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Abstract: Inspired by the overwhelming success of Histogram of Oriented Gradients (HOG) features
in many vision tasks, in this paper, we present an innovative compact feature descriptor called
fuzzy Histogram of Oriented Lines (f-HOL) for action recognition, which is a distinct variant
of the HOG feature descriptor. The intuitive idea of these features is based on the observation
that the slide area of the human body skeleton can be viewed as a spatiotemporal 3D surface,
when observing a certain action being performed in a video. The f-HOL descriptor possesses
an immense competitive advantage, not only of being quite robust to small geometric transformations
where the small translation and rotations make no large fluctuations in histogram values, but also
of not being very sensitive under varying illumination conditions. The extracted features are then
fed into a discriminative conditional model based on Latent-Dynamic Conditional random fields
(LDCRFs) to learn to recognize actions from video frames. When tested on the benchmark Weizmann
dataset, the proposed framework substantially supersedes most existing state-of-the-art approaches,
achieving an overall recognition rate of 98.2%. Furthermore, due to its low computational demands,
the framework is properly amenable for integration into real-time applications.

Keywords: human action recognition; Histogram of Oriented Gradients (HOG); fuzzy Histogram
of Oriented Lines (f-HOL); Latent-Dynamic Conditional random fields (LDCRFs); Weizmann
action dataset

1. Introduction

In recent years, automatic recognition of human activities from both still images and video
sequences has attracted tremendous research interest, due to its immense potential for many
applications in various fields and domains [1,2]. Although many efficient applications are available for
the purpose of human action recognition, the most active widespread application might be Human
Computer Interaction (HCI), where no explicit user’s actions (e.g., keystrokes and mouse clicks) are
available to capture user input. Instead, interactions are more likely to occur through human actions
and/or gestures [3]. In this sense, it is worth pointing out an indisputable fact that the recognition
of human actions is an effortless process for us as human beings, but a very challenging task for
computers. The task of action recognition shares many challenges with other tasks in computer vision
and pattern recognition, such as object detection and tracking, motion recognition, etc. The major
common challenges in human action recognition shared with other problems in computer vision
include illumination conditions, occlusions, clutter in background, object deformations, intra/inter
class variations, pose variations, and camera point-of-view.

Furthermore, while human vision has an extraordinary ability to efficiently recognize human
actions from video data, with a high degree of accuracy, it is an arduous task for the computer to do
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such a task in a very similar manner. First, the fact that the same action is performed by different
people at different velocity poses a quite serious technical problem to any automatic striving to achieve
action recognition task optimally. Moreover, moving shadows generated by bad lighting conditions
can also degrade tracking the motion of human body parts. Some body parts can be occluded owing
to camera viewpoints that provides an additional difficulty to the human action recognition task.
Added to that, small moving objects (i.e., distractors) in background are also another problematic issue
for this task. For example, in a scene of crowded street, trees swinging and/or shop advertisements
blinking in the background are challenging issues for motion detection and tracking.

It is worth emphasizing here that, while the early research into human motion modeling and/or
recognition dates back to the pioneering work of Johansson [4] in the mid-1970s, research on human
action recognition did not shift to the forefront until the early 1990s. About a decade later, by the
end of the 1990s, research in human action recognition has barely begun to get into its infancy [5,6].
It may be interesting to state that the past ten years or so have witnessed an increasing number of
research efforts in human action recognition. However, the contributions to improved human action
recognition have been modest, as well as the off-the-shelf technology solution space for human action
recognition is still far from being quite mature yet. The experimental systems of action recognition are
now appearing at a very limited number of locations (e.g., airports and other public places).

The primary objective of this paper is to perform an innovation design for improving the
recognition of human actions in video sequences, by developing an efficient and reliable method
for modeling and recognizing human actions from video sequences. In our approach, we present a new
feature descriptor called fuzzy Histogram of Oriented Lines (f-HOL) for action recognition, which is
a distinct variant of Histogram of Oriented Gradients (HOG) features. The extracted features are then
used by a discriminative Latent-Dynamic Conditional random fields (LDCRFs) model to recognize
actions from the video frames. A set of validation experiments are conducted on the benchmark
Weizmann action recognition dataset. The preliminary results achieved with this approach are
promising and compare very favorably to those of other investigators published in the literature.

