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Abstract: Moment invariants have been extensively studied and widely used in object recognition.
The pioneering investigation of moment invariants in pattern recognition was due to Hu, where a
set of moment invariants for similarity transformation were developed using the theory of algebraic
invariants. This paper details a comparative analysis on several modifications of the original Hu
moment invariants which are used to describe and retrieve two-dimensional (2D) shapes with a single
closed contour. The main contribution of this paper is that we propose several different weighting
functions to calculate the central moment according to human visual processing. The comparative
results are detailed through experimental analysis. The results suggest that the moment invariants
improved by weighting functions can get a better retrieval performance than the original one does.
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1. Introduction

Shape is a significant visual clue for human perception. Using the shape of an object for object
recognition and image retrieval is a hot topic in computer vision [1]. Moment invariants have been
extensively studied and widely used in shape recognition and identification since they were first
proposed by Hu [2]. Since then, many other kinds of moments have been proposed in the literature,
including Zernike moments [3–5], Legendre moments [6,7], Fourier-Mellin moments [8–10], etc. [2].
Zernike moments and Legendre moments are both proposed by Teague [11]. Zernike moments are
used in pattern recognition applications as invariant descriptors of the image shape. The Zernike
moment descriptor has desirable properties such as rotation and scale invariance, robustness to noise,
expression efficiency and fast computation. Legendre moments use Legendre polynomials as basis
functions. These polynomials are orthogonal and cause Legendre moments to extract independent
features within the image, with no information redundancy. Though Legendre moments have good
retrieval properties, they are not invariant to linear operation and rotation. The Fourier-Mellin moment
is one of the complex moments and it was proposed by Sheng and Shen [12]; it can be transformed to
rotation and translation invariants. It attains good results in shape recognition. These various moment
invariants have been successfully utilized as pattern features in a number of applications including
character recognition [13,14], aircraft recognition [15], object identification and discrimination [16,17],
content-based image retrieval [18], two-dimensional (2D) flow fields analysis [19], etc. [20–22].

It is known that Hu’s moment invariants are area moment invariants, which means that they are
computed over all pixels including the shape boundary and its associated interior part. All pixels are
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usually taken as identically important in computing these moment invariants, which may not be in
accordance with human perception. Generally, there are two ways to specify a 2D shape. One is to
specify a shape with the whole region occupied by the object. Another way is to define a shape by only
specifying its boundary. Based on the concept of shape representation through boundaries, Chen [17]
introduced the curve moment invariants, which are reformulations of Hu's moments, and they are
a set of invariants devised in such a way as to be evaluated only with the object boundary pixels.
Though this modification reduces computation, the shape information is reduced to a certain extent
as well. In order to increase the ability of noise tolerance, Balslev [21] introduced a spatial weighting
function to Hu’s central moment. Their weighting technique emphasized heavy weights to the areas
near the center-of-mass for noise tolerance. As far a 2D non-rigid shape with a single closed contour is
concerned, the centroid of the object may be outside of the region of the object. Balslev’s method is not
suitable for such cases.

In this work, we present several novel weighting functions into the central moment formula from
a completely different perspective for 2D non-rigid shape retrieval. We have a completely different
starting point from [23]. The specific weighting techniques will be discussed in detail in Section 3.

The paper is organized as follows. Section 2 of this paper provides the basic idea of traditional
Hu’s moments. Section 3 explains our weighting functions for the central moment according to
human perception. Section 4 analyzes the experimental results and presents a discussion. Finally, the
conclusion is given in Section 5.

2. Traditional Geometric Moment Invariants

In this section, we briefly review Hu’s invariant moments. The 2D traditional geometric moments
of order p` q of a density distribution f px, yq are defined as

mpq “

ż 8

´8

ż 8

´8

xpyq f px, yqdxdy p, q “ 0, 1, 2, . . . (1)

When the geometric moments mpq in Equation (1) are referred to the object centroid pxc, ycq, they
become the central moments, and are given by

µpq “

ż 8

´8

ż 8

´8

px´ xcq
p
py´ ycq

q f px, yqdxdy (2)

where xc “ m10{m00 and yc “ m01{m00.
For a digital image represented in a 2D array, Equations (1) and (2) are given as Equations (3) and

(4), respectively,

mpq “

M
ÿ

x“1

N
ÿ

y“1

xpyq f px, yq, p, q “ 0, 1, 2, . . . (3)

µpq “

M
ÿ

x“1

N
ÿ

y“1

px´ xcq
p
py´ ycq

q f px, yq (4)

where M and N are the horizontal and vertical dimensions, respectively, and f px, yq is the intensity at
point px, yq in the image.

