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Abstract: Day-to-day information is increasingly being implemented in transit networks worldwide.
Feeder bus service (FBS) plays a vital role in a public transit network by providing feeder access
to hubs and rails. As a feeder service, a space-time path for frequent passengers is decided by its
dynamic strategy procedure, in which a day-to-day information self-learning mechanism is identified
and analyzed from our survey data. We formulate a frequency-based assignment model considering
day-to-day evolution under oversaturated conditions, which takes into account the residual capacity
of bus and the comfort feelings of sitting or standing. The core of our proposed model is to allocate
the passengers on each segment belonging to their own paths according to multi-utilities transformed
from the time values and parametric demands, such as frequency, bus capacity, seat comfort,
and stop layout. The assignment method, albeit general, allows us to formulate an equivalent
optimization problem in terms of interaction between the FBS’ operation and frequent passengers’
rational behaviors. Finally, a real application case is generated to test the ability of the modeling
framework capturing the theoretical consequents, serving the passengers’ dynamic externalities.
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1. Introduction

Intelligent information systems have been widely used in public transit. Advanced traveler
information systems (ATIS), such as automatic vehicle location (AVL) and auto fare collection (AFC),
enable transit agencies to implement data analysis techniques and provide travelers with real-time
information (RTI) aimed to support their travel decisions. However, the resulting performance is not
invariable, but changes day-to-day as a consequence of actual experience or information. In this paper,
therefore, a day-to-day information self-learning mechanism is investigated.

High-frequency public transit has been popular for passengers or travelers. Especially, in the
context of transit networks, the popularization of seamless connecting is taken into full consideration
for operation plans and all individuals. The more comprehensive the public transit system being
developed is, the better FBS and feeder connecting service need to be provided. This is the major
direction of sophisticated and comprehensive urban transit service. For instance, urban rail transit
(URT) is in the period of flourishing development in China. At the same time, the feeder bus
service plays a vital role at estimating the level of service (LOS) and systematizing public transit,
providing convenience to URT. By increasing the accessibility and shortcut between FBS and rail
transit, the schedule coordination can make a great contribution to the seamless transfer and in
reducing the delays or times to users.
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Passenger flow assignment is a vital component of transportation systems. The assignment results
can be applied to support transportation system management, such as operation planning, regular
passenger flow forecasting, and station passenger crowd regulation, or evacuation strategies. However,
a congestion condition usually produces some annoyance in waiting for buses and establishes some
decrease in on-board comfort up to a maximum threshold, since some passengers who are not allowed
to board have to wait for the next FBS under oversaturated conditions. An oversaturated condition
means the total number of waiting passengers wanting to board could hardly be loaded by their desired
vehicles, which derives from the vehicle’s explicit capacity constraint. In general, the phenomena of
oversaturated or undersaturated conditions are proposed to explain congestion severity. Obviously,
the congestion leads to the disequilibrium between FBS and feeder connecting services for their plans,
respectively, which will cause the frequent passengers’ inconvenience, especially.

Before passengers depart, they could not acquire full transportation information about congestion
conditions. As a result, the passengers’ bounded-rationality would optimize their travel strategies
(including departure time or arriving time, travel paths, and so on), which have been adjusted based
on their experience. The passengers’ bounded-rationality refers to people who regard their travel
strategies as the best choices depending on their own confined information (e.g., from radio or other’s
talk). However, the strategies may be appropriate for some certain paths or desired times, in which
those passengers with those cognitive expressions can be defined as bounded-rationality ones.

A day-to-day assignment model is applied to describe the evolution of passengers’ traveling
decisions based on the accustomed FBS schedule and self-learning adjustment to avoid congestion
to attend to one’s comfort. FBS transit networks usually provide different access stops and buses for
passengers traveling on a given origin-destination pair. A multi-path choice is decided by sophisticated
passengers’ experience from four components: (a) in-vehicle time, (b) waiting time, (c) delay time,
and (d) a line change penalty.

This paper develops a stochastic user equilibrium (SUE) between a frequency-based feeder bus
service and passengers’ day-to-day self-learning evolution behavior. In this context, we present
a frequency-based travel path choice model that can be self-optimized, considering different
congestion effects.

The assignment approach considering congestion on public transport can be modeled by using an
implicit or explicit approach [1]. The implicit model is derived from road traffic flow assignment and
the congestion effect is similar for all passengers boarding or waiting. The major drawback of these
models is the approximation of congestion and all-or-nothing assignment methods resulting in large
errors. In other words, the congestion would create a negative effect to all users [2,3]. Those approaches
used to lead to overlapping problems [4]. Daganzo and Sheffi [5] suggested the use of probit-based
models to overcome this problem. Another logit-like form would have been approved with proving
process. In order to overcome those disadvantages, the explicit approach is presented based on
the vehicle’s capacity constraint. Passengers’ boarding characteristics and queuing rules have been
captured in recent studies [6–8].

An assignment model is proposed under explicit constraints considering schedules and individual
vehicle capacities [7]. Assuming passengers using their travel strategies, the hyperpath in [9,10] can
be added with different penalties depending each one’s desired time (arrival or departure times).
The traditional diachronic-graphs method introduces volume-delay functions leading to a distortion
of the cost pattern. With the problem overcome, Papola et al. [8] extend to the case of scheduled
services allowing for explicit capacity constraints and first-in-first-out (FIFO) queue representation.
Under the scheduled runs’ capacities, saw-tooth temporal profiles of the waiting times that concentrate
passengers are yielded. A stochastic dynamic transit assignment model is established considering seat
capacities [11,12]. The explicit seating layout must produce a differentiation of comfortable feelings
between standing and sitting. Each type probability of passengers obtaining a seat can produce the
utility from capturing the stochastic nature.
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A schedule-based dynamic assignment model is developed for transit networks, which takes into
account congestion through explicit vehicle capacity constraints. According to passengers’ experience
(especially failure-to-board experience due to congestion), the assignment method jointly simulates
their learning mechanism adjusting the departure time, stop, and run choices on the basis of mixed
pre-trip/en-route choice behavior [1]. A schedule-based model is presented in a congested, dynamic,
and schedule-based transit network [6]. Based on the first-in-first-out discipline, the passenger demand
is loaded onto the network and produces dynamic queuing delays, which are calculated minimum
paths. Wu et al. [13] propose a day-to-day dynamic evolution model with the consideration of bounded
rationality (BR) proposed, which can better captures travelers’ characteristics in path-finding within
an urban railway network.

There are two types of transit assignment: one based on network unreliability and one that does
not consider reliability at all. The first type is used when the system is established and does not develop
steadily from cultivating habitual passengers. The second type, on the other hand, is the relatively
mature system, which is typical of assignment models with heterogeneous information evolution.

As for the typical transit assignment, a stochastic model explicitly considers the effect of seat
availability on route choice, as well as departure time choice. The priorities of on-board passengers are
assumed over newly-boarding passengers and further suppose that (a) passengers who are traveling
further and (b) passengers who have stood for a longer time have a higher motivation in chasing any
free seats [14]. Moreover, based on the queuing theory on bus networks, interactions are considered
between transit route choice and congestion effects [15].

Providing new lines to a transit network, or increasing the frequency of an existing line,
may not improve the system performance in terms of expected total travel cost [16]. An analytical
schedule-based transit assignment model, considering both supply uncertainties and travel strategies,
was developed, which takes into account the explicit transit capacities and the first-come-first-serve
concept when loading passengers [17]. The crowding cost was included as a component of individuals’
route choices over railway systems [18].

With estimation and prediction of travel time presented, an extensive survey of all of the necessary
concepts when modeling travel time is performed [19]. An initial individual path utility model is
proposed directly from a sample of choices of the user [20]. A macroscopic transit assignment model,
which explicitly considers real-time prediction of on-board passenger numbers and crowding of
PT services, was presented [21]. A more effective model is proposed on the basis of individual
traveler preferences, which are obtained by the use of new information technology tracking users and
registering their choices [22].

Referring to reliability-based transit assignment, three types of the reliability are introduced:
travel time reliability of the community administration, schedule reliability of the operator, and direct
boarding waiting-time reliability of the passengers, which are qualified by the Monte Carlo simulation
approach with a stochastic user equilibrium transit assignment mode [23]. In addition, a novel
dynamic transit assignment model, which takes into account the demand and supply uncertainties,
is related to the stochastic process of passengers’ arrival and boarding at transit stops, and modeled
by the renewal theory and M/G/1 queues theory [24]. A multi-modal transport network assignment
model is proposed considering that demand and supply are uncertain because of adverse weather
conditions [25]. The variability of in-vehicle congestion and the risk-averse behaviors of passengers
are described in the frequency-based transit assignment model [26].

An and Lo [27] formulate the Transit Network Design Problem (TNDP) under demand uncertainty
for optimal system flows by considering the combination of two services types: (i) rapid transit lines
(RTL) or regular services and (ii) demand responsive or flexible services. Defining the notion of service
reliability (SR), they propose a two-phase model to separate the otherwise intertwined decisions over
the deployment of these two service types [27].

Most previous works focus on the day-to-day evolution process and traffic assignment model
of urban road traffic networks. However, what is the correlation between the travelers’ day-to-day
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evolution and the frequency settings of the FBS, and how do we reveal that the traveler autonomous
choice behaviors are given little attention in the previous works. In addition, most works are based
on urban road traffic and private traffic, while one paid little attention to the behavior of the daily
evolution of urban public transport passengers. The urban public transport systems (public traffic and
urban transit traffic) have their own complex features, in which demand-supply interaction is derived
from the congestion (the failed-to-sit, and even failed-to-board) and frequency settings, thus affecting
the day-to-day information evolution of the passengers.

Therefore, the main contributions of the present study are to model the day-to-day information
evolution with the consideration of congested performance, and gain insights into the process of
passenger flow evolution on an FBS over time. This daily information evolution characteristic in the
route choice can be clarified and encourage high-quality service. To discover this complex characteristic
in the passenger flow sequence, FBS paths involve sequential segment decision-making that relies on
passenger-accumulated knowledge and the prior-estimated available information, which is evolved
from a day-to-day information self-learning process. It is the motivation of this paper to introduce
a day-to-day information evolution model to improve an FBS.

Our paper presents recent developments in the theory of assignment approaches applied to
FBS operation, which is mainly concerned with Chinese buses in Section 1. Section 2 establishes the
essential assumptions and defines the core mechanism of our proposed model, in which the time lost
in each stage of a round-trip is derived. In Section 3, the fundamental time values from the previous
section are used to find the expression of utility items, which is able to estimate the passengers’ path
choices. Section 4 describes its solution algorithms, and Section 5 reports on our numerical test. Finally,
Section 6 is the conclusion.

2. Model Formulation

2.1. Day-to-Day Information Learning Mechanism

FBS networks constitute a series of stops where the passengers can board, alight from, or change
the line. Rational passengers would choose their desired time τD (e.g., desired departure or arrival
times), which defines that passengers arriving at the desired stop are able to board the bus and avoid
the congestion or heavy delays. According to the information type provided (e.g., by ATIS) and
passenger experience (especially failure-to-board, as well as board-to-keep-standing experience due
to congestion), frequent passengers would optimize their traveling strategies through a day-to-day
information self-learning process. With investigating the effects of congestion, we find that frequent
passengers are particularly sensitive to congestion. Since the frequent passengers are mainly involved
in home-origin or work-destination scenarios, they are very used to the trip paths and wish greatly to
acquire the desired departure time (DDT), as well as the desired arrival time (DAT). Additionally, it is
rational and reasonable for them to estimate the level of service on FBS.

Generally, path choice is obtained from the perceived balance between the desired utilities
(provided by some information) and the latest memory (e.g., from yesterday). Forecasted path utilities
can be defined from the day-to-day learning mechanism:

Un
k =


β · un−1

k + (1− β) ·Un−1
k

∣∣∣Un−1
k − un−1

k

∣∣∣ ≥ η

Un−1
k

∣∣∣Un−1
k − un−1

k

∣∣∣ < η
(1)

where Un
k represents the perceived utilities on path k at day n, and un−1

k are the actual utilities on path
k at day n− 1. K is the set of path k, namely, k ∈ K. Namely, Un

k is equal to the weighted average of
the previous day’s perceived utilities Un−1

k and the actual utilities un−1
k for path k. Furthermore,

the parameter β represents the weight of the actual utilities in updating the perceived utilities.
A small β implies those passengers’ trip behaviors are strongly habitual or path-changing may be
not be a reality, while a large β means that passengers find out the accustomed paths are filled with
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inconvenience or more rational choices exist. The threshold η can estimate the choice of the passengers.
If
∣∣∣Un−1

k − un−1
k

∣∣∣ < η, the passengers will not change their frequent paths because of habituation;

otherwise,
∣∣∣Un−1

k − un−1
k

∣∣∣ > η.
Passengers’ pre-trip choice of departure time t with in a departure time choice set Un

k,τD
(t) defined

for the passenger desired time τD can be written as

Un
k, τD

(t) = un
k, τD

(τD) + βearly ·max(0, τD − t) + βlate · (0, t − τD) (2)

Referring to Un
k,τD

(t) as the passengers’ memory influencing their decision on the departure time
at present, the day-to-day variation can be expressed as

Un
k, τD

(t) =


α · un−1

k, τD
(t) + (1− α) ·Un−1

k, τD
(t)

∣∣∣Un−1
k, τD
− un−1

k, τD

∣∣∣ ≥ ξ

Un−1
k, τD

(t)
∣∣∣Un−1

k, τD
− un−1

k, τD

∣∣∣ < ξ
∀t ∈ T (3)

where Un
k,τD

(t) is the perceived utility for a passenger of departing at time t of day n with desired time
τD on path k, βearly and βlate represent the different weights for arriving before and after the desired
time τD, the parameter α is the weight of the perceived utility Un

k,τD
(t), whose meaning is almost the

same as β. The value ξ is similar changing-threshold, whose meaning is the same to η in Equation (1).
Following [28,29], the arrival rules of feeder service vehicles fit the normal distribution.

Equation (4) can, therefore, describe the weight parameter β′, which estimates the availability of
passengers’ departing time t according to desired time τD. In this equation, σf is the mean headway
deviation of feeder service vehicles, whose value may be acquired as 3 min [30]. Furthermore,
the parameters βearly and βlate are derived from β′ based on the deduction below:

β′ = f (t) =
1√

2 · π · σ2
f

· e
−(τD−t)2

2·σ2
f ,

{
βearly = β′
βlate = 1− β′ (4)

2.2. Basic Elements and Assumptions

Our study describes the passengers’ travel utilities under a day-to-day evolution process,
considering the service characteristics of both frequency and oversaturated conditions. Figure 1
illustrates the main components of total travel time included from the model concept of the FBS system.
Therefore, the basic elements of this model are specified as follows:

• FBS is the only method provided for passengers to access some other connecting transits (e.g., rail
and metro).

• This model only analyzes one feeder bus service utility for various different conditions (e.g.,
oversaturated, undersaturated, or traffic jam).

• All of the passengers who arrive by FBS are planning to transfer to a multi-modal station, i.e.,
the multi-modal station is not their travel destination [30].

• The feelings of passengers are attributed to the estimation of the LOS of traveling time in
the vehicle, i.e., the seat layout and bus size makes a significant contribution to passengers’
utilities [11].

According to these assumptions, the following sections introduce the different utilities according
to passengers’ waiting, delay, travel, and so on, which derive from the concept of the proposed model.
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2.3. Running Time

We consider a linear single-directional corridor of length Lk including total available paths k.
The round-trip or cycle time, TC, is defined as the total travel time during one FBS cycle, given both
the service time and slack time at termini. Let TR be the running time along the path, TD the delay at
intersections (due to traffic lights), TQ the queuing time at bus stops, and TW the waiting time at the
origin of the path; then the round-trip time is:

TC = TR + TD + TQ + TW . (5)

When the FBS shares the right-of-way with no interactions with other modes on a dedicated
road corridor, apart from the implicit delay due to traffic lights, the running time can be expressed as
Equation (6), where v0 is the constant running (cruising) speed, and tk

R denotes, implicitly, the free-flow
travel times:

tk
R =

Lk

v0
. (6)

In a real scenario, the feeder bus departing from the stop would drive into the mixed traffic flow,
obstructing other multi-mode vehicles. Taking a certain path k for illustration, we model the real
running time as a function of both traffic flow and bus frequency by applying the well-known Bureau
of Public Roads (BPR) formula. The formula is transformed as Equation (7):

TR = Tk
R( f k

a , fb) = tk
R ·

1 + ∂0(
f k
a + (ϕ(sb))

k · fb
KR

)

∂1
 =

Lk

v0
·

1 + ∂0(
f k
a + (ϕ(sb))

k · fb
KR

)

∂1
 (7)

where ∂0 and ∂1 are parameters, ϕ(sb) is an equivalency translation to the car criterion depending on
the bus length sb, and KR is the capacity of the road of path k. f k

a is the traffic flow(veh/h), f k
a = X · KR

and fb denotes the bus frequency(veh/h). The factor X means v/c is equal to the volume-to-capacity
ratio, which is also applied to Equation (11). Furthermore, the equivalency factor ϕ(sb) is 1.65 for
a small bus (8 m), 2.19 for standard buses (12 m), 2.60 for rigid long buses (15 m), and 3.00 for articulated
buses (18 m).

2.4. Queuing Time

The queuing time can be divided into two main parts deriving from the stops and intersections,
both of which include the acceleration and deceleration delay. Initially, the delay due to deceleration
and acceleration at bus stops is expressed as

td =
v0

2

(
1
a0

+
1
a1

)
. (8)

The delay time td is inversely proportional to the acceleration rate a0 and the acceleration rate a1

of a bus. Next, the feeder bus has slowed its speed, stopping at the bus stop in order to connect the
queuing passengers. The boarding time tb of the FBS depends on various multi-modes of door layout
or a specified boarding policy (e.g., boarding at one front door and alighting at another rear door,
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see Equation (9); or both boarding and alighting at arbitrary doors, explained by Equation(9)) under
its capacity constraint until all waiting passengers are loaded. The estimation of the boarding time
requires the alternative situations: one is that the boarding queues interact with alighting ones from
the same doors, which may occur at some congested location; on the other hand, both boarding and
alighting flows are divided into exclusive corridors without any interactions, alternatively. Considering
two regular situations, the boarding time tb can be represented by Equation (9):

tb =

{
cdoor + pb · βb · λ+ + pa · βa · λ−
cdoor + max{pb · βb · λ+, pa · βa · λ−}

(9)

where cdoor is the time to open and close the doors, βb and βa are the average boarding and alighting
times per passenger, λ+ and λ− are the numbers of passengers boarding and alighting a bus for
one stop, the factors pb and pa are the proportion of passengers boarding and alighting under some
certain oversaturated condition, whose meaning is given in Appendix B (Table A1). Furthermore,
boarding or alighting times, as well as boarding policies are explained in more detail in [31].

The queuing time tstop
q at a stop is a measure of the external congestion caused by bus jams.

In addition, the bus jams are derived from all berths occupied by some popular vehicles loading
numerous passengers, i.e., the queuing time is related with those queuing passengers. According
to the simulation model [32–34], tstop

q conforms exponentially to the bus frequency. Some research
on the empirical estimation is developed in [35–37], observing the impact of relaying bus berths.
The regression model is simplified in Equation (10), observed when we find the bus length sb is not so
important for the concept of the queuing time tstop

q .

tstop
q = 0.01 · [γ0 + (γ1 + γ2 · Z2 + γ3 · Z3) · tb] · e0.001· fb ·[γ4+(γ5+γ6·Z2+γ7·Z3)·tb ] (10)

where the parameters γi(i ∈ 1, 2, · · ·, 6) are estimated factors, both Z2 and Z3 are explained as follows:

Z2 =

{
1 i f two− berths mode
0 otherwise

and Z3 =

{
1 i f three− berths mode
0 otherwise

Equation (10) is a generalization of the models developed by Tirachini [34,35] and can be used to
assess the optimal bus size and bus stop design under congested bus stop operations. The case of split
bus stops (a large stopping area consisting of two subgroups with one, two, or three berths each) can
be accommodated by establishing a rule for the assignment of buses to the stopping areas (e.g., 50% of
buses assigned to each stopping area). Parameters γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7 for Equation (10) are
presented in Table A2.

In addition to its inclusion in the economic effect, as well as the frequency and demand, the number
of berths is taken into account during the queuing delay. The more berths a stop layout is constructed
with, the shorter the queuing delay will be, in the case that empirical applications have been made and
accepted in Beijing’s public transportation. If the boarding or alighting process would occupy more
time, the high demand contributes positively to a longer queuing time.

2.5. Delay Time

Next, we will introduce the delay time TD caused by the red light at an intersection (or crossroad).
The queuing delay is an important parameter depending whether it is given priority under a different
number of intersections along its own path. However, the queuing delay is difficult to estimate
because of its randomness or various queue modes [36]. Many basic signal theories [36–38] have
demonstrated classic deterministic queuing models that can describe the FBS running delays on its
own path. The diagram of Figure 2 indicates that the FBS encountering an intersection experiences
three processes, including deceleration, queuing time, and acceleration, which conform a queue
type D/D/1.The first D denotes that the time between arrivals to the queue is deterministic type;
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the second D describes the deterministic service time distribution; lastly, the 1 indicates only one server
at the station. Equation (11) can be derived to calculate the average uniform delay incurred every
signal cycle by the FBS crossing one intersection. The formulation of Equation (11) is identical to what
has been suggested as an analytical steady-state approach