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Abstract: The codewords of a low-density parity-check (LDPC) convolutional code
(LDPC-CC) are characterised into structured and non-structured. The number of the
structured codewords is dominated by the size of the polynomial syndrome former matrix
HT (D), while the number of the non-structured ones depends on the particular monomials or
polynomials in HT (D). By evaluating the relationship of the codewords between the mother
code and its super codes, the low weight non-structured codewords in the super codes can be
eliminated by appropriately choosing the monomials or polynomials in HT (D), resulting in
improved distance spectrum of the mother code.
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1. Introduction

Low-density parity-check block codes (LDPC-BCs) have been widely used in many communication
standards, such as WiMax, DVB2, and 802.11n [1–3]. As the counterpart of LDPC-BCs, LDPC
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convolutional codes (LDPC-CCs), also known as specially-coupled LDPC codes, were first proposed
in [4] and have been extensively investigated in [5–9]. For the design of practical LDPC-CCs, it
is preferred to have relative large girth (the length of the shortest cycle) and large free distance (the
minimum weight of the codewords), in this paper, we focus on the analysis of the low weight codewords
of LDPC-CCs.

Distance spectrum can be described by a set {Aw|w ≥ df , w ∈ Z+}, where Aw, the codeword
weight enumerator, is the number of codewords with Hamming weight w, and the free distance df

is defined as the minimum weight of the codewords. Under linear programming decoding, the low
weight pseudocodewords of LPDC codes were analysed in [10,11]. The pseudocodeword performance
of an LDPC-CC and the underlying quasi-cyclic (QC) code was presented in [12]. Regarding the
calculation of the distance spectrum of conventional convolutional codes, some work has been done
in [13–15], and Bocharova et al. [16] presented a more efficient bidirectional tree search algorithm called
BEAST. Compared to the conventional convolutional codes, LDPC-CCs have relative larger memory
order because of the sparsity of the syndrome former matrix. Instead of calculating the precise distance
spectrum, Zhou et al. [17] introduced a method to estimate the distance spectrum of LDPC-CCs by
evaluating the linear dependence between the low weight codewords of super codes. A super code is
defined by the submatrix obtained by splitting the polynomial-domain syndrome former matrix of the
mother code.

Rather than calculating or estimating the distance spectrum of LDPC-CCs. In this paper, we introduce
a method to improve the distance spectrum of LDPC-CCs by eliminating the so-called non-structured
low weight codewords. The codewords of polynomial-based LDPC-CCs are characterised into two
categories, i.e., structured and non-structured. In the distance spectrum, the number of the structured
codewords is dominated by the size of the polynomial syndrome former matrix HT (D), while the number
of the non-structured ones depends on the particular monomials or polynomials in HT (D).

By evaluating the relationship of the codewords between the mother code and its super codes, we find
that the structured codeword of the mother code can only be derived from the structured codewords of a
super code, while the non-structured one of the mother code requires both structured and non-structured
super codewords to convert. Therefore, as the main contribution of the paper, eliminating low weight
non-structured codewords in the super codes by appropriately choosing the monomials in HT (D) can
decrease the number of low weight non-structured codewords in the mother code, resulting in improved
distance spectrum.

The rest of the paper is organised as follows: Section 2 gives the definition of the polynomial-domain
LDPC-CCs. The concept of structured and non-structured codewords is discussed in Section 3. Section 4
demonstrates the approach of eliminating low weight non-structured codewords, and gives the designing
criteria of practical LDPC-CCs with respect to good distance spectrum. Section 5 concludes the work.

2. LDPC Convolutional Codes

An LDPC-CC of rate R = b/n can be defined by the n× p polynomial syndrome former matrix (the
polynomial-domain transposed parity-check matrix)
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HT (D) =


h0,0(D) h0,1(D) . . . h0,p−1(D)

h1,0(D) h1,1(D) . . . h1,p−1(D)
...

