In Section 2, the CRSP for an arbitrary qubit is elucidated in detail.
We find that the successful probability is the same as that of controlled teleportation for qubits with real
coefficients. In Section 3, the CRSP for a general two-qubit state is expounded. For a two-qubit state
with four real coefficients, the corresponding successful probability is the same as that of controlled
teleportation of a qubit. In Section 4, we conclude the paper.

2. CRSP for an Arbitrary Qubit

Suppose that three separated parties Alice, Bob and Charlie share a general pure three-qubit state
|Φ〉cab, the particle a belongs to Alice, b to Bob and c to Charlie, respectively. The distribution of the
three particles are sketched in Figure 1.
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In Figure 1, the small circles represent the particles, the solid line between two circles means that
the corresponding two particles are related to each other by quantum correlation. According to [35], the
general pure three qubit state has a unique generalised Schmidt-Decomposition in the form

|Φ〉cab = (a0|000〉+ a1e
iµ|100〉+ a2|101〉+ a3|110〉+ a4|111〉)cab (1)

where ai ≥ 0 for i = 0, · · · , 4, 0 ≤ µ ≤ π,
∑4

i=0 a
2
i = 1. The ai and µ in Equation (1) are decided

uniquely with respect to a chosen general pure three qubit state.
Now Alice wants to send the information of a general qubit

|ϕ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1 (2)

to the remote receiver Bob under the control of Charlie. Alice possesses the classical information of this
qubit, i.e., the information of α and β, but does not have the particle itself. Next, we make three steps to
complete the CRSP for |ϕ〉 = α|0〉+ β|1〉.OPTICAL REVIEW Regular Paper
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Fig. 1. Particle distribution in one qubit CRSP.

Now Alice wants to send the information of a general qubit

|φ⟩ = α|0⟩ + β|1⟩, |α|2 + |β|2 = 1. (2)

to the remote receiver Bob under the control of Charlie. Alice possesses the classical informa-

tion of this qubit, i.e. the information of α and β, but does not have the particle itself. Next,

we make three steps to complete the CRSP for |φ⟩.
Step 1: The controller Charlie firstly makes a single qubit measurement under the base

|ε0
c⟩ = cos

θ

2
|0⟩ + eiη sin

θ

2
|1⟩, |ε1

c⟩ = sin
θ

2
|0⟩ − eiη cos

θ

2
|1⟩, (3)

where θ ∈ [0, π], η ∈ [0, 2π]. The choice of θ and η could be flexible according to the need of

the controller. If θ = π and η = 0, |ε0
c⟩ and |ε1

c⟩ will be the |±⟩ base. Then Charlie broadcasts

his measurement outcomes publicly to Alice and Bob using one classical bit. Using Eq.(2),

the quantum channel can be rewritten as

|Φ⟩cab =
√

p0|ε0
c⟩|Ω0⟩ab +

√
p1|ε1

c⟩|Ω1⟩ab, (4)

where

p0 = sin2 θ

2
+ a2

0 cos θ + a0a1 cos(µ − η) sin θ, (5)

p1 = cos2
θ

2
− a2

0 cos θ − a0a1 cos(µ − η) sin θ, (6)

|Ω0⟩ab =
1√
p0

{
[a0 cos

θ

2
+ a1e

i(µ−η) sin
θ

2
]|00⟩ + e−iη sin

θ

2
[a2|01⟩ + a3|10⟩ + a4|11⟩]

}

ab

(7)

3/14

Figure 1. The diagram of scanning radar for aircraft landing.

