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Abstract: Drug name recognition (DNR), which seeks to recognize drug mentions in 

unstructured medical texts and classify them into pre-defined categories, is a fundamental 

task of medical information extraction, and is a key component of many medical relation 

extraction systems and applications. A large number of efforts have been devoted to DNR, 

and great progress has been made in DNR in the last several decades. We present here a 

comprehensive review of studies on DNR from various aspects such as the challenges of 

DNR, the existing approaches and resources for DNR, and possible directions. 
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1. Introduction 

With the rapid development of information technology, more and more medical documents are 

available, which contain a great amount of medical information, such as medical entities and relations 

between them. In order to take full advantage of medical texts, it is necessary to extract valuable 

information from them. Drugs, as one type of the basic medical elements, also need to be recognized. 

Drug name recognition (DNR), which seeks to recognize drug mentions in unstructured medical texts 

and classify them into pre-defined categories, is a fundamental task of medical information extraction, 

and is a key component of many medical relation extraction systems (e.g., drug-drug interactions [1] and 
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adverse drug reactions [2]) and applications (e.g., information retrieval, information management, 

information tracking, clinical decision support, drug discovery and drug development) [3]. 

Drug mentions widely exist in various types of medical texts including medical literature, electronic 

medical records, medical patent applications, clinical trial documents, etc. For different types of medical 

texts, a large number of efforts have been devoted to DNR in the last several decades, generating various 

kinds of approaches and resources. DNR has been a subtask of several public challenges in the medical 

domain such as the medication extraction challenge organized by the Center of Informatics for 

Integrating Biology and Beside (i2b2) in 2009 [4], the chemical and drug named entity recognition 

(CHEMDNER) challenge of the Critical Assessment of Information Extraction systems in Biology in 

2013 (BioCreAtIvE IV) [5] and the drug-drug interaction (DDIExtraction) challenge in 2013 [6]. 

Although there are some reviews on information extraction approaches for drugs and chemical 

compounds [7–9], DNR is not especially discussed. In this study, we focus on DNR and present  

a comprehensive review including many resources, tools and approaches that are not covered by previous 

reviews. Moreover, we introduce the challenges and possible directions for DNR. 

2. Challenges of Drug Name Recognition 

DNR is a typical named entity recognition (NER) task. It is particularly challenging due to the 

following reasons: 

 The ways of naming drugs vary greatly. For example, the drug “quetiapine” (generic name) has 

the brand name “Seroquel XR”, while its systematic International Union of Pure and Applied 

Chemistry (IUPAC) name is “2-[2-(4-dibenzo [b,f][1,4] thiazepin-11-ylpiperazin-1-yl) ethoxy] 

ethanol”. Furthermore, some drug names and their synonyms are the same as normal English 

words or phrases. For example, brand names of “oxymetazoline nasal” and “caffeine” are 

“Duration” and “Stay Awake”, respectively. 

 The frequent occurrences of abbreviations and acronyms make it difficult to identify the concepts 

to which the terms refer to. For example, the abbreviation “PN” can refer to the drug “penicillin” 

or other concepts such as “pneumonia”, “polyarteritis nodosa” and “polyneuritis”. 

 New drugs are constantly and rapidly reported in scientific publications. Moreover, drug names 

may be misspelled in electronic medical records such as progress notes and discharge summaries. 

This makes DNR systems that rely only on dictionaries of known drug names not effective. 

 Drug names may contain a number of symbols mixed with common words. For example, the 

IUPAC name of an atypical antipsychotic is “7-{4-[4-(2,3-dichlorophenyl) piperazin-1-yl] 

butoxy}-3,4-dihydroquinolin-2(1H)-one”. It is difficult to determine the boundaries of such drug 

names in texts. 

 Some drug names may correspond to non-continuous strings of text. For example, “loop diuretics” 

and “potassium-sparing diuretics” in the sentence “In some patients, the administration of a  

non-steroidal anti-inflammatory agent can reduce the diuretic, natriuretic, and antihypertensive 

effects of loop, potassium-sparing and thiazide diuretics”. Such examples pose great difficulties 

to DNR. 
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3. Benchmark Datasets 

The development and evaluation of DNR approaches require benchmark datasets where all drug names 

are annotated by human experts. Benchmark datasets can be used for training machine learning-based 

approaches and comparing different approaches. Table 1 lists some available benchmark datasets for 

DNR. Some datasets in Table 1 are not developed for DNR, but drug names are annotated in them. 

Therefore, they can be used for DNR. For example, ADE is developed for extraction of adverse drug 

effects and PK, PK-DDI and DDIExtraction 2011 are developed for extraction of drug-drug interactions. 