The normalized central moments of an image are given by

ηpq “
µpq

µ
γ
00

(5)

where γ “
p` q

2
` 1, p` q “ 2, 3, ¨ ¨ ¨ . These moments are invariant to both translation and scale of

the image.
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Hu defines a set of seven moment invariants of orders of three or less, which are invariant to
object scale, translation and rotation. In terms of the central moments, the seven moments are given as:

φ1 “ η20 ` η02 (6)

φ2 “ pη20 ´ η02q
2
` 4η2

11 (7)

φ3 “ pη30 ´ 3η12q
2
` p3η12 ´ η03q

2 (8)

φ4 “ pη30 ` η12q
2
` pη21 ` η03q

2 (9)

φ5 “ pη30 ´ 3η12qpη30 ` η12qrpη30 ` η12q
2
´ 3pη21 ` η03q

2
s

`p3η21 ´ η21qpη21 ` η03qr3pη30 ` η12q
2
´ pη21 ` η03q

2
s

(10)

φ6 “ pη20 ´ η02qrpη30 ` η12q
2
´ pη21 ` η03q

2
s

`4η11pη30 ` η12qpη21 ` η03q
(11)

φ7 “ p3η21 ´ η03qpη30 ` η12qrpη30 ` η12q
2
´ pη21 ` η03q

2
s

`p3η12 ´ η30qpη21 ` η03qr3pη30 ` η12q
2
´ pη21 ` η03q

2
s

(12)

3. Several Weighting Functions

3.1. Boundary Weighting Function

Let us discuss the issue of shape recognition from another angle. For a 2D non-rigid shape with
a single closed contour, as illustrated in Figure 1, an object’s shape is mainly discriminated by its
boundary pixels according to the characteristics of human visual perception. In other words, the
boundary part of the object makes a greater contribution for distinguishing the object’s shape than the
central part of the object does [24,25].
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M N
p q
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where ( , )x yδ  is a weighting function which should emphasis the weights of those pixels closer to 
the object boundary. Both the linear and nonlinear functions are considered in our work. 

If the linear weighting function is concerned, ( , )x yδ  can be set simply as Equation (14): 

1( , )
( , )

x y
d x y

δ =  (14) 

Figure 1. Object and its contour.

Based on this fact, we propose a kind of boundary-weighted central moment in this paper. In
the process of the central moment being calculated, pixels closer to the object boundary should be
assigned larger weights and inner pixels farther away from the object boundary should be assigned
smaller weights. According to this idea, Equation (4) should be modified as follows

µpq “

M
ÿ

x“1

N
ÿ

y“1

px´ xcq
p
py´ ycq

q f px, yqδpx, yq (13)

where δpx, yq is a weighting function which should emphasis the weights of those pixels closer to the
object boundary. Both the linear and nonlinear functions are considered in our work.

If the linear weighting function is concerned, δpx, yq can be set simply as Equation (14):

δpx, yq “
1

dpx, yq
(14)
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If the nonlinear weighting function is concerned, δpx, yq can be set simply as the Gauss function
in Equation (15)

δpx, yq “
1

σ
?

2π
e
´pdpx, yq ´ µq2

2σ2 (15)

dpx, yq “ minp
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
px, yq, pxi, yiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
q,@pxi, yiq P BPs (16)

where
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
˚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
denotes some sort of distance metric (Euclidean distance is used in this paper), BPs is a set

of pixels that is located on the shape boundary, dpx, yq is the minimum distance between BPs and a
pixel px, yqwhich belongs to the inner region of the shape. Parameters µ and σ are the mean and the
standard deviation with its variance σ2, and µ is set to 0 in the experiments.