Step 1: The controller Charlie firstly makes a single qubit measurement under the base

|ε0c〉 = cos
θ

2
|0〉+ eiη sin

θ

2
|1〉, |ε1c〉 = sin

θ

2
|0〉 − eiη cos

θ

2
|1〉 (3)

where θ ∈ [0,π], η ∈ [0, 2π]. The choice of θ and η could be flexible according to the need of
the controller. If θ = π and η = 0, |ε0c〉 and |ε1c〉 will be the |±〉 = (|0〉 ± |1〉)/

√
2 base. Then

Charlie broadcasts his measurement outcomes publicly to Alice and Bob using one classical bit. Using
Equation (3), the quantum channel can be rewritten as

|Φ〉cab =
√
p0|ε0c〉|Ω0〉ab +

√
p1|ε1c〉|Ω1〉ab (4)

where
p0 = sin2 θ

2
+ a20 cos θ+ a0a1 cos(µ− η) sin θ (5)
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p1 = cos2
θ

2
− a20 cos θ− a0a1 cos(µ− η) sin θ (6)

|Ω0〉ab =
1√
p0

{
[a0 cos

θ

2
+ a1e

i(µ−η) sin
θ

2
]|00〉+ e−iη sin

θ

2
[a2|01〉+ a3|10〉+ a4|11〉]

}

ab

(7)

|Ω1〉ab =
1√
p1

{
[a0 sin

θ

2
− a1ei(µ−η) cos

θ

2
]|00〉 − e−iη cos

θ

2
[a2|01〉+ a3|10〉+ a4|11〉]

}

ab

(8)

If the result of Charlie’s measurement is 0, the composite system of Alice and Bob is |Ω0〉ab with
probability p0 and |Ω1〉ab with probability p1 for result 1. To ensure that the particle c entangles with the
whole system, we assume that a0 > 0 and a2, a3, a4 are not equal to 0 at the same time. This is equivalent
to p0 > 0 and p1 > 0 at the same time.

Note that Step 1 is actually similar to that of controlled teleportation in [36]. We arrange it here to
keep the integrity of the paper. More detailed calculation can be found in [36].

Step 2: Without loss of generality, we assume that the result of Charlie’s measurement is 0. Then
the composite system of Alice and Bob is |Ω0〉ab. Using Schmidt-Decomposition of two-qubit system,
there exists bases {|0′〉, |1′〉}a and {|0′〉, |1′〉}b for particle a and b respectively, such that |Ω0〉ab can be
expressed as

|Ω0〉ab = (
√
λ00|0

′
0
′〉+

√
λ01|1

′
1
′〉)ab (9)

where λ00 = (1 −
√

1− C2
0)/2, λ01 = (1 +

√
1− C2

1)/2 in [36]. On receiving the result of Charlie’s
measurement, the sender Alice prepares a projective measurement utilizing the classical information of
|ϕ〉 in the following form:


 |µ0〉
|µ1〉



a

=


 α β

β∗ −α∗




 |0

′〉
|1′〉



a

(10)

Then |Ω0〉ab could be reexpressed as

|Ω0〉ab = |µ0〉a(
√
λ00α

∗|0′〉+
√
λ01β

∗|1′〉)b + |µ1〉a(
√
λ00β|0

′〉 −
√
λ01α|1

′〉)b (11)

Next we first discuss the case for real coefficients, i.e., α,β are real. Then Equation (11) will be

|Ω0〉ab = |µ0〉a(
√
λ00α|0

′〉+
√
λ01β|1

′〉)b + |µ1〉a(
√
λ00β|0

′〉 −
√
λ01α|1

′〉)b (12)

Alice measures her qubit under base {|µ0〉, |µ1〉}a and gets the outcome 0 and 1 with probability
λ00α

2 + λ01β
2 and λ00β2 + λ01α

2 respectively. And Alice sends her measurement result to Bob by 1
classical bit. The receiver Bob’s system will collapse to

|ξ0〉b =
1√

λ00α2 + λ01β2
(
√
λ00α|0

′〉+
√
λ01β|1

′〉)b (13)

and
|ξ1〉b =

1√
λ00β2 + λ01α2

(
√
λ00β|0

′〉 −
√
λ01α|1

′〉)b (14)

respectively.
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Step 3: We assume that Alice’s measurement result is 0. Now according to Charlie and Alice’s results,
Bob wants to recovery the state |ϕ〉 on his side. Bob needs to introduce an auxiliary particle in initial
state |0〉b′ , then he makes a unitary operation U0