... . . . ...
hn−1,0(D) hn−1,1(D) . . . hn−1,p−1(D)

 (1)

where p = n− b. The n-tuple of a codeword is given by

V(D) , [v(0)(D), v(1)(D), ..., v(n−1)(D)] (2)

and we have
V(D)HT (D) = 0(D). (3)

After multiplexing, the codeword in Equation (2) can also be expressed as

v(D) , D · v(0)(Dn) +D2 · v(1)(Dn)...+Dn · v(n−1)(Dn). (4)

A periodically shifted codeword DlV(D) or (Dn·lv(D)), l∈Z, is also a codeword, and, consequently,
it satisfies the constraint imposed by the polynomial syndrome former matrix, i.e.,

DlV(D)HT (D) = 0(D) (5)

Given HT (D) in Equation (1), its weight matrix is defined as

B =


W (h0,0(D)) W (h0,1(D)) · · · W (h0,p−1(D))

W (h1,0(D)) W (h1,1(D)) · · · W (h1,p−1(D))
...

... . . . ...
W (hn−1,0(D)) W (hn−1,1(D)) · · · W (hn−1,p−1(D))

 (6)

where W (hi,j(D)) indicates the number of additive items (monomials) of the polynomial entry hi,j(D).
Note that, if hi,j(D) is an empty entry, then W (hi,j(D))=0. The maximum power of the monomials in
Equation (1) is defined as the syndrome former memory ms. If there are J and K monomials in each row
and each column of Equation (1) respectively, then the LDPC-CC is regular and denoted by (ms, J,K).

3. Codewords Analysis

In this section, we characterise the codewords of LDPC-CCs into two categories, i.e., structured and
non-structured. The non-structured codewords can be eliminated by appropriately choosing the power
of the monomials or polynomials in HT (D), while the number of the structured codewords is relevant
to the size of HT (D). The main contribution of this paper is introducing an approach to reduce the
number of low weight non-structured codewords so as to improve the distance spectrum for the design
of practical LDPC-CCs.
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3.1. Structured Codewords

In [18], Smarandache et al. introduced a method to calculate the deterministic codewords for
quasi-cyclic (QC) LDPC block codes. In this section, we give the proof to show that the method can also
be applied to LDPC-CCs. These deterministic codewords refer to the structured codewords in this paper.

Lemma 1. Let C be the LDPC-CC defined by the polynomial syndrome former matrix HT (D) in
Equation (1) and let S be a subset of {0, 1, 2, . . . , n − 1} with p + 1 elements. Arbitrarily taking
(p + 1) rows of HT (D) with the row indices in S forms the submatrix denoted by HT

S (D).
Let W(D) = [w(0)(D),w(1)(D), · · · ,w(n−1)(D)] be a vector defined by

w(i)(D) ,

{
perm(HT

S\i(D)) if i ∈ S

0 otherwise
(7)

where S\i indicates excluding i from the set S, and perm(·) calculates the involved permanent of the
polynomial matrix. Then W(D) is a codeword in C.

Proof. See the Appendix.

Definition 1. A codeword calculated using Lemma 1 is defined as the base structured codeword.

Since the codeword calculated in Lemma 1 is determined by the permanent of the polynomial
submatrices, modifying the powers of the monomials in HT (D) only changes the form of the codewords,
but not the amount of them, therefore, we call them structured. Additionally, since the sum of any
(periodically shifted) codewords obtained from Lemma 1 defines another structured codeword, hence
we consider them as the base ones.

Given the polynomial syndrome former matrix of size n × p, there are
(

n
p+1

)
base structured

codewords. The minimum weight of these base structured codewords gives an upper bound on the
free distance of the LDPC-CC.

To illustrate the concept of the base structured codewords, the (21, 3, 5) Tanner LDPC-CC of rate
R = b/n = (n−p)/n = 2/5 is chosen as an example. This code is defined by the polynomial syndrome
former matrix

HT (D) =


1 1 D18

D00 D50 D12

D30 D15 1

D70 D40 D70

D15 D13 D21


5×3

(8)

which is obtained by removing the common factors of D from each column of HT (D) from the (31, 3, 5)
code in [19] for simplicity.