Both Equations (14) and (15) contain the information that the pixels at different locations in a
shape have different contributions. Those pixels closer to the shape boundary enjoy larger weight
values, and on the contrary, those inner pixels farther away from the shape boundary enjoy smaller
weight values. Let us take Equation (14) as an example. If inner pixel px, yq is close to the object
boundary, the distance dpx, yq between it and the BPs will get a small value, and the weight function
δpx, yqwill get a large value. Equation (15) has a similar effect as well.

3.2. Balance Weighting Function

Chen [17] proposed to compute moment invariants based on shape boundary pixels only and
neglected the pixels within the region. In other words, the weights of pixels on the boundary are set to
1 while the weights of pixels within the region are set to 0. Thus, the computing cost is reduced, and
the contribution of the interior region disappears as well. In order to achieve the balance, we propose
a general linear rational weighting function as in Equation (17)

δpx, yq “
pˆ pdmaxpx, yq ´ dpx, yqq

pˆ dmaxpx, yq ´ p2p´ 1q ˆ dpx, yq
(17)

where dpx, yq is same as in Section 3.1, and dmaxpx, yq is the maximum such distance in the object.
Additionally, p is an adjustable parameter. If p is prone to 0, the moments converge with the boundary
moments; if p is prone to 1, the moments converge with the traditional geometric moments. This
weighting function balances the traditional geometric moments and boundary moments.

3.3. Central Weighting Function

In order to enhance the noise tolerance, Balslev [23] proposed a spatial function so that the regions
near the center-of-mass are given higher weights. This central weighting function is given as follows

δpx, yq “
1

1` α2
´

px´ x0q
2
` py´ y0q

2
¯ (18)

where α is an adjustable parameter, px0, y0q is the center-of-mass. The typical range for α is
0 ă α ă 10{RG, where RG is the radius of gyration, RG “

a

pµ20 ` µ02q{µ00. Balsley’s weighting
function emphasizes the pixels that are close to the center-of-mass and weakens the pixels that are
close to the boundary.

4. Experimental Study

4.1. Data Set and Distance Measure

We will give the details of the comparative study of the retrieval performance of variant-modified
Hu moment invariants based on different weighted central moment approaches in 2D non-rigid
shapes with single closed contours. We use the common performance measures, i.e., average precision
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and recall of the retrieval, as the evaluation measures (also called PVR curve). For each query,
the precision of the retrieval at each level of the recall is obtained. The resulting precision of the
retrieval is the average precision of all the query retrievals. Most publicly obtained benchmark shape
databases, including Kimia’s shape dataset and the MPEG-7 dataset, will be considered in the following
comparative experiments, respectively. Kimia’s shape dataset has 18 classes, each consisting of each 12
images. The MPEG7 dataset has 70 classes, each consisting of 20 images.

For the sake of simplicity, we defined seven invariants from Hu’s moment invariants, based on the
different weighted central moment as the features of the shape region. The dissimilarities (distances),
defined in Equation (19), between the shapes are measured by the Euclidean distance.

DistpQ, Tq “

g

f

f

e

7
ÿ

i“1

pφ
q
i ´ φt

i q
2

(19)

where Q and T denote the query image and target image, respectively.

4.2. Comparative Study on the Different Weighting Approaches

In this section, the average precision and recall curves of queries using the original Hu
moments [2], boundary moments [17], centroid weighted moments [23] and proposed weighted
moments in the two different shape datasets are shown in Figures 2 and 3 respectively.

In order to obtain good performance, the parameters are hand-picked. In Kimia’s shape database,
parameter σ for the non-linear weighting function is set as 0.05, parameter p for the balance weighting
function is set as 0.01, and parameter α for the central weighting function is set as 4{RG. In the MPEG-7
shape database, parameter σ for the non-linear weighting function is set as 0.05, parameter p for the
balance weighting function is set as 0.02, and parameter α for the central weighting function is set as
3{RG. There are no parameters for the other weighting functions.
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It is clear from the average precision and recall curves that the modified Hu moment invariants
based on the linear weighting function, non-linear weighting function, balance weighting function
and central weighting function can get better retrieval results compared with the original Hu moment
invariants and the boundary moment invariants. In addition, the boundary moments outperform the
original Hu moments, but underperform when compared to the improved Hu moments based on
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other weighting functions. Thus, the weighting scheme for the central moments defined in this paper
is effective in identifying different 2D shapes.Information 2016, 7, 10 6 of 12 
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The bull’s-eye test is selected as another evaluation criterion in the experiments as well. In the
bull’s-eye test, each shape is used as a test query. Retrieval is considered correct if it is in the same class
as the query. Figures 4 and 5 show the bull’s-eye test results on Kimia’s shape datasets and MPEG-7
shape datasets, respectively. All of the improved approaches can get a better retrieval performance
compared with the original Hu invariant moments, especially the two improved Hu moments based
on central moments with the balance weighting function and linear weighting function.