Moreover, since the datasets in Table 1 are developed for different tasks, definitions of drugs vary 

significantly in different datasets. Datasets such as ADE, EU-ADR and DDIExtraction 2011 only define 

a single class of drugs, while other datasets such as PK-DDI and DDIExtraction 2013 define multiple 

different classes of drugs. 

To evaluate the performances of DNR approaches, precision, recall and F-score of DNR approaches 

on the benchmark datasets are measured. Precision is the percentage of correctly recognized drug names 

over all recognized results by an approach. Recall is the percentage of correctly recognized drug names 

over all drug names annotated in the benchmark datasets. F-score is the harmonic mean of precision  

and recall. 

Table 1. Benchmark datasets for Drug name recognition (DNR). 

Dataset Data Source URL 

ADE [10] Medical case reports https://sites.google.com/site/adecorpus/ 

PK [11] Biomedical literature abstracts http://rweb.compbio.iupui.edu/corpus/ 

PK-DDI [12] Drug package inserts http://purl.org/NET/nlprepository/PI-PK-DDI-Corpus 

EU-ADR [13] Biomedical literature abstracts http://euadr.erasmusmc.nl/sda/euadr_corpus.tgz 

i2b2 Medication Extraction [4] Discharge summaries https://www.i2b2.org/NLP/DataSets/ 

DrugNer [3] Biomedical literature abstracts http://labda.inf.uc3m.es/DrugDDI/DrugNer.html 

DDIExtraction 2011 [14] Texts selected from DrugBank http://labda.inf.uc3m.es/ddicorpus 

DDIExtraction 2013 [15] 
Biomedical literature abstracts  

and texts selected from DrugBank 
http://labda.inf.uc3m.es/ddicorpus 

CHEMDNER [5] Biomedical literature abstracts 
http://www.biocreative.org/resources/ 

biocreative-iv/chemdner-corpus/ 

4. General Architecture of Drug Name Recognition Systems 

Many systems have been developed for DNR. Figure 1 shows the typical procedure of a DNR system. 

Generally, three steps are required to develop a DNR system. 
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Figure 1. Typical procedure of a DNR system. 

(1) Preprocessing: Preprocessing aims at transforming the original input texts into representations 

required by DNR approaches and enriching the original texts with lexical and syntactic information. 

Preprocessing includes sentence splitting, tokenization, part-of-speech (POS) tagging, text chunking, 

lemmatization, etc. The output information of preprocessing can be used to induce rules or generate 

features for DNR approaches. The selection of suitable strategies or methods for preprocessing has 

significant impact on the performances of DNR systems [16,17]. Dai et al. [16] investigated the effects 

of coarse-grained and fine-grained tokenization strategies on DNR. For the coarse-grained tokenization, 

Penn Treebank tokenization rules [18] were used. The fined-grained tokenization strategy applied some 

extra preprocessing steps on the generated tokens of coarse-grained tokenization, e.g., adding separations 

before and after symbols such as hyphens and dashes. It was demonstrated that fine-grained tokenization 

performed better than coarse-grained tokenization. Batista-Navarro et al. [17] focused on the effects of 

sentence splitting and tokenization on recognition of drugs and chemicals from chemical literature. They 

compared non-specialized implementations of sentence splitting and tokenization with specialized 
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implementations tuned for chemical literature. Specialized implementations achieved better performance 

than non-specialized implementations. 

There are many open source natural language processing (NLP) toolkits that can be used for 

preprocessing in DNR systems. Table 2 lists some commonly used NLP toolkits. For each preprocessing 

task, NLP tools based on different methods and tuned for different types of texts are available. It is 

important to select appropriate NLP tools to preprocess texts of different fields. The unstructured 

information management architecture (UIMA) [19,20] makes comparing and selecting NLP tools 

simple. Based on UIMA, it is easy to plug a NLP tool into existing text processing pipelines or combine 

NLP tools into text processing pipelines. For example, U-Compare [21,22] is an integrated NLP systems 

based on UIMA. It provides a large collection of NLP tools and allows sets of tools to be run in parallel 

on the same inputs. Moreover, it can automatically generate statistics for all possible combinations of 

these tools. 

Table 2. Open source natural language processing (NLP) toolkits for preprocessing in  

DNR systems. 