According to Lemma 1, we choose the submatrix of size (p+ 1)× p = 4× 3 as follows
1 1 D18

D D5 D12

D3 D15 1

D7 D4 D7


4×3.

(9)
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There are four different square submatrices of size 3 × 3 in Equation (9), and the permanent of each
square submatrix is given in Table 1. According to Equation (7), the 5-tuple sequence

W(D) = [w0(D),w1(D),w2(D),w3(D), 0(D)] (10)

or, equivalently,

w(D) = D · w0(D5) +D2 · w1(D5) +D3 · w2(D5) +D4 · w3(D5) +D5 · 0(D5)

= (D4 +D17 +D21 +D24 +D32 +D38 +D47 +D56 +D58 +D71 +D74

+D78 +D91 +D93 +D107 +D111 +D113 +D122 +D129

+D134 +D148 +D166 +D169 +D197) ·D5

is a base structured codeword of Equation (8), and it satisfies the parity-check constraint
W(D)HT (D) = 0(D).

Table 1. The permanent of each square submatrix of Equation (9).

Submatrices Permanent of the SubmatrixD0 D50 D12

D3 D15 1

D7 D40 D70

 w0(D) = D5 +D12 +D15 +D19 +D23 +D34

 1 1 D18

D3 D15 1

D7 D40 D70

 w1(D) = D4 +D7 +D10 +D22 +D25 +D40

 1 1 D18

D D50 D12

D7 D40 D70

 w2(D) = D8 +D12 +D16 +D19 +D23 +D30

 1 1 D18

D D50 D12

D3 D15 1

 w3(D) = D +D5 +D15 +D26 +D27 +D34

The polynomial syndrome former matrix HT (D) in Equation (8) contains five submatrices of size
4× 3, and each one defines a base structured codeword. All of these five base structured codewords are
presented in Table 2, and each one is of weight 24. Therefore, the free distance of the (21,3,5) Tanner
LDPC-CC is upper bounded by 24 which is consistent with the estimated free distance in [17].
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Table 2. The base structured codewords of the (21, 3, 5) Tanner LDPC-CC.

v1(D)
D4 +D17 +D21 +D24 +D32 +D38 +D47 +D56 +D58+

D71 +D74 +D78 +D91 +D93 +D107 +D111 +D113+

D122 +D129 +D134 +D148 +D166 +D169 +D197

v2(D)
D5 +D20 +D35 +D49 +D59 +D76 +D81 +D83 +D93+

D95 +D96 +D104 +D108 +D110 +D121 +D123 +D154+

D164 +D166 +D168 +D173 +D185 +D196 +D224

v3(D)
D5 +D25 +D45 +D60 +D62 +D66 +D72 +D74 +D80+

D87 +D89 +D91 +D94 +D96 +D99 +D102 +D115+

D116 +D121 +D124 +D126 +D147 +D152 +D154

v4(D)
D5 +D40 +D49 +D55 +D72 +D75 +D77 +D79 +D83+

D92 +D95 +D108 +D113 +D117 +D119 +D124 +D133+

D138 +D143 +D150 +D162 +D164 +D189 +D192

v5(D)
D5 +D25 +D62 +D66 +D72 +D75 +D96 +D108 +D117+

D123 +D128 +D130 +D133 +D135 +D136 +D141 +D158+

D167 +D170 +D177 +D181 +D188 +D206 +D237

3.2. Non-Structured Codewords

Unlike the structured codewords, there is another category of codewords depending on the particular
monomials or polynomials in HT (D). By appropriately choosing the power of each monomial, this type
of codewords can be eliminated. We call them non-structured codewords in this paper. Note that, if any
non-structured codewords are involved in the sum of a set of codewords, then the sum results in another
non-structured codeword.