Information 2016, 7, 10 6 of 12 

 

 
Figure 3. Average retrieval precision-recall curves on MPEG-7 shape database. 

It is clear from the average precision and recall curves that the modified Hu moment invariants 
based on the linear weighting function, non-linear weighting function, balance weighting function 
and central weighting function can get better retrieval results compared with the original Hu 
moment invariants and the boundary moment invariants. In addition, the boundary moments 
outperform the original Hu moments, but underperform when compared to the improved Hu 
moments based on other weighting functions. Thus, the weighting scheme for the central moments 
defined in this paper is effective in identifying different 2D shapes. 

The bull’s-eye test is selected as another evaluation criterion in the experiments as well. In the 
bull’s-eye test, each shape is used as a test query. Retrieval is considered correct if it is in the same 
class as the query. Figures 4 and 5 show the bull’s-eye test results on Kimia’s shape datasets and 
MPEG-7 shape datasets, respectively. All of the improved approaches can get a better retrieval 
performance compared with the original Hu invariant moments, especially the two improved Hu 
moments based on central moments with the balance weighting function and linear weighting 
function. 

 
Figure 4. Bull’s-eye test on Kimia’s shape database. 

0

10

20

30

40

50

60

70

80

90

original Hu boundary non-limear balance central linear

re
co

gn
iti

on
 ra

te

original Hu moment and other improved Hu moments

Bull's-eye test

Figure 4. Bull’s-eye test on Kimia’s shape database.



Information 2016, 7, 10 7 of 12Information 2016, 7, 10 7 of 12 

 

 
Figure 5. Bull’s-eye test on MPEG-7 shape database. 

4.3. Comparative Study of the Parameters 

Several weighted central moment approaches have been presented in Section 3. From Equations 
(15), (17) and (18), it is clear that the nonlinear weighting function has two parameters that should be 
carefully set ( μ  is set to 0 in all experiments), and that both the balance weighting function and 
central weighting function have one parameter that should be carefully set as well. It is necessary to 
discuss the influence of different parameters on the retrieval performance. Figures 6–8 show the 
details of the influence of different parameters on the retrieval performance on Kimia’s and the 
MPEG-7 shape database. As for parameters μ  and p , they should be set around 0.03 so that the 
performances are optimized. Additionally, parameter α  should be set around 3 / GR  so that the 
performances are optimized. 

 
Figure 6. Bull’s-eye test with different values for parameter μ  in Equation (15). 

0

10

20

30

40

50

60

original Hu boundary non-limear balance central linear

re
co

gn
iti

on
 ra

te

original Hu moment and other improved Hu moments

Bull's-eye test

Figure 5. Bull’s-eye test on MPEG-7 shape database.

4.3. Comparative Study of the Parameters

Several weighted central moment approaches have been presented in Section 3. From
Equations (15), (17) and (18), it is clear that the nonlinear weighting function has two parameters
that should be carefully set (µ is set to 0 in all experiments), and that both the balance weighting
function and central weighting function have one parameter that should be carefully set as well. It is
necessary to discuss the influence of different parameters on the retrieval performance. Figures 6–8
show the details of the influence of different parameters on the retrieval performance on Kimia’s
and the MPEG-7 shape database. As for parameters µ and p, they should be set around 0.03 so that
the performances are optimized. Additionally, parameter α should be set around 3{RG so that the
performances are optimized.
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Figure 6. Bull’s-eye test with different values for parameter µ in Equation (15).
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4.4. Comparative Study of Different Distance Metrics