The rest of this paper proceeds as follows. In Section 2, we present an overview of related work
to provide relevant background knowledge concerning the problem domain. The architecture of the
proposed framework for human action recognition is fully detailed in Section 3. Section 4 summarizes
our extensive experiments comparing the results achieved by the proposed approach with those
of other similar state-of-the-art methods from literature. Finally, we conclude and suggest possible
directions for future research in Section 5.

2. Related Literature

Over the course of nearly two decades or so, a large amount of literature has been reported
by many researchers in the fields of computer vision and pattern recognition for video-based
human action recognition [3,7–11], motivated by a wide spectrum of real-world applications, such as
intelligent human–computer interface, detection of abnormal events, video retrieval, autonomous
video surveillance, etc. Broadly speaking, human actions can be recognized using various visual
cues, such as motion [12,13] and shape [14]. Extensive literature surveys reveal that there exists
an increasing corpus of prior work on human action recognition focusing on using spatial-temporal
keypoints and local feature descriptors [1,15,16]. The local features are extracted from the region
around each keypoint detected by the keypoint detection process. These features are then quantized to
provide a discrete set of visual words before they are fed into the classification module.

In [9], Blank et al. define actions as 3D space-time shapes generated by accumulating the detected
foreground human figures, while they assume fixed camera and known background appearance.
Their method greatly depends on moving object tracking, where various space-time features
(e.g., local space-time saliency, action dynamics, shape structures, and orientation) are extracted
for action recognition. In addition, there is another thread of research targeted at analyzing patterns of
motion to recognize human actions. For instance, in [17], the authors analyze the periodic structure of
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Figure 1. A schematic diagram of the proposed methodology for action recognition.

optical flow patterns for gait recognition. In the same vein, in [18], periodic motions are detected and
classified to recognize actions from video sequences.

Alternatively, several researchers have proposed using both motion and shape cues. For example,
in [19], the authors detect the similarity between video segments using a space-time correlation model.
In [20], Bobick and Davis use temporal templates, including motion-energy images and motion-history
images to recognize human movement. Rodriguez et al. [21] present a template-based approach
using a Maximum Average Correlation Height (MACH) filter to capture intra-class variabilities.
Moreover, in a more recent work by Fernando et al. [22], an effective approach for action recognition
is proposed, which has the potential to adequately represent action videos using a ranking machine.
More specifically, given the frame descriptors, the action video can then be represented by the
hyperplane that ranks the frames based on their temporal orders.

Furthermore, in [23], Kantorov and Laptev exploit optical flow measurements from videos to
encode the pixel motions. In their work, as a spatiotemporal descriptor for action representation,
they present the Histogram of optical Flow (HoF) over local regions. Since the measurement of optical
flow is computationally intensive, the authors opted for the use of video decompression techniques.
More specifically, they opted for not obtaining the HoF descriptor (or its more recent extension MBH
descriptor) from the estimation of original optical flow fields. Instead, they make use of the motion
fields in MPEG compression. This motion field, the so-called MPEG Flow, can be generated virtually
free during a video decoding operation.

Furthermore, a substantial amount of research has been conducted on the modelling and
understanding human motions by constructing elaborated temporal dynamic models [24,25].
In addition, there is an increasing body of research reporting promising results using generative
topic models for visual recognition based on the so-called Bag-of-Words (BoW) models. The key
concept of a BoW is that the video sequences are represented by counting the number of occurrences
of descriptor prototypes, so-called “visual words”. Topic models are built and then applied to the BoW
representation. Three of the most popularly used topic models are Correlated Topic Models (CTM) [26],
Latent Dirichlet Allocation (LDA) [27] and probabilistic Latent Semantic Analysis (pLSA) [28].