In [17], a method was introduced to estimate the distance spectrum of LDPC-CCs (mother code) by
splitting the polynomial syndrome former matrix into submatrices representing “super codes” and then
evaluating the linear dependence between codewords of the corresponding super codes. We apply this
method to the (21,3,5) Tanner LDPC-CC.

First, the polynomial syndrome former matrix of the original code is split into two submatrices HT
a (D)

and HT
b (D) as follows

HT
a (D) =


1 1

D00 D50

D30 D15

D70 D40

D15 D13

 ,HT
b (D) =


1 D18

D50 D12

D15 1

D40 D70

D13 D21

 . (11)

Each one defines a super code and has free distance of 6. By computer search, there are 22 and 12
codewords of weight 6 in the set {vi

a(D)|i = 1, 2, . . . , 22} and {vj
b(D)|j = 1, 2, . . . , 12} for HT

a (D)

and HT
b (D), respectively. In addition, no codewords of weight smaller than six are found, therefore, the

free distance of these two super codes are six. Applying Lemma 1 to HT
a (D) and HT

b (D), as shown in
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Table 3 the codewords {vk
a(D)|k = 1, 2, . . . , 10} and {vl

b(D)|l = 1, 2, . . . , 10} are the base structured
codewords, and the rest are the non-structured ones.

Table 3. Minimum weight codewords of the super codes.

HT
a (D) HT

b (D)

v1a(D)→ v12a (D) v13a (D)→ v22a (D) v1b(D)→ v12b (D)

Structured Non-Structured Structured

[3, 12, 19, 38, 59, 87] [3, 12, 32, 36, 52, 56] [2, 26, 29, 46, 77, 84]

[3, 12, 23, 36, 72, 76] [3, 12, 15, 19, 47, 54] [2, 9, 43, 63, 92, 119]

[4, 17, 21, 24, 32, 56] [5, 33, 35, 42, 72, 106] [2, 26, 63, 118, 136, 167]

[4, 8, 21, 23, 64, 96] [5, 28, 37, 44, 49, 77] [4, 21, 38, 111, 113, 169]

[5, 40, 49, 72, 77, 79] [5, 10, 15, 49, 54, 76] [5, 25, 42, 67, 69, 74]

[5, 20, 49, 59, 76, 81] [5, 15, 62, 66, 76, 86] [5, 47, 60, 66, 71, 97]

[5, 25, 62, 66, 72, 96] [5, 44, 49, 57, 61, 81] [5, 66, 74, 80, 91, 124]

[5, 33, 42, 45, 63, 112] [5, 15, 33, 42, 76, 82] [5, 49, 83, 95, 108, 164]

[5, 53, 63, 65, 66, 136] [5, 35, 53, 66, 72, 102] [5, 42, 103, 108, 115, 157]

[5, 49, 63, 68, 80, 119] [5, 29, 42, 44, 46, 61] [5, 66, 108, 158, 170, 181]

- [5, 49, 64, 72, 81, 96] non-structured
- [5, 49, 63, 77, 84, 112] [2, 26, 57, 63, 81, 112]

- - [5, 30, 55, 66, 74, 99]

By evaluating the linear dependence between the minimum weight codewords of the super codes in
Table 3, we find that the codewords of the mother code in Table 2 can be derived from each super code
by summing some periodically shifted base structured codewords. For example,{

v1(D) = D5·22v1
a(D) +D5·7v2

a(D) +D5·0v3
a(D) +D5·14v4

a(D)

v1(D) = D5·9v1
b(D) +D5·3v2

b(D) +D5·6v3
b(D) +D5·0v4

b(D)
.

Note that, the non-structured codewords of HT
a (D) and HT

b (D) are not involved in generating the
codewords in the set {v1(D), v2(D), v3(D), v4(D), v5(D)}.