NLP Toolkit Target Domain URL 

OpenNLP General http://opennlp.apache.org 
LingPipe General http://alias-i.com/lingpipe 

NLTK General http://www.nltk.org 
ANNIE General https://gate.ac.uk/sale/tao/splitch6.html#chap:annie

NaCTeM General http://www.nactem.ac.uk/software.php 
Stanford NLP Toolkit [23] General http://www-nlp.stanford.edu/software/ 

U-Compare [21,22] General http://u-compare.org 
JULIE Lab [24] General http://www.julielab.de/Resources 

GENIA Tagger [25] Biomedical http://www.nactem.ac.uk/GENIA/tagger/ 
GDep [26] Biomedical http://people.ict.usc.edu/~sagae/parser/gdep/ 
Neji [27] Biomedical http://bioinformatics.ua.pt/neji/ 

BioLemmatizer [28] Biomedical http://biolemmatizer.sourceforge.net/ 
cTAKES [29] Clinical http://ctakes.apache.org/ 

(2) Drug name recognition: This step recognizes drug names from unstructured texts and classifies 

them into predefined categories. Knowledge resources play important roles in DNR approaches. They 

can be used to match drug names, induce rules and generate features for DNR approaches. DNR 

approaches and knowledge resources will be introduced in detail in the following sections. 

(3) Postprocessing: In the postprocessing step, heuristic rules and knowledge resources are commonly 

used to refine the recognition results of DNR approaches [30–32]. For instance, Grego et al. [30] filtered 

the recognized drug names composed entirely by digits and removed characters such as “*”, “−” and “.” 

from recognized drug names if the characters appear at the end of recognized drug names. Leaman et al. [31] 

regarded a mention of drug or chemical with unbalanced parenthesis as an error. They balanced the 

parenthesis by adding or removing one character at the right or left of the mention. Grego et al. [32] 

calculate the semantic similarities between drugs identified by a DNR system in a given text window 

based on semantic relationships in a drug knowledge base. They assign a single validation score to each 
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identified drug based on its similarities to other drugs and then filter falsely identified drugs using  

a given threshold to increase precision of the DNR system. 

5. Approaches for Drug Name Recognition 

Approaches for DNR can be classified into four categories: dictionary-based, rule-based, machine 

learning-based and hybrid approaches. 

5.1. Dictionary-Based Approaches 

Drug dictionaries refer to collections of drug names. They can be constructed manually or 

automatically from publicly available knowledge resources such as databases and ontologies containing 

synonyms or spelling variants of drug names. Different knowledge resources contain different terms. 

Some knowledge resources focus on drugs, while others focus on general chemicals. Therefore, drug 

dictionaries are usually constructed by merging several knowledge resources. Before reviewing the 

dictionary-based approaches, we introduce some freely available knowledge resources and describe how 

to construct drug dictionaries from them. The web-accessible URLs of the knowledge sources are listed 

in Table 3. 

Table 3. Available knowledge resources for constructing drug dictionaries. 

Knowledge Resource URL 

DrugBank http://www.drugbank.ca/ 
KEGG DRUG http://www.kegg.jp/kegg/drug/ 

PharmGKB http://www.pharmgkb.org/ 
CTD http://ctdbase.org/ 

RxNorm http://www.nlm.nih.gov/research/umls/rxnorm/ 
RxTerms http://wwwcf.nlm.nih.gov/umlslicense/rxtermApp/rxTerm.cfm 

Drugs@FDA http://www.fda.gov/Drugs/InformationOnDrugs/ucm135821.htm
TTD http://bidd.nus.edu.sg/group/ttd/ttd.asp 

ChEBI http://www.ebi.ac.uk/chebi 
MeSH http://www.nlm.nih.gov/mesh/ 

PubChem https://pubchem.ncbi.nlm.nih.gov/ 
UMLS Metathesaurus http://www.nlm.nih.gov/research/umls/ 

Jochem http://www.biosemantics.org/index.php/resources/jochem 

DrugBank is an online database that contains chemical, pharmacological and pharmaceutical information 

about drugs and comprehensive drug target information [33]. Fields such as “name”, “synonyms” and 

“international-brands” in DrugBank can be extracted to build a drug name dictionary. 

Kyoto Encyclopedia of Genes and Genomes (KEGG) DRUG is a drug information resource for 

approved drugs in Japan, USA and Europe [34]. The “Name” field in KEGG DRUG can be used for the 

creation of drug name dictionary. 

Pharmacogenomics Knowledgebase (PharmGKB) is a comprehensive resource that curates 

knowledge about the impact of genetic variation on drug response [35]. It provides a drug list and the 

“name”, “generic names” and “trade names” fields in the drug list can be collected to construct a drug 

name dictionary. 
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Comparative Toxicogenomics Database (CTD) is a publicly available database that provides 

manually curated information about chemical-gene interactions, chemical-disease and gene-disease 

relationships [36]. The “ChemicalName” field can be extracted to build a drug name dictionary. 