bb′
on his particle b and the auxiliary particle b′, and his

state changes to |ω0〉bb′ , where

U0
bb′ =




1 0 0 0

0 1 0 0

0 0
√

λ00
λ01

√
1− λ00

λ01

0 0 −
√

1− λ00
λ01

√
λ00
λ01




(15)

|ω0〉bb′ = U0
bb′ |ξ0〉b|0〉b′

=
1√

λ00α2 + λ01β2

[√
λ00(α|0

′
0〉+ β|1′0〉) +

√
λ01 − λ00β|1

′
1〉
]
bb′

(16)

After the unitary operation, Bob makes a measurement on his auxiliary particle b′ under the base
{|0〉, |1〉}b′ . The probability for Bob to get measurement result 0 is λ00/(λ00α2 + λ01β

2), and he can
recovery state |ϕ〉 successfully. But if the result is 1, the scheme fails.

Similarly, if Alice’s measurement result is 1, Bob also introduces an auxiliary particle in initial state
|0〉b′ . But the unitary operation is U1

bb′
, and the system after the unitary operation is |ω1〉bb′ , where

U1
bb′ =




0 0 1 0

0 1 0 0

−
√

λ00
λ01

0 0
√

1− λ00
λ01√

1− λ00
λ01

0 0
√

λ00
λ01




|ω1〉bb′ = U1
bb′ |ξ1〉b|0〉b′

=
1√

λ00β2 + λ01α2

[√
λ00(α|0

′
0〉+ β|1′

0〉)−
√
λ01 − λ00α|1

′
1〉
]

bb
′

The probability for Bob to successfully reconstruct the state |ϕ〉 is λ00/(λ00β2 + λ01α
2).

Combining the process of Step 1 and Step 2, when the controller Charlie’s measurement result is 0,
the receiver Bob can reconstruct the qubit |ϕ〉 with probability

p0(λ00α
2 + λ01β

2)
λ00

λ00α2 + λ01β2
+ p0(λ00β

2 + λ01α
2)

λ00

λ00β2 + λ01α2
= 2p0λ00 (17)

Similarly, if Charlie’s measurement result is 1 with probability p1, the whole system collapses to
|Ω1〉ab. And there are bases {|0〉, |1〉}a and {|0〉, |1〉}b for Alice and Bob’s systems (Ref. [36]), so that
the Schmidt-Decomposition for |Ω1〉ab is

|Ω1〉ab = (
√
λ10|0 0〉+

√
λ11|1 1〉)ab (18)

Then continuing to use the last 2 steps as those in which Charlie’s measurement result is 0, we can
get that the successful probability for Bob to produce the desired state is 2p1λ10.
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As a result, for the real case, Alice can prepare the qubit |ϕ〉 at Bob’s position under the control of
Charlie with probability 2(p0λ00 + p1λ10), which is the same as that of controlled teleportation in [36].
But the consumption of classical bits in CRSP is reduced to 2 cbits for the whole process, and there is
no need to prepare the qubit beforehand, which could save much quantum resource.

Next we discuss the case for complex coefficients. Step 1 is the same as that of real case. In Step 2,
if Alice’s measurement result is 0, referring to Equation (11), the remote state preparation fails. When
Alice gets the result 1 with probability λ00|β|2 + λ01|α|2, the whole system collapses to

1√
λ00|β|2 + λ01|α|2

(
√
λ00β|0

′〉 −
√
λ01α|1

′〉) (19)

Then Step 3 is the same as that of the real case. The whole successful probability is

p0(λ00|β|2 + λ01|α|2)
λ00

λ00|β|2 + λ01|α|2
+ p1(λ10|β|2 + λ11|α|2)

λ10

λ10|β|2 + λ11|α|2
= p0λ00 + p1λ10(20)

which is half of the real case.
According to the discussion of [36], the maximally probability for controlled teleportation will reach

unit if and only if the shared channel is

a0|000〉+ a1|100〉+
1√
2
|111〉, a0 > 0, a1 ≥ 0, a20 + a21 =

1

2
(21)

As for the controlled remote state preparation for a qubit using the above channel, the successful
probability can also reach one for the real case, and 1/2 for the complex case.