However, the (21, 3, 5) Tanner LDPC-CC has another base structured codeword of weight 24, i.e.,

v6(D) = D5 +D30 +D49 +D60 +D65 +D72 +D74 +D77 +D83+

D96 +D101 +D102 +D104 +D119 +D127 +D132 +D134+

D136 +D147 +D153 +D167 +D171 +D174 +D202

which cannot be obtained using Lemma 1. Unlike the codewords {v1(D), v2(D), v3(D), v4(D), v5(D)},
the codeword v6(D) requires both structured and non-structured codewords for each super code to
convert, i.e., 

v6(D) = D5·0v5
a(D) +D5·18v8

a(D) +D5·11v10
a (D) +D5·23v11

a (D)+

D5·5v15
a (D) +D5·6v19

a (D) +D5·18v20
a (D)

v6(D) = D5·4v1
b(D) +D5·18v1

b(D) +D5·6v5
b(D) +D5·12v5

b(D)+

D5·4v11
b (D) +D5·18v11

b (D) +D5·0v12
b (D) +D5·6v12

b (D)
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Since the non-structured codewords of the super codes are always involved in the formation of the
corresponding non-structured codewords of the mother code, and the non-structured codewords can
be deleted by modifying the monomials in HT (D), we conjecture that eliminating the non-structured
codewords in the super codes can decrease the number of non-structured codewords in the mother code.

4. Eliminating the Low Weight Non-Structured Codewords

In order to verify the conjecture in Section 3.2, in this section, we analyse the minimum weight
codewords for the (57,3,5), (126,3,5), and (204,3,5) Tanner LDPC-CCs, and compare the results to that
of the (21,3,5) code.

4.1. More Examples

The (57,3,5), (126,3,5), and (204,3,5) Tanner LDPC-CCs are respectively defined by the polynomial
syndrome former matrices

1 1 D35

D80 D43 D45

D19 D30 D13

D57 D90 D30

D33 D20 1

 ,


1 D280 D116

D70 D101 D360

D63 D810 1

D58 D720 D140

D18 1 D126

 and


1 1 D171

D860 D850 1

D970 D900 D106

D900 D145 D177

D204 D168 D400

 .

Using the distance spectrum estimation algorithm in [17], each of them contains five codewords with
the minimum weight 24. Applying Lemma 1 to each of the above three codes, we find that the five
codewords calculated in [17] are all base structured ones. In other words, these LDPC-CCs do not
contain any non-structured codewords of weight 24. Compared to the situation of the (21,3,5) code, the
reason that the (21,3,5) code contains a non-structured codeword of weight 24 can be explained by the
difference in the super codes.

Splitting the polynomial syndrome former matrix, we obtain following super codes
1 D35

D80 D45

D19 D13

D57 D30

D33 1

 ,


1 D280

D70 D101

D63 D810

D58 D720

D18 1

 and


1 1

D860 D850

D970 D900

D900 D145

D204 D168


for the (57,3,5), (126,3,5), and (204,3,5) Tanner LDPC-CCs, respectively. By computer search, each
of the above super codes contains 10 codewords of weight 6. Confirmed by Lemma 1, all of them are
base structured codewords. The weight 24 structured codewords of the (57,3,5), (126,3,5), and (204,3,5)
codes can be derived by summing the periodically shifted weight 6 base structured codewords of the
corresponding super code.

Compared to the case of the (21,3,5) code, the (57,3,5), (126,3,5), and (204,3,5) codes do not have
any non-structured codewords of weight 24. It is due to the elimination of non-structured codewords
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of weight 6 in the corresponding super code. Based on this observation, we conclude that when
designing LDPC-CCs eliminating low weight non-structured codewords in the super codes can decrease
the number of low weight non-structured codewords in the mother code.

4.2. Improved Distance Spectrum

To delete the non-structured codewords of weight 24 in the (21,3,5) code, we generate a new
polynomial syndrome former matrix

HT
New(D) =


1 1 D18

D13 D11 D12

D30 D18 1

D30 D40 D16

D21 D13 D21


5×3

(12)

where the syndrome former memory ms is still 21, and both the codes defined in Equations (8) and (12)
have girth of 8.