RxNorm is a standardized nomenclature for clinical drugs [37]. It is created by the United States 

National Library of Medicine (NLM) to let various systems using different drug nomenclatures share 

and exchange data efficiently. The “ingredient (IN)” and “brand name (BN)” fields can be extracted to 

build a drug name dictionary. 

RxTerms is a drug interface terminology derived from RxNorm for prescription writing or medication 

history recording [38]. The “FULL_GENERIC_NAME”, “BRAND_NAME” and “DISPLAY_NAME” 

fields can be used to build a drug name dictionary. 

Drugs@FDA is provided by the United States Food and Drug Administration (FDA). It contains 

information about FDA-approved drug names, generic prescription, over-the-counter human drugs, etc. 

Drug names can be extracted from the “drug name” and “activeingred” fields of Drugs@FDA. 

Therapeutic Targets Database (TTD) is a database that provides information about therapeutic 

targets and corresponding drugs [39]. It contains many drugs including approved, clinical trial and 

experimental drugs. The “Name”, “Synonyms” and “Trade Name” fields in TTD can be collected to 

build a drug dictionary. 

Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of molecular 

entities [40]. In addition, it incorporates an ontological classification, whereby the relationships between 

molecular entities, classes of entities and their parents, children and siblings are specified. The fields 

such as “ChEBI name”, “International Nonproprietary Name (INN)” and “Synonyms” can be extracted 

for dictionary creation. Moreover, the class information in ChEBI ontology can be used to classify drugs. 

Medical Subject Headings (MeSH) is a controlled vocabulary thesaurus from NLM. It consists of 

sets of terms named descriptors [41]. MeSH descriptors are used for indexing, cataloging and searching 

for biomedical and health-related information and documents. MeSH descriptors are divided into  

16 categories. Each category is further divided into some subcategories. Within each subcategory, 

descriptors are organized in a hierarchical structure. The category “D” covers drugs and chemicals. 

Terms belonging to category “D” can be extracted to build a drug dictionary. 

PubChem is a public repository for biological properties of small molecules [42]. It consists of three 

interconnected databases: PubChem Substance, PubChem Compound and PubChem BioAssay. PubChem 

Substance contains entries of mixtures, extracts, complexes and uncharacterized substances and provides 

synonyms of the substances. PubChem Compound is a subset of PubChem Substance. It contains pure 

and characterized chemical compounds but no synonyms. In order to build a high quality dictionary 

consisting of as many synonyms as possible, names and synonyms of PubChem Substance entries that 

have links to PubChem Compound entries are usually collected. 

Unified Medical Language System (UMLS) Metathesaurus is a large, multi-purpose, and multi-lingual 

thesaurus that contains millions of biomedical and health related concepts from over 100 vocabularies, 

their synonymous names and relationships among them [43]. Each concept in UMLS Metathesaurus is 

assigned to at least one semantic type. The concepts in the UMLS Metathesaurus with semantic types 

such as “Pharmacological Substance (PHSU)” and “Antibiotics (ANTB)” can be collected to build a 

drug dictionary. 
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The joint chemical dictionary (Jochem) is a dictionary developed for the identification of drugs and 

small molecules in texts. It combines information from UMLS, MeSH, ChEBI, and so on [44]. Concepts 

in Jochem can be extracted to build a drug dictionary. 

Dictionary-based approaches identify drug names by matching drug dictionaries against given texts. 

Exact matching approaches [45,46] usually achieve high precision, but suffer from low recall. This is 

because there are spelling mistakes or variants of drug names not covered by drug dictionaries. Therefore, 

approximate matching is used to improve the recall of dictionary-based approaches. Lexical similarity 

measures and approximate string matching methods such as edit distance [47], SOUNDEX [48] and 

Metaphone [49] can be used for approximate matching. For example, Levin et al. [50] used Metaphone 

to match generic and trade names of drugs in RxNorm [37] against anesthesia electronic health records. 

Moreover, there are approaches utilizing existing systems to map textual terms to drug dictionaries [51,52]. 

For example, Rindflesch et al. [51] utilized the UMLS MetaMap program [53] to map biomedical texts 

to UMLS Metathesaurus concepts. Phrases that were mapped to concepts with the semantic type 

“Pharmacological Substance” were considered to be drug names. 

Dictionary-based approaches also may yield low precisions because of low quality of drug 

dictionaries. Sirohi et al. [54] investigated the effects of using varying drug dictionaries to extract drugs 

from electronic medical records and concluded that the precision and recall could be considerably 

enhanced by refining the dictionaries. Many methods have been used to improve the quality of drug 

dictionaries [44,55,56]. Hettne et al. [44] proposed several filtering rules to filter terms in a dictionary 

developed for DNR. For example, the short token filtering rule removed a term if the term was a singular 

character or an Arabic number after tokenization and removal of stop words. Moreover, they manually 

checked highly frequent terms in a set of randomly selected MEDLINE abstracts. If a term corresponded 

to a normal English word, it was added to a list of unwanted terms. Xu et al. [55] compared the drug 

dictionary with the SCOWL list [57], which is a list of normal English words. They manually reviewed 

ambiguous words and removed unlikely drug terms from the dictionary. At the same time, they expanded 

the dictionary by adding drug names annotated in a training dataset. 