3. CRSP for a Two-Qubit State

In the CRSP for a two-qubit state, there are also three parties Alice, Bob and Charlie. They share a
quantum channel which is the composite of |Φ〉cab and the Bell state, the distribution of particles in the
shared quantum channel is displayed in Figure 2, the meaning of symbols is the same as in Figure 1.

|Φ〉cab|φ+〉a′b′ = (a0|000〉+ a1e
iµ|100〉+ a2|101〉+ a3|110〉+ a4|111〉)cab

1√
2

(|00〉+ |11〉)a′b′ (22)

the particle c belongs to Charlie, a, a′ to Alice and b, b′ to Bob. Now the sender Alice possesses the
classical information of a general two-qubit state |ϕ〉,

|ϕ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, |α|2 + |β|2 + |γ|2 + |δ|2 = 1 (23)

she wants to prepare the state at the position of a distant receiver Bob with the help of a controller
Charlie. Like CRSP in Section 2, there are three steps to complete this task.
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Fig. 2. Particle distribution in two-qubit CRSP.

respectively. He broadcast his measurement result using 1 cbits.

Step 2: We assume Charlie’s measurement result is 0 in Step 1. Then the system state

after his measurement is |Ω0⟩ab|ϕ+⟩a′b′ . Utilizing Schmidt-Decomposition,36) there exists bases

{|0′⟩, |1′⟩}a and {|0′⟩, |1′⟩}b such that

|Ω0⟩ab|ϕ+⟩a′b′ =
1√
2
(
√

λ00|0
′
0

′⟩ +
√

λ01|1
′
1

′⟩)ab(|00⟩ + |11⟩)a′b′

=
1√
2

[√
λ00|0

′
00

′
0⟩ +

√
λ00|0

′
10

′
1⟩ +

√
λ01|1

′
01

′
0⟩ +

√
λ01|1

′
11

′
1⟩
]
aa

′
bb

′ .(24)

Next we first discuss the case in which all the coefficients are real. According to her knowledge

of the two-qubit state |φ⟩, Alice constructs the measurement basis {|µ0⟩, |µ1⟩, |µ2⟩, |µ3⟩}aa
′ ,




|µ0⟩
|µ1⟩
|µ2⟩
|µ3⟩




aa′

=




α β γ δ

β −α −δ γ

γ δ −α −β

δ −γ β −α







|0′
0⟩

|0′
1⟩

|1′
0⟩

|1′
1⟩




aa′

, (25)

Then the system for Alice and Bob can be rewritten as

|Ω0⟩ab|ϕ+⟩a
′
b
′

=
1√
2

{
|µ0⟩[

√
λ00(α|0′

0⟩ + β|0′
1⟩) +

√
λ01(γ|1′

0⟩ + δ|1′
1⟩)]

+|µ1⟩[
√

λ00(β|0′
0⟩ − α|0′

1⟩) −
√

λ01(δ|1
′
0⟩ − γ|1′

1⟩)]

+|µ2⟩[
√

λ00(γ|0′
0⟩ + δ|0′

1⟩) −
√

λ01(α|1′
0⟩ + β|1′

1⟩)]

+|µ3⟩[
√

λ00(δ|0
′
0⟩ − γ|0′

1⟩) +
√

λ01(β|1′
0⟩ − α|1′

1⟩)]
}

aa
′
bb

′
. (26)

Thus Alice can get result 0 or 1 with probability [λ00(α
2+β2)+λ01(γ

2+δ2)]/2, respectively,

7/14

Figure 2. Particle distribution in two-qubit CRSP.