In the case of Equation (12), the super code formed by the second and the third columns contains
10 structured codewords of weight 12. Compared to the super code HT

b (D) in Equation (11), the two
non-structured codewords v11

b (D) and v12
b (D) in Table 3 are eliminated by respectively substituting D11,

D18, and D16 for the (2,2)-th, (3,2)-th, and (4,3)-th elements in Equation (11). In addition, similar to the
code in Equation (8), arbitrary two columns of Equation (12) representing a super code does not contain
any non-structured codewords of weight smaller than 6. As a result, the number of the codewords of
weight 24 for the code Equation (12) is reduced to five, and these five codewords are exactly the same as
those obtained from Lemma 1.

Applying the distance estimation algorithm in [17] to Equation (12), the number of the codewords of
weights 24, 26, 28, 30, and 32 have been reduced from 6, 5, 8, 34, and 53 for the code Equation (8) to
5,0, 0, 0, and 0, respectively. No codewords of weights 26, 28, 30, and 32 are found. The number of low
weight codewords has been significantly reduced by carefully choosing the monomials in the polynomial
syndrome former matrix. It shows that eliminating the low weight non-structured codewords in the super
code improves the distance spectrum of the mother codes.

As shown in Figure 1, the decoding performance of the designed code in Equation (12) is compared
to that of the (21, 3, 5) Tanner LDPC-CC in Equation (8). The simulation was carried out assuming
binary phase-shift keyed (BPSK) modulation on an additive white Gaussian noise (AWGN) channel
with 50 iterations of the on-demand variable node activation [20] sum-product pipeline [4] decoding
algorithm for LDPC-CCs. As a benefit of the improved distance spectrum, the bit error ratio (BER)
curve of the designed code is consistent lower than that of the Tanner code.
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Figure 1. Decoding performance of the codes defined in Equations (12) and (8) .

4.3. Rules for Designing Practical LDPC-CCs

Through the above analysis, to obtain good distance spectrum when designing practical LDPC-CCs
based on a given weight matrix, we propose two design criteria to follow:

• ensuring that each super code does not contain any codewords with weight smaller than the
minimum weight of the structured codewords calculated using Lemma 1;
• eliminating the low weight non-structured codewords of the super codes as many as possible.

In order to eliminate the non-structured codewords in the super codes, a two-step calculation is
performed as follows:

Step 1: Compute the enumerator for the structured codewords EC that the super code contains.
In this paper, the structured codewords are calculated based on the formation of the unavoidable
cycles [21]. For example, the weight matrix of the super code formed by the second and the third
columns of Equation (12) is an all-one matrix of size 5 × 2. According to the result in [21], this
weight matrix contains

(
5
3

)
= 10 unavoidable cycles of length 12. If an all-one weight matrix

contains only two columns or two rows, the structure of an unavoidable cycle of length n in the
weight matrix forms a structured codeword of weight n/2. Hence, we have EC = 10 for the super
code formed by arbitrary two columns of Equation (12).
Step 2: For each entry in the polynomial syndrome former matrix of the super code, we randomly
choose a monomial with power smaller than the syndrome former memory ms and calculate the
number of the codewords that the associated super code has. If it is larger than EC , this monomial
is replaced by another one until a valid one is found. If all of the monomials with power smaller
than ms have been tested, we simply increase the value of ms and repeat the process in Step 2.
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5. Conclusions

In this paper, the codewords of polynomial-based LDPC-CCs are separated into two categories,
i.e., structured codewords and non-structured codewords. In the distance spectrum, the number of the
structured codewords is dominated by the size of the polynomial syndrome former matrix HT (D), while
the number of the non-structured ones depends on the particular monomials or polynomials in HT (D).
For the design of practical LDPC-CCs, an approach of improving the distance spectrum of the mother
code is eliminating the low weight non-structured codewords in the super codes.
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Appendix

A. Proof of Lemma 1

Arbitrarily choose p + 1 rows of HT (D) forming the submatrix HT
S (D), for example, let us take the

first p+ 1 rows of HT (D) and obtain

HT
S (D) =


h0,0(D) h0,1(D) . . . h0,p−1(D)

h1,0(D) h1,1(D) . . . h1,p−1(D)
...