Due to the rapid development of pharmaceutical research, new drugs are constantly developed and 

enter the market. However, drug dictionaries cannot be updated regularly. It is impossible for a drug 

dictionary to cover all existing drugs. Therefore, approaches that do not rely too much on drug dictionaries 

are necessary for DNR. 

5.2. Rule-Based Approaches 

Rule-based approaches use rules that describe the composition patterns or context of drug names. 

Composition pattern-based rules are usually used to identify drug names that are generated following 

specific rules (e.g., systematic names and international nonproprietary names). For example, Lowe D. [58] et al. 

encoded the nomenclature rules as formal grammars to identify systematic names of drugs and 

chemicals. Segura-Bedmar et al. [3] built a regular expression for each international nonproprietary 

name stem recommended by World Health Organization to identify and classify drugs. However, 

composition pattern-based rules are ineffective for drug names generated without nomenclature rules. 

Context-based rules identify drug names by the context of drug names in free texts [59,60]. For example, 

Gold et al. [59] and Hamon et al. [60] used contextual clues to extract misspelled drug names and drug 
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names not in drug dictionary from discharge summaries. Phrases that were surrounded by enough 

information such as dosages, frequencies and durations were considered as drug names and were 

extracted accordingly. 

In addition to hand-crafted rules, rules that are automatically learned also have been used for DNR [61,62]. 

For example, Xu et al. [61] developed an iterative pattern leaning approach to extract drugs and other 

medical treatment concepts from randomized clinical trial abstracts. The approach started with a seed 

pattern such as “treated with NP (noun phrase)” or some seed instances (i.e., drug names). Then it looped 

over a procedure consisting of two steps: pattern discovery and instance extraction. The discovered 

patterns and extracted instances were scored. Only top ranked patterns were used to extract instances 

and top ranked instances were considered as reliable instances. 

Although rule-based approaches perform well when expert rules are available, the generation of rules 

is time-consuming. Moreover, rules developed for a specific class of drug names are not applicable for 

other classes of drug names, and too specific rules usually achieve high precision but low recall. 

5.3. Machine Learning-Based Approaches 

Machine learning-based approaches usually formalize DNR as a classification problem or a sequence 

labeling problem. Each token is presented as a set of features and then is labeled by machine learning 

algorithms with a class label. The class label denotes whether a token is part of a drug name and its 

position in a drug name. BIO is the most popular tagging scheme used for DNR. Tags in the BIO tagging 

scheme respectively represent that a token is at the beginning (B) of a drug name, inside (I) of a drug 

name and outside of a drug name (O). Figure 2 shows an example of BIO tagging results of a sentence 

from the DDIExtraction 2013 dataset, where four types of drugs (drug, brand, group, non-human) are 

defined. Moreover, there are some more expressive tagging schemes such as BEIO, BESIO and  

B12EIO [63]. The tagging schemes are derived from BIO. Tag E represents that a token is at the end of 

a drug name. Tag S represents a single token drug name. Tags B1 and B2 in B12EIO stand for the first 

token in a drug name and the second but not the last token in a drug name, respectively. Dai et al. [16] 

compared the effects of above four tagging schemes on DNR. It was demonstrated that BESIO 

outperformed other tagging schemes under the same experimental settings. 

 

Figure 2. An example of BIO tagging results of a sentence from the DDIExtraction  

2013 dataset. 

The selection of machine learning models is very important for machine learning-based approaches. 

Classification models commonly used for DNR include Maximum Entropy (ME) [64] and Support 

Vector Machine (SVM) [65]. They only consider individual tokens or phrases and do not take the order 
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of tokens into account. Different from classification models, sequence tagging models such as Hidden 