Step 1: This step is the same as that of Step 1 in Section 2. Charlie makes a projective measurement
{|ε0c〉, |ε1c〉} on his particle c, and gets the measurement result 0 and 1 with probability p0 and p1,
respectively. The corresponding composite system of Alice and Bob is |Ω0〉ab|φ+〉a′b′ and |Ω1〉ab|φ+〉a′b′ ,
respectively. He broadcasts his measurement result using 1 cbit.

Step 2: We assume Charlie’s measurement result is 0 in Step 1. Then the system state after his
measurement is |Ω0〉ab|φ+〉a′b′ . Utilizing Schmidt-Decomposition of a two component quantum system,
there exists bases {|0′〉, |1′〉}a and {|0′〉, |1′〉}b such that

|Ω0〉ab|φ+〉a′b′ =
1√
2

(
√
λ00|0′0′〉+

√
λ01|1′1′〉)ab(|00〉+ |11〉)a′b′

=
1√
2

[√
λ00|0′00′0〉+

√
λ00|0′10′1〉+

√
λ01|1′01′0〉+

√
λ01|1′11′1〉

]
aa′bb′

(24)

Next we first discuss the case in which all the coefficients are real. According to her knowledge of
the two-qubit state |ϕ〉, Alice constructs the measurement basis {|µ0〉, |µ1〉, |µ2〉, |µ3〉}aa′ ,




|µ0〉
|µ1〉
|µ2〉
|µ3〉




aa′

=




α β γ δ

β −α −δ γ

γ δ −α −β
δ −γ β −α







|0′0〉
|0′1〉
|1′0〉
|1′1〉




aa′

(25)

Then the system for Alice and Bob can be rewritten as

|Ω0〉ab|φ+〉a′b′

=
1√
2

{
|µ0〉[

√
λ00(α|0

′
0〉+ β|0′

1〉) +
√
λ01(γ|1

′
0〉+ δ|1′

1〉)]

+|µ1〉[
√
λ00(β|0

′
0〉 − α|0′

1〉)−
√
λ01(δ|1

′
0〉 − γ|1′

1〉)]
+|µ2〉[

√
λ00(γ|0

′
0〉+ δ|0′

1〉)−
√
λ01(α|1

′
0〉+ β|1′

1〉)]

+|µ3〉[
√
λ00(δ|0

′
0〉 − γ|0′

1〉) +
√
λ01(β|1

′
0〉 − α|1′

1〉)]
}

aa′bb′
(26)
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Thus Alice can get result 0 and 1 with probability [λ00(α
2 + β2) + λ01(γ

2 + δ2)]/2, respectively, and
result 2 or 3 with probability [λ00(γ

2 + δ2) + λ01(α
2 + β2))]/2. The system state of Bob after Alice’s

measurement is

|ξ0〉bb′ =

√
λ00(α|0′

0〉+ β|0′
1〉) +

√
λ01(γ|1′

0〉+ δ|1′
1〉)√

λ00(α2 + β2) + λ01(γ2 + δ2)
(27)

|ξ1〉bb′ =

√
λ00(β|0′

0〉 − α|0′
1〉)−

√
λ01(δ|1′

0〉 − γ|1′
1〉)√

λ00(α2 + β2) + λ01(γ2 + δ2)
(28)

|ξ2〉bb′ =

√
λ00(γ|0′

0〉+ δ|0′
1〉)−

√
λ01(α|1′

0〉+ β|1′
1〉)√

λ00(γ2 + δ2) + λ01(α2 + β2)
(29)

|ξ3〉bb′ =

√
λ00(δ|0′

0〉 − γ|0′
1〉) +

√
λ01(β|1′

0〉+ α|1′
1〉)√

λ00(γ2 + δ2) + λ01(α2 + β2)
(30)

with respective to the result 0, 1, 2, 3. Alice then broadcasts her measurement result to Bob using 2 cbits.
Step 3: Assume that the measurement result of Alice is 0 in Step 2. Then according to the result,

Bob introduces an auxiliary particle ba in the initial state |0〉ba , and makes unitary operation U0
bb′ba

on his
particles, where

U0
bb′ba

=


 I4 0

0 U0


 (31)