The distance metric is very important for shape similarity measurements. As the moment
invariants extracted from the images are vectors, Euclidean distance is used to measure the distance
between two shapes in the above experiments for simplicity. Besides Euclidean distance, there are
some other commonly used distance metrics including the Cityblock distance, Mahalanobis distance,
Correlation distance, Chebychev distance and Cosine distance. Figures 9 and 10 express the comparison
results of these different distance metrics used for the similarity measurement of the modified Hu
moment invariants with the linear weighting function on Kimia’s and the MPEG-7 shape database,
respectively. From Figure 9, it is clear that Euclidean distance gets a better retrieval performance than
the other distance metrics, followed by Cityblock distance and others. As illustrated in Figure 10,
Mahalanobis distance obtains the best retrieval performance while it gets inferior results in Figure 9.
Mahalanobis distance is not robust enough. Euclidean distance gets the second-best performance in
Figure 10, followed by Cityblock distance and others. From Figures 9 and 10 Euclidean distance gets
favorable results in both shape databases.
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4.5. Retrieval Illustration

Table 1 lists the retrieval results with 10 query images from Kimia’s shape database. The left
column shows query shapes and the right rows show the first 11 ranked nearest neighbors for each
query shape, respectively. The returned images that do not belong to the query types are marked with
a blue background in the table grids.
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Table 1. Some query results from Kimia’s shape database.
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4.6. Discussion 

We have tested the original Hu invariant moments and other improved Hu moments in the 
above sections. The original Hu invariant moments assign identical weights to all of the pixels 
within an object, including the boundary pixels. This leads to their relatively low performance. For 
reducing the computations, Ref. [17] considers only the pixels on the shape boundary. Thus, the 
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Compared with the original Hu invariant moments, Ref. [17] achieved better results. Other 
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to different pixels according to some rules. This brings us more robust results. The central weighting 
function assigns larger weights to pixels close to the center-of-mass and this gives favorable results. 
However, this approach may be disabled when the center-of-mass of an object is located outside of 
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the pixels close to the object boundary. This modification makes the performance more robust. The 
balance weighting method shares the merits of both the central weighting function and the boundary 
weighting function. If parameter p is selected carefully, a better performance will be obtained. In 
addition, compared with other weighting functions, the weighting function of Equation (14) does not 
need any parameters and can obtain respectable results. 

5. Conclusions 

In this paper, we elaborate on several weighting functions for calculating the central moment 
from the perspective of different angles. With the experiments, it is shown that the weighting 
functions applied in the calculation of central moments are able to considerably increase the 
performance, compared with the original Hu moments, in 2D shape retrievals. The results also show 
that different pixels in an object have different contributions for object identification. Future work 
can try to introduce the weighting method to other kinds of moments and apply them to other 
image-related applications, such as character recognition. 
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4.6. Discussion

We have tested the original Hu invariant moments and other improved Hu moments in the above
sections. The original Hu invariant moments assign identical weights to all of the pixels within an
object, including the boundary pixels. This leads to their relatively low performance. For reducing
the computations, Ref. [17] considers only the pixels on the shape boundary. Thus, the weights of the
pixels on the contour are set to 1, and the weights of the inner pixels are set to 0. Compared with the
original Hu invariant moments, Ref. [17] achieved better results. Other weighting approaches take all
the pixels of an object into consideration and assign different weights to different pixels according to
some rules. This brings us more robust results. The central weighting function assigns larger weights
to pixels close to the center-of-mass and this gives favorable results. However, this approach may be
disabled when the center-of-mass of an object is located outside of the object boundary. According
to human perception, the boundary weighting approaches (Equations (14) and (15)) emphasize the
region near the object boundary and allocate heavy weights to the pixels close to the object boundary.
This modification makes the performance more robust. The balance weighting method shares the
merits of both the central weighting function and the boundary weighting function. If parameter p is
selected carefully, a better performance will be obtained. In addition, compared with other weighting
functions, the weighting function of Equation (14) does not need any parameters and can obtain
respectable results.

5. Conclusions

In this paper, we elaborate on several weighting functions for calculating the central moment
from the perspective of different angles. With the experiments, it is shown that the weighting functions
applied in the calculation of central moments are able to considerably increase the performance,
compared with the original Hu moments, in 2D shape retrievals. The results also show that different
pixels in an object have different contributions for object identification. Future work can try to introduce
the weighting method to other kinds of moments and apply them to other image-related applications,
such as character recognition.
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