Markov Model (HMM) [66] and Conditional Random Fields (CRF) [31,67–69] consider the complete 

sequence of tokens in a sentence. They aim at predicting the most probable sequence of tags for a given 

sentence. CRF is widely used and demonstrated to be superior to other machine learning models used 

for DNR. For example, CRF-based systems achieved the best performances in the DNR tasks of i2b2 

medication extraction [67], CHEMDNER [31] and DDIExtraction 2013 [68] challenges. In most cases, 

only one machine learning model is used in a machine learning-based DNR approach. However, there 

are approaches using multiple models [31,70–73]. For example, Leaman et al. [31] employed two 

independent CRF models with different tokenization strategies and feature sets. Results of the two 

models were combined with heuristic rules. Lu et al. [70] used a character-level CRF and a token-level CRF 

to learn the internal structure and context of drugs, respectively. Results of the two CRF models were 

also merged in a heuristic method. Lamurias A. et al. [72] train multiple CRF models on different 

training datasets and combine the confidence scores returned by the models to rank and filter the 

identified drug names. Sikdar et al. [73] combine one SVM model and six CRF models that use different 

features to recognize drug names based on an ensemble framework. Table 4 lists some open source 

toolkits that can be used as implementations of commonly used machine learning models. 

Table 4. Open source implementations of machine learning models. 

Toolkit Machine Learning Models URL 

MALLET Naïve Bayes (NB), Decision Trees (DT), ME, HMM, CRF http://mallet.cs.umass.edu/ 

WEKA NB, DT, SVM http://www.cs.waikato.ac.nz/ml/weka/ 

CRFsuite CRF http://www.chokkan.org/software/crfsuite/ 

CRF++ CRF http://taku910.github.io/crfpp/ 

LIBSVM SVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

SVMlight SVM http://www.cs.cornell.edu/People/tj/svm_light/ 

Performances of machine learning-based approaches highly depend on the features they used. Various 

types of features have been explored for DNR. Table 5 lists some features that are commonly used in 

machine learning-based DNR systems. Features based on the linguistic, orthographic and contextual 

information of tokens are widely used and the effectiveness of them is extensively studied. For example, 

Campos et al. [71] investigated the effects of features including lemma, POS, text chunking, dependency 

parsing, etc. Lemma, POS and text chunking features produced significant positive impacts on the 

performance of the CRF-based approach, while dependency parsing brought negative effects on the 

performance. Halgrim [64] examined the effects of POS, affix and orthographic feature in a ME-based 

approach and all the features provided positive outcomes. 
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Table 5. Features used in machine learning-based DNR systems. 

Feature Description Reference 

Character feature N-grams of characters in a word. [17,31,68,70,71,74] 

Word feature N-grams of words in a context window. [17,31,64,68,70,71,74,75]

Lemma N-grams of lemmas of words. [17,31,68,71,74] 

Stem N-grams of stems of words. [31,74] 

POS N-grams of POS tags. [17,31,64,68,71,74,75] 

Text chunking N-grams of text chunking tags. [17,71,75] 

Dependency parsing 
Dependency parsing results  

of words in a sentence. 
[71] 

Affix Suffixes and prefixes of a word. [17,31,64,68,71,74,75] 

Orthographic feature 
Starting with a uppercase letter, containing only  
alphanumeric characters, containing a hyphen,  
digits and capitalized characters counting, etc. 

[17,31,64,68,71,74,75] 

Word shape 

Uppercase letters, lowercase letters, digits, and other 
characters in a word are converted to “A”, “a”,  

“0” and “O”, respectively. For example,  
“Phenytoin” is mapped to “Aaaaaaaaa”. 

[17,31,68,71,74,75] 

Dictionary feature 
Whether an n-gram matches with  

part of a drug name in drug dictionaries. 
[17,31,64,68,71,74,75] 

Outputs of NER tools 
Features derived from the output of  

existing chemical NER tools. 
[31,68,74] 

Word representation 
Word representation features based on  

Brown clustering, word2vec, etc. 
[70,75] 

Conjunction feature 
Conjunctions of different types of features,  

e.g., conjunction of lemma and POS features. 
[17,71,75] 

Domain-specific features such as dictionary features and features derived from outputs of existing 

chemical NER are also widely used. For example, Batista-Navarro et al. [17] compiled dictionaries  

from domain-specific knowledge resources including ChEBI, DrugBank, Jochem, etc. Each token was 

tagged by the dictionaries and the tagging results were used as features by a CRF-based approach. 

Rocktäschel et al. [68] generated domain-specific features from ChEBI, Jochem and the outputs of 

ChemSpot [76], which is a chemical NER tool. In general, domain-specific features can significantly 

improve the performances of machine learning-based approaches. 

Recently, word representation features are exploited and demonstrated to be effective for DNR. Word 

representation features are generated by unsupervised machine learning algorithms on unstructured texts. 

They contain rich syntactic and semantic information of words. Many unsupervised machine learning 

algorithms have been proposed to learn word representation features and Brown Clustering algorithm [77] 

and word2vec [78] are most commonly used. For example, Lu et al. [70] employed Brown Clustering 

algorithm and word2vec to learn word representation features on MEDLINE documents. Then the word 

representation features were used to improve the performances of CRF-based DNR systems. 