Here I4 is the 4× 4 identity matrix and

U0 =




√
λ00
λ01

0 0
√

1− λ00
λ01

0 −
√

λ00
λ01

√
1− λ00

λ01
0

0
√

1− λ00
λ01

√
λ00
λ01

0√
1− λ00

λ01
0 0 −

√
λ00
λ01




(32)

The state after Bob performing the unitary operation is

U0
bb′ba
|ξ0〉bb′ |0〉ba

=

√
λ00(α|0′

0〉+ β|0′
1〉+ γ|1′

0〉+ δ|1′
1〉)bb′|0〉ba +

√
λ01 − λ00(γ|1′

0〉+ δ|1′
1〉)bb′ |1〉ba√

λ00(α2 + β2) + λ01(γ2 + δ2)

(33)

Thereafter, Bob makes a projective measurement on his auxiliary particles under basis {|0〉, |1〉}ba . He
can get result 0 with probabilities λ00/(λ00(α2+β2)+λ01(γ

2+δ2)). As for the other three cases, Bob can
successfully reconstruct the desired two-qubit state with probabilities λ00/(λ00(α2+β2)+λ01(γ

2+δ2)),
λ00/(λ00(γ

2 + δ2) + λ01(α
2 + β2)), and λ00/(λ00(γ2 + δ2) + λ01(α

2 + β2)).
Similarly, in the real case, if Charlie’s measurement result is 1 with probability p1, then the system

state after his measurement is |Ω1〉ab|φ+〉a′b′ . Using Schmidt-Decomposition of a two component
quantum system, we get

|Ω1〉ab|φ+〉a′b′ =
1√
2

(
√
λ10|0 0〉+

√
λ11|1 1〉)ab(|00〉+ |11〉)a′b′ (34)
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where λ10 and λ11 are the same as those in Section 2. Bob can also reconstruct the two-qubit state using
similar method in the above three steps. As a result, for the real case, the total successful probability
for the sender Alice to prepare the two-qubit state at the position of Bob under the control of controller
Charlie is

2× [p0
λ00(α

2 + β2) + λ01(γ
2 + δ2)

2

λ00

λ00(α2 + β2) + λ01(γ2 + δ2)

+p0
λ00(γ

2 + δ2) + λ01(α
2 + β2)

2

λ00

λ00(γ2 + δ2) + λ01(α2 + β2)

+p1
λ10(α

2 + β2) + λ11(γ
2 + δ2)

2

λ10

λ10(α2 + β2) + λ11(γ2 + δ2)

+p1
λ10(γ

2 + δ2) + λ11(α
2 + β2)

2

λ10

λ10(γ2 + δ2) + λ11(α2 + β2)
]

= 2(p0λ00 + p1λ10)

It is the same as that of the controlled teleportation for the real case of a qubit in [36], but notice that
here we complete the task of reconstructing a two-qubit state, moreover we do not need to prepare the
state beforehand, which may save lots of quantum resource. In the whole process the consumption of
classical resource is 3 cbits.

For the case in which there is at least one complex coefficient, in Step 2, Alice constructs measurement
basis{|ν0〉, |ν1〉, |ν2〉, |ν3〉}aa′ in the following form,




|ν0〉
|ν1〉
|ν2〉
|ν3〉




aa′

=




α∗ −β∗ γ∗ −δ∗

ζα∗ −ζβ∗ −ζ−1γ∗ ζ−1δ∗

−β −α −δ −γ
−ζβ −ζα ζ−1δ ζ−1γ







|0′
0〉

|0′
1〉

|1′
0〉

|1′
1〉




aa′

(35)

where ζ =
√

(|γ|2 + |δ|2)/(|α|2 + |β|2), here we can assume that |α|2 + |β|2 6= 0. Because if |α|2 +

|β|2 = 0, the number of coefficients decreases to two, which is actually the same as the single-qubit
case. The system for Alice and Bob can be reexpressed as

|Ω0〉ab|φ+〉a′b′

=
1√
2

{
|ν0〉[

√
λ00(α|0

′
0〉 − β|0′

1〉) +
√
λ01(γ|1

′
0〉 − δ|1′

1〉)]