... . . . ...
hp,0(D) hp,1(D) . . . hp,p−1(D)

 (A1)

where S = {0, 1, 2, . . . , p}. Assuming we have (p+ 1)-tuple of a vector

U(D) = [u(0)(D),u(1)(D), · · · ,u(p)(D)] (A2)

that satisfies
U(D)HT

S (D) = 0(D) (A3)
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By expanding Equation (A3), we obtain (for simplicity, the notation “D” in Equations (A4)–(A8)
is ignored) 

u(0)h0,0 + u(1)h1,0 . . . + u(p−1)hp−1,0 = u(p)hp,0

u(0)h0,1 + u(1)h1,1 . . . + u(p−1)hp−1,1 = u(p)hp,1

...
... . . . ...

...
u(0)h0,p−1 + u(1)h1,p−1 . . . + u(p−1)hp−1,p−1 = u(p)hp,p−1

(A4)

For any square matrix A with elements from the field of characteristic 2, it holds that det(A) = perm(A).
Let w(i)(D) , perm(HT

S\i(D)), according to Cramer’s rule, we have

u(0) =

perm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h1,0 h2,0 . . . hp−1,0 u(p)hp,0

h1,1 h2,1 . . . hp−1,1 u(p)hp,1

...
... . . . ...

...
h2,p−1 h1,p−1 . . . hp−1,p−1 u(p)hp,p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

perm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h0,0 h1,0 . . . hp−1,0

h0,1 h1,1 . . . hp−1,1
...

... . . . ...
h0,p−1 h1,p−1 . . . hp−1,p−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= w(0)u(p)

w(p)

. (A5)

Similarly, applying the above description to the rest of the elements in U(D), we have

u(i) =
w(i)u(p)

w(p)
(A6)

where i = 0, 1, 2, . . . , p− 1. Taking u(i) back to Equation (A4), we obtain
w(0)u(p)

w(p) h0,0 + w(1)u(p)

w(p) h1,0 . . . + w(p−1)u(p)

w(p) hp−1,0 = u(p)hp,0

w(0)u(p)

w(p) h0,1 + w(1)u(p)

w(p) h1,1 . . . + w(p−1)u(p)

w(p) hp−1,1 = u(p)hp,1

...
... . . . ...

...
w(0)u(p)

w(p) h0,p−1 + w(1)u(p)

w(p) h1,p−1 . . . + w(p−1)u(p)

w(p) hp−1,p−1 = u(p)hp,p−1

(A7)

and 
w(0)h0,0 + w(1)h1,0 . . . + w(p−1)hp−1,0 = w(p)hp,0

w(0)h0,1 + w(1)h1,1 . . . + w(p−1)hp−1,1 = w(p)hp,1

...
... . . . ...

...
w(0)h0,p−1 + w(1)h1,p−1 . . . + w(p−1)hp−1,p−1 = w(p)hp,p−1

(A8)

Equation (A8) can be equivalently described as

[w(0)(D),w(1)(D), . . . ,w(p)(D)]HT
S (D) = 0(D) (A9)

or
[w(0)(D),w(1)(D), . . . ,w(n−1)(D)]HT (D) = 0(D) (A10)
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where p < n and w(i)(D) = 0(D) when i = p + 1, p + 2, . . . , n − 1. Therefore, the code sequence
[w(0)(D),w(1)(D), . . . ,w(n−1)(D)] is a codeword for the LDPC-CC defined by HT (D).
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