Moreover, conjunction features that combine different types of features are also used for DNR. 

Conjunction features can capture multiple linguistic characteristic of a word. For example,  

Batista-Navarro et al. [17] used conjunction features that combined lemmas and POS tags. Liu et al. [75] 
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selected 8 types of features including word feature, POS, text chunking, etc., and combine them into 

conjunction features in two ways in their CRF-based DNR system. 

Noisy features can significantly affect the performances and efficiencies of machine learning-based 

approaches. Therefore, the selection of informative and discriminative features is very important. 

However, determining the optimal subset of features by testing different combinations of features is 

time-consuming. Moreover, it is very likely that the optimal feature subset on a dataset will not perform 

well on another dataset. Therefore, automatic feature selection is necessary. In [75], Liu et al. employed 

three automatic feature selection methods, Chi-square [79], mutual information [80] and information 

gain [81], to eliminate noisy features for a CRF-based DNR system. Experimental results showed that 

each feature selection method could improve the performance of the CRF-based system. 

Although machine learning-based approaches can achieve promising results, they require a sufficiently 

large and high quality annotated dataset for training. However, the creation of an annotated dataset is 

costly and time-consuming. Moreover, domain experts are required in the process of creating an 

annotated dataset. 

5.4. Hybrid Approaches 

Hybrid approaches combine multiple types of approaches to exploit the advantages and avoid the 

limitations of each type of approaches. In general, a post-processing step is needed to deal with the 

conflicting results of multiple approaches. Hybrid approaches usually produce better results than each 

component. Akhondi et al. [82] proposed a hybrid approach combining a dictionary-based approach and 

a rule-based approach based on the observation that different classes of drug names have different 

naming characteristics. The dictionary-based component is used to extract non-systematic names such 

as brand and generic drug names, and the rule-based component is used to extract systematic names, 

which are generated following standard nomenclature rules. Finally, the outputs of the dictionary-based 

and rule-based components are merged and the shorter one of two overlapping terms is removed.  

He et al. [83] constructed a drug name dictionary from DrugBank and MEDLINE abstracts. Then dictionary 

look-up was combined with a CRF-based approach to recognize drug names. For the overlapping terms, 

the results of dictionary look-up were kept. Due to the small size of training set, Tikk et al. [84] firstly 

developed a rule-based approach to label drug names in a large document set. Then a CRF-based 

approach was trained on the union of a small training set and the output of the rule-based approach. The 

CRF-based approach achieved better performance than that trained only on the small training set. 

Korkontzelos et al. [85] develop a voting system to combine a maximum entropy model, a perceptron 

classifier and a dictionary-based method to enhance the performance for DNR. Usié et al. [86] employ 

a CRF-based method, a dictionary and some regular expressions to recognize different types of drug 

names and then integrate the recognition results of the methods. 

The performances of representative DNR systems on datasets of different types of texts are listed in 

Table 6. In the third column, “Dict”, “Rule”, “ML” and “Hybrid” denote dictionary-based, rule-based, 

machine learning-based and hybrid approaches, respectively. The fifth column lists the F-scores of DNR 

systems that only recognize drug names from texts (drug detection), while the sixth column lists the  

F-scores of DNR systems that not only recognize drugs from texts but also classify the recognized drugs 

into predefined classes (drug classification). 
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The fourth column of Table 6 lists the datasets on which the systems have been run on. We can see 

that machine learning-based systems or hybrid systems containing a machine learning component 

outperform other systems on the same dataset. Therefore, machine learning-based approaches or hybrid 

approaches that contain a machine learning component are the best choices if annotated datasets are 

available. Performance differences between machine learning-based approaches are mainly because of 

the selection of different machine learning models and different features. 

Table 6. Performances of representative DNR systems on different types of texts. 