+|ν1〉[
√
λ00ζ(α|0

′
0〉 − β|0′

1〉)−
√
λ01ζ

−1(γ|1′
0〉 − δ|1′

1〉)]
−|ν2〉[

√
λ00(β

∗|0′
0〉+ α∗|0′

1〉) +
√
λ01(δ

∗|1′
0〉+ γ∗|1′

1〉)]

+|ν3〉[
√
λ00ζ(−β∗|0

′
0〉 − α∗|0′

1〉) +
√
λ01ζ

−1(δ∗|1′
0〉+ γ∗|1′

1〉)]
}

aa′bb′
(36)

Thus Alice can get result 0 and 1 with probability [λ00(|α|2 + |β|2) + λ01(|γ|2 + |δ|2)]/2 and
[λ00ζ

2(|α|2 + |β|2) + λ01ζ
−2(|γ|2 + |δ|2)]/2, respectively. The states after Alice’s measurement with

respect to the result 0 and 1 are

|ϑ0〉 =

√
λ00(α|0′

0〉 − β|0′
1〉) +

√
λ01(γ|1′

0〉 − δ|1′
1〉)√

λ00(|α|2 + |β|2) + λ01(|γ|2 + |δ|2)
(37)
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and

|ϑ1〉 =

√
λ00ζ(α|0′

0〉 − β|0′
1〉) +

√
λ01ζ

−1(−γ|1′
0〉+ δ|1′

1〉)√
λ00ζ2(|α|2 + |β|2) + λ01ζ−2(|γ|2 + |δ|2)

(38)

We divide it into two cases according to the value of ζ.

(i) ζ = 1, i.e., |α|2 + |β|2 = |γ|2 + |δ|2. In this case, using similar methods as in the real cases above,
Bob can recover the desired two-qubit state both from states in Equations (37) and (38). And the
probabilities are both λ00/(λ00(|α|2 + |β|2) +λ01(|γ|2 + |δ|2)). Similar scheme applies to the case
that Charlie’s measurement result is 1. Thus the total successful probability for Alice remotely to
prepare the two-qubit state |ϕ〉 at Bob’s position under the control of Charlie is

2×
{
p0[
λ00(|α|2 + |β|2) + λ01(|γ|2 + |δ|2)

2
]

λ00

λ00(|α|2 + |β|2) + λ01(|γ|2 + |δ|2)

+p1[
λ10(|α|2 + |β|2) + λ11(|γ|2 + |δ|2)

2
]

λ10

λ10(|α|2 + |β|2) + λ11(|γ|2 + |δ|2)

}

= p0λ00 + p1λ10 (39)

which is half of the case that all the coefficients are real. As for the result 2 and 3, the CRSP
protocol fails.

(ii) ζ 6= 1. For this case, as Bob does not know the classical information of |ϕ〉, only when
Alice’s measurement result is 0, Bob can reconstruct the two-qubit state |ϕ〉. Thus the successful
probability reduces to half of (i) as (p0λ00 + p1λ10)/2.

4. Conclusions

In this paper, protocols for controlled remote state preparation are presented both for a single qubit
and two-qubit state. We utilize the general pure three-qubit states as the shared quantum channels,
which are not LOCC equivalent to the GHz state. We discuss protocols for both states with real and
complex coefficients, and find that the general pure three-qubit states can help to complete CRSP
probabilistically. More than that, in some special cases, the CRSP can be achieved with unit probability,
which are deterministic CRSP protocols. This overcomes the limitation that most of the existing
quantum communication protocols are completed with GHz-, W- or Bell states, or the composition
of these states. Moreover, due to the involvement of controller and multi-partities, this work may
have potential application in controlled quantum communication, quantum network communication and
distributed computation.
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