3. Proposed Methodology

In this section, the proposed approach for video-based action recognition is described. A step-by-step
overview of the proposed methodology is presented in Figure 1. As schematically illustrated in the
above figure, the general framework of our proposed approach proceeds as follows. The first step
consists in separating moving objects (i.e., human body parts) from the background in a given video
sequence. Adaptive background subtraction is most appropriate to achieve this goal of motion
detection. The segmented body parts can further be refined by standard morphological operations,
such as erosion and dilation. Then, a set of low dimensional local features is extracted from the
silhouettes of moving objects. Finally, a 3D vector representation is formed from the extracted features
and then fed into an LDCRF classifier for action classification. The details of each part of the proposed
technique are described in the remainder of this section.
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3.1. Background Subtraction and Shadow Removal

In this step, we aim at robust background subtraction involving shadow detection and removal to
track human movements in video sequences. To achieve this goal, we employ an effective algorithm
for background modeling, subtraction, update, and shadow removal [29]. The fundamental idea
of the algorithm consists in modelling the background color distribution with adaptive Gaussian
mixtures, coupled with color-based shadow detection. Adaptive Gaussian mixtures are employed in
the combined input space of luminance-invariant color to distinguish moving foreground from their
moving cast shadows in video sequences.

In its most general form, background subtraction is a commonly used paradigm for detecting
moving objects in a scene taken from a stationary camera, which involves two distinct processes that
operate in a closed loop: background modeling and foreground detection. A standard approach for
background modeling involves the construction of a model for background in the field of view of
a camera. Then, the background model is periodically updated to account for illumination changes.
In the foreground detection, a decision is used to ensure that the model is fit to the background.
The resulting change label field is fed back into background modeling so that no foreground intensities
contaminate the background model. With respect to Gaussian mixtures, it is perhaps not irrelevant to
point out that Gaussian Mixtures Models (GMMs) are an instance of a larger class of density models
that have several functions as additive components [30].

In this work, Gaussian mixture models are used for modelling background. On this model,
each pixel in the scene is modeled using a mixture of K (usually set from three to five) Gaussian
distributions; we used K = 3 in our experiments. The persistence and variance of each Gaussian
of the mixture are used to determine which Gaussian probably corresponds to background colors.
Pixels whose color values do not fit the background distributions are detected as part of the foreground
or moving objects. More formally, let {X1, . . . , Xt} be the history associated with a pixel at time t,
where Xi(i = 1, . . . , t) are measurements of the RGB (Red, Green, Blue) values at time i. The recent
history of each pixel can be modeled reasonably well with a mixture of K Gaussian distributions. Thus,
the probability of observing the current pixel value is defined as follows:

P(Xt) =
K

∑
i=0

ωi,t η(Xt, µi,t, Σi,t), (1)

where ωi,t, t. µi,t and Σi,t are an estimate of the weight, the mean value, and the covariance matrix of
the i-th Gaussian in the mixture at time t, respectively. η is a Gaussian probability density function:

η(Xt, µ, Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (Xt−µt)

TΣ−1(Xt−µt). (2)

Assuming the independence of the color channels, Σi,t can be expressed as: Σi,t = σ2
i · I. Thereafter,

online approximation is used to update the model in an iterative manner as follows. At each pixel,
all parameters of the most matched Gaussian are updated via an online K-means approximation,
whereas only the weight parameters of others are updated, while their means and variances remain
unchanged (full details about model parameter’s updates can be found in [5]). Figure 2 shows a sample
of results for the human object scene when the video segmentation technique with Gaussian mixture
model (GMM) and shadow removal is applied, where the moving object along with the shadow
is extracted.

It is generally recognized that an effective design of a color model that is able to separate the
brightness from the chromaticity component can robustly remove shadow from images [31]. Formally
speaking, for a given pixel, let Bt = [µr, µg, µb] be the expected background value approximated from
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(a)                                         (b)                                         (c)                                       (d)

Figure 2. An example of shadow and motion detection in a real outdoor video: (a) an input frame;
(b) subtracted background and detected shadow, where foreground pixels are marked in red color,
whereas shadow pixels are marked in green color; (c) silhouette after removing shadow; and (d) moving
object detection.

a set of first training frames. Thus, in each coming frame Xt = [xr(t), xg(t), xb(t)], brightness αt and
chromaticity distortions χt can be computed from the background value as follows:

αt =

(
xr(t)µr

σ2
r

+
xg(t)µg

σ2
g

+ xb(t)µb
σ2

b

)
( µr

σr
)2 + (

µg
σg
)2 + ( µb

σb
)2

, (3)

χt =

√
(

xr − αtµr

σr

)2
+
( xg − αtµr

σg

)2
+
( xb − αtµr

σb

)2
. (4)

From a geometrical point of view, in RGB space, we can see the chromaticity distortion χt as the
length of the vector that goes from the pixel value Xt to the plane perpendicular to the line connecting
the background value µ with the zero intensity point. It is a scalar that can be thought of as a measure
of indicating how much the pixel color varies from the background color. The chromaticity distortion
can be simply normalized with division by its variation evaluated during the training phase. Formally,
the normalization process is defined as follows:

χ̂t =
χt

υ
, υ =

√
∑τ

t=1 χ2
t

τ
, (5)

where τ denotes the number of training frames. In this context, a pixel noise is used to normalize the
variation between the pixel value and the background value. Hence, the full statistical model allows
for the application of only one single threshold τχ for variation. Following the original approach gives
a sense of a proper value for the threshold by plotting the histogram of the normalized chromaticity
distortion during the training sequence, exempt of foreground perturbations. In practice, the successful
detection rate experienced by the user plays a crucial role in determining the optimum value for τχ.

Depending upon their normalized brightness distortions and normalized chromaticity distortions,
pixels are then categorized into four clusters: labeled background, cast shadow, highlight or foreground,
as follows. Pixels having small normalized brightness distortion and small normalized chromaticity
distortion belong to the background, whereas, pixels that have a small normalized chromaticity
distortion and a lower or higher brightness value than the background value are labeled as cast
shadow or highlight, respectively. All of the remaining unclassified pixels are automatically assigned
to foreground objects or moving objects. More specifically, a pixel is detected as a cast shadow if it
meets the following coupled constraints:

χ̂t < τχ ∧ αmin < αt < 1, (6)
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Figure 3. Sample sequence of skeleton images for a video of running action.

where ∧ denotes “and”. After shadow elimination, there may remain some small isolated regions
and noises in the binary image. The extracted foreground objects are usually affected by these noises
and artifacts. Therefore, a median filter is first applied to suppress small artifacts and remove noises.
Afterwards, an adaptive “close-opening” filter (i.e., made up of closing operator followed by opening
operator) is applied to improve the quality of segmentation and preserve the edges of the moving
objects. The structuring elements of size 3× 3 and 5× 5 were tried. Finally, a typical blob analysis
process scans through the entire segmented image to detect all of the moving objects (or blobs) in the
image and builds a detailed report on each moving object [32].

3.2. Feature Extraction

For successful action feature extraction, the accurate segmentation of the action silhouette points
is essential. In this section, we present an innovative compact representation for action recognition
based on skeleton dynamics that collects multiple action information such as static pose, motion,
and overall dynamics. In order to represent a human action entirely, we propose mainly capturing
the body shape variations based on action skeleton information. In achieving this goal, in our
approach, we mainly focus on the gradients of one-dimensional line representation of action skeletons,
namely dynamic features.

Generally, the skeletonization process aims at reducing foreground regions (i.e., objects of interest)
in a segmented binary image to a skeletal remnant that maintains the connectivity of objects in the
original image. The skeleton is “central-spine”, which can easily be shown to be a 1D line representation
of a 2D object. It is easy to demonstrate that the skeleton retains the topology of the original shape,
and the original shape can be reconstructed from its own skeleton. In order to find the skeleton of
a given silhouette image, a set of morphological operations is applied to the segmented silhouette
image. These operations include multiple morphological dilation operations. Then, the same number
of morphological erosion operations are applied. There exist some holes that were generated during
the segmentation process. These holes are filled thanks to the application of the dilation operation
followed by the erosion operation to improve the skeletonization process and restore the shape of the
human body. As a result, we obtain the skeletons of moving human body parts. More specifically,
we designed the following code snippet mainly based on the real-time OpenCV library and C++
interface to extract the skeleton from the segmented video sequence:

Mat element = getStructuringElement(MORPH_CROSS, Size(3, 3));
do
{

erode(img, eroded, element);
dilate(eroded, temp, element);
subtract(img, temp, temp);
bitwise_or(skel, temp, skel);
eroded.copyTo(img);
done = (norm(img) == 0);

} while (!done).
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Figure 4. An example of straight-line detection in a video sequence of running action.

Figure 3 shows a sample sequence of skeleton images for a video sequence of a running action.
Once binary skeletons of a given action video have been obtained, the probabilistic Hough transform
algorithm described in [33] can be employed to detect straight-lines in each frame of the action video.
An example of straight-line detection in a video of running action is given in Figure 4. It would be
worthy of note at this point that our designed function for line detection is not as expensive as other
traditional OpenCV Hough detectors.

For local feature extraction, each video clip (i.e., action snippet) is firstly divided into several time
slices defined by linguistic intervals. Gaussian functions are used to describe these intervals:

µj(t; ε j) = e
− 1

2

∣∣∣∣ t−ε j
σ

∣∣∣∣m , j = 1, 2, . . . , s, (7)

where ε j, σ, and m are the center, width, and fuzzification factor of temporal slices, respectively, and s
is the total number of the time slices. It is important to note that all Gaussian membership functions
defined earlier are chosen to be of the same shape such that their final cumulative sum is always
unity for every instant of time. In this work, we aim at introducing a new action representation based
on computing rich descriptors from detected straight-lines that capture more local spatiotemporal
information. Human action is generally composed of a sequence of temporal poses. Thus, reasonable
estimate of an action pose can be constructed from a finite set of detected lines.

Formally, let L be a set of line segments detected using the probabilistic Hough transform from
an action snippet at a time instant t. Assuming each line is represented by a four-element vector
(x1, y1, x2, y2), where (x1, y1) and (x2, y2) are the ending points of each detected line segment, and then
the magnitude and orientation of the gradient are calculated as:

ρ =
√
(x2 − x1)2 + (y2 − y1)2,

θ = arctan
(

y2 − y1

x2 − x1

)
. (8)

In order to form a local feature descriptor, the so-called fuzzy Histogram of Oriented Lines (f-HOL)
is constructed for a given action snippet. In order to achieve this, a separate f-HOL is computed for
each time slice as follows:

hj(k) = ∑
θ∈bin(k)

ρ>ρm

µj(t), j = 1, 2, . . . , s, (9)

where ρm is a predetermined threshold to remove gradients of small magnitude. All the resulting 1D
histograms are then normalized to achieve robustness to scale variations. Finally, these normalized
histograms are concatenated into a single histogram to form the local feature vector of the action
snippet. Figure 5 displays a sample of three action sequences from the Weizmann action dataset and
their corresponding smoothed f-HOL descriptors. From top to bottom, the actions are “Bend”, “Jack”
and “Jump”, respectively.
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Figure 5. A sample of three actions along with their corresponding smoothed f-HOL features; from top
to bottom, the actions are “Bend”, “Jack”, and “Jump”, respectively.

Fusion of Local and Global Action Features

It follows from the discussion in the previous subsection that the local features extracted from
action snippets using f-HOL have been highlighted. On the other hand, global features have been
extensively applied to a wide range of object recognition problems and obtained surprisingly good
results. This, in turn, fosters a strong motivation in us to extract global features and fuse them together
with local features to build a more expressive and discriminative action representation. The extracted
global features are based on computing the center of gravity (COG) that delivers the center of motion.
Hence, we can obtain the motion sequence from the COG trajectory of the motion, where the center of
motion is given by

z̄(t) =
1
n

n

∑
i=1

zi(t), (10)

where zi(i = 1, 2, . . . , n) are moving pixels in the current frame. It is of interest to note that the global
features are potentially informative not only about the type of motion (e.g., translational or oscillatory),
but also about the rate of motion (i.e., velocity). In addition, in our experiments, these features exhibit
sufficient discriminative capabilities to distinguish, for example, between an action where motion
occurs over a relatively large area (e.g., running) and an action localized in a smaller region, where only
small body parts are in motion (e.g., boxing).

3.3. Action Classification

In this section, the details of the feature classification module in our action recognition system are
described. Generally, the main purpose of the classification module in the current action recognition
system is to classify a given action into one of a set of predefined classes, depending on the extracted
features. The classification module depends on the availability of a set of previously labeled or classified
actions. In this case, this set of actions is termed the training set and the resulting learning strategy
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Figure 6. Graphical representation of the Latent-Dynamic Conditional Random Fields (LDCRFs) model.
xj represents the j-th observation, hj denotes the hidden state assigned to xj, and yj is the class label of
xj. The nodes in gray circles represent the observed variables.

is called supervised learning. For the task of action classification, there are plenty of classification
techniques reported in literature, including Naïve Bayesian (NB), k-Nearest Neighbor (k-NN), Support
Vector Machines (SVMs), Neural Networks (NN), Conditional Random Fields (CRFs), etc. In this work,
we opted to choose the Latent-Dynamic Conditional Random Fields (LDCRFs) for action classification.
Due to their inherent dependence on CRFs, LDCRFs are characterized as discriminative models that
have the capability to describe the substructure of a label and learn dynamics between labels. Moreover,
it was found that LDCRFs perform well when applied to several large scale recognition problems,
and they are superior to other learning methods (e.g., Hidden Markov Models (HMMs)) at learning
relevant context and integrating it with visual observations [34,35].

Historically, LDCRF have been conceived as an improved extension to CRFs to learn the hidden
interaction between features, and they can be interpreted as undirected graphical models capable of
labeling sequential data. Therefore, they can be applied directly to sequential data avoiding the need
for windowing the signal. In this manner, each label (or state) suggests a specific gesture. As LDCRFs
include a class label for each observation, they are able to classify unsegmented gestures. Furthermore,
the LDCRF model can perfectly infer the action sequences in the training and test phases.

Formally speaking, the basic task of the LDCRF model, as described by Morency et al. [36], is to
learn a mapping between a sequence of observations x = 〈x1, x2, . . . , xm〉 and a sequence of labels
y = 〈y1, y2, . . . , ym〉. Each yj is a class label for the j-th observation in a sequence and is a member of
a set Y of possible class labels. A feature vector φ(xj) ∈ Rd is used to represent each image observation
xj. For each sequence, let h = 〈h1, h2, . . . , hm〉 be a vector of substructure variables not observed in the
training examples. Hence, these variables form a set of "hidden" variables in the model, as shown in
Figure 6. Given the above definitions, a latent conditional model can thus be formulated as follows:

p(y|x, θ) = ∑
h

p(y|h, x, θ)p(h|x, θ), (11)

where θ is a set of the model parameters. Given a set of sequences, each labeled with its correct class
name {(xi, yi), i = 1 . . . n}, the training objective is then to learn the model parameters θ using the
following objective function [37]:

L(θ) =
n

∑
i=1

log p(yi|xi, θ)− 1
2σ2 ‖θ‖

2, (12)

where n is the total number of training sequences. It can be seen from the above equation that the
first term on the right-hand side of the equation represents the conditional log-likelihood of the training
samples, whereas the second term is the log of a Gaussian prior with variance σ2, i.e.,

p(θ) ∼ exp(
1

2σ2 ‖θ‖
2). (13)
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Bend P-jump Wave2 Run Jump

Jack Walk Wave1 Skip Side

Figure 7. Sample actions from the benchmark Weizmann dataset.

In order to estimate the optimal model parameters, an iterative gradient ascent algorithm is
employed to maximize the objective function:

θ∗ = arg max
θ

L(θ). (14)

Once the model parameters θ∗ are learned, given an unseen (test) sample x, the predicted class
label y∗ can be straightforwardly obtained via inference in the model as follows:

y∗ = arg max
y

p(y|x, θ∗). (15)

For further details concerning the training and inference of LDCRF, the interested reader is
referred to the full description given in [36].

4. Experiments and Results

In this section, our intensive experiments conducted to evaluate the proposed approach for action
recognition are described and the obtained results are discussed. We start with a brief description
of the action recognition dataset and the evaluation protocol that have been exploited to assess
the performance of the recognition framework. After introducing the experiment settings and the
evaluation protocol, we compare the proposed approach to related existing recognition methods.
In the present work, the proposed recognition framework has been tested on the Weizmann dataset,
which is regarded as one of the most widely used datasets for action recognition. This dataset
was first presented by Blank et al. [9] in 2005, and, thereafter, it was made publicly available
to researchers without a restriction or other access charge. The Weizmann dataset consists of
a total of 10 action categories, namely “walk”, “run”, “jump-forward-on-two-legs” (or shortly
“jump”), “jumping-in-place-on-two-legs” (or “p-jump”), “jumping-jack” (or “jack”), “gallop side ways”
(or “side”), “bend”, “skip”, “wave-one-hand” (or “wave1”) and “wave-two-hands” (or “wave2’).
Each action is performed by nine persons. The action sequences were captured with a static camera
over static background at a rate of 25 fps, with a relatively low spatial resolution of 180 × 144 pixels,
24 bits per pixel color depth. It should be noted that the action video clips (i.e., so-called action
snippets) are of short duration; each snippet generally lasts only for a short period of time, namely just
a few seconds. A sample frame for each action in the Weizmann dataset is shown in Figure 7.

In order to provide an unbiased estimate of the generalization abilities of the proposed method, the
leave-one-out cross-validation (LOOCV) technique was applied for the validation process. As the name
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suggests, this involves using a set of action sequences from a single subject in the dataset as the testing
data, and the remaining sequences as the training data. This is repeated such that each set of sequences
in the dataset is used once as the validation. More specifically, the sequences of eight subjects were
used for training and the sequences of the remaining subject were used for validation data. The LDCRF
classifier is trained on the training set, while the evaluation of the recognition performance is performed
on the test set. The recognition results achieved on the Weizmann dataset are fully summarized in form
of a confusion matrix given in Table 1. From the figures in the matrix above, a number of interesting
observations can be drawn. First, the majority of actions are correctly classified. In addition, an average
recognition rate of 98.2% is achieved. Furthermore, there is a clear distinction between arm actions
and leg actions. The vast majority of mistakes where confusions occur are only between skip and jump
actions and between jump and run actions. This is also due to the high closeness or similarity among
the actions in each pair of these action categories.

Table 1. Confusion matrix of Weizmann actions.

Action Walk Run Jump P-Jump Jack Side Bend Skip Wave1 Wave2

Walk 0.95 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Run 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jump 0.00 0.07 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P-jump 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Jack 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
Side 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.06 0.00 0.00
Bend 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Skip 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Wave1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Wave2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

In order to quantify the effectiveness of the proposed method, the achieved results are qualitatively
compared with those obtained by other investigators. The outcome of the comparison is presented in
Table 2. In light of this comparison, one can see that the proposed method is competitive with other
state-of-the-art methods [7,38–40]. It might be worth mentioning here that all the methods that we
compared our method with, except the method proposed in [7], have used similar experimental setups.
Thus, the comparison appears to be meaningful and fair.

Table 2. Comparison with a number of related results reported in recent literature.

Method Recognition Rate

Our method 98.20%
Fathi and Mori [7] 100.00%
Sadek et al. [41] 97.80%
Bregonzio et al. [39] 96.60%
Zhang et al. [40] 92.80%
Niebles et al. [42] 90.00%

It should finally be noted that all of the experiments reported in this work have been carried out
on a 3.2 GHz Intel dual core machine with 4 GB of RAM, running Microsoft Windows 7 Professional.
The recognition system has been implemented by using Microsoft Visual Studio 2013 Professional
Edition (C++) and OpenCV Library for feature detection and classification. As a final remark,
we emphasize that the most significant feature of the proposed approach is its rapidity; our action
recognizer runs comfortably in real-time in almost all of the experiments (i.e., at roughly 24 fps on
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average). This supports the expectation that the proposed method can be used in real-world settings
and is amenable to working with real-time applications.

5. Conclusions

In this paper, a discriminative framework for action recognition has been presented, based on
a novel feature descriptor so-called 2D f-HOL for action skeleton and a discriminative LDCRF model
for feature classification. The proposed approach has been evaluated on the popular Weizmann dataset.
The obtained results have demonstrated that the approach has a competitive performance compared
to most existing approaches, with an average recognition rate of 98.2%. Moreover, the approach works
very efficiently, and it is able to be applicable in real-time scenarios. An important aspect of future work
will involve further validation of the approach on more realistic datasets presenting many technical
challenges in data handling, such as object occlusion and significant background clutter.
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