Type of Texts Reference 
Category of  

Approach 
Dataset 

F-Score  

Detection 

F-Score  

Classification 

Discharge  

summaries 

[64] ML i2b2 Medication Extraction 89.80% * 

[67] ML i2b2 Medication Extraction 88.35% * 

[84] Hybrid (ML + Rule) i2b2 Medication Extraction 87.06% * 

[87] Dict i2b2 Medication Extraction 85.89% * 

[60] Rule i2b2 Medication Extraction 80.00% * 

[59] Rule 26 discharge summaries 87.92% * 

Clinic office visit notes [54] Dict 52 clinic office visit notes 73.80% * 

Biomedical  

literature  

abstracts 

[31] ML CHEMDNER 87.39% * 

[70] ML CHEMDNER 87.11% * 

[58] Rule CHEMDNER 86.86% * 

[88] Dict CHEMDNER 77.91% * 

[82] Hybrid (Dic + Rule) CHEMDNER 77.84% * 

[44] Dict 100 abstracts 50.00% * 

DrugBank documents [83] Hybrid (ML + Dic) DDIExtraction 2011 92.54% * 

Mix of DrugBank  

documents and biomedical  

literature abstracts 

[75] ML DDIExtraction 2013 83.85% 79.36% 

[68] ML DDIExtraction 2013 83.30% 71.50% 

[52] Dict DDIExtraction 2013 66.70% * 

[89] Dict DDIExtraction 2013 60.90% 52.90% 

By comparing the fifth and the sixth column, we can see that drug classification is more difficult than 

drug detection. The performances for drug classification are relatively poor and more efforts should be 

devoted to drug classification. 

6. Concluding Remarks and Future Perspectives 

Many approaches have been proposed for DNR, ranging from simple dictionary-based approaches to 

complex hybrid approaches. These approaches differ in the degree of manual intervention, portability, 

and applicable situation. Each type of the approach has advantages over other types. Dictionary-based 

approaches are effective when comprehensive and up-to-date drug dictionaries are available. Moreover, 

dictionary-based approaches can normalize drug names in texts by mapping them to unique identifiers 

in drug dictionaries. In contrast, machine learning-based approaches can only identify drug names from 

texts. However, the creation and maintenance of comprehensive drug dictionaries are costly and  

time-consuming. Rule-based approaches are suitable when drug names are generated regularly. Rule-based 

approaches can be easily optimized by modifying existing rules or adding new rules. However, there is 

an unavoidable trade-off between precision and recall for rule-based approaches. Rules that are too 
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specific achieve high precision but low recall. On the other hand, rules that are too general lead to high 

recall but low precision. Furthermore, the portability of rule-based approaches is poor. Rules defined for  

a class of drugs cannot be adapted to other classes. In contrast, machine learning-based approaches for 

a class of drugs can be easily retrained for other classes on corresponding training datasets. Machine 

learning-based approaches often outperform dictionary-based and rule-based approaches when sufficiently 

large and high quality annotated training datasets are available. However, it is costly to annotate  

datasets manually. Given the above, hybrid approaches that combine different approaches have been 

increasingly used. 

At the present time, the state-of-the-art approaches for DNR are mainly based on traditional machine 

learning models such as CRF and SVM. Performance improvements of the state-of-the-art approaches 

depend heavily on exploring and using new effective features. However, performance improvements 

from new features are limited. It is necessary to explore new machine learning models for DNR. In recent 

years, deep neural networks (DNNs) [90] have been used in many machine learning tasks such as speech 

recognition [91] and visual object recognition [92] and achieved unprecedented success. It is worth 

exploring the use of DNNs for DNR. 

The lack of sufficiently large and high quality training datasets is a major barrier to future work on 

DNR. Semi-supervised learning is a machine learning technique, which requires a small amount of 

annotated data and a large amount of unannotated data for training. Typical semi-supervised learning 

methods such as bootstrapping [93] and active learning [94] have demonstrated their effectiveness for 

improving the performances of systems when annotated data is scarce. Therefore, semi-supervised 

learning is a promising solution to lack of training datasets for DNR. 

Another barrier to further development of DNR is the imbalance of training datasets. For example, 

drugs of the “drug” class account for 63% of all drugs in the DDIExtraction 2013 dataset, while drugs 

of the “no-human” class account for only 4%. As a result of the imbalance of training datasets, the top 

ranked system of the DDIExtraction 2013 challenge achieved an F-score of 79.0% for “drug”, but only 

14.1% for “no-human”. Automatic text generation techniques based on formal grammar are likely to 

solve the imbalance problem of training datasets. Formal grammar can capture the morphology, syntax 

and semantic information of a language. It has been demonstrated that automatic text generation 

techniques based on formal grammar can automatically build realistic chemical-related training 

documents for chemical name extraction [95]. Moreover, automatic text generation techniques can 

control the density of different classes of training examples, the variety and the complexity of contexts, 

as well as the size of the training sets. For future work, it is worth trying to improve the performance of 

DNR systems by automatically generating training datasets without data imbalance. 

Although there are a few approaches proposed to recognize both continuous and non-continuous 

named entities such as disorders [96–98], they still perform poorly for non-continuous named entities. 

For example, in the CHEMDNER task of the BioCreative IV challenge, non-continuous drugs  

(i.e., multiple drugs) account for less than one percent and no participating system specially deals with 

them. All participating systems achieve poor performance for the multiple drugs. Therefore, effective 

solutions to non-continuous drug name recognition are needed for future work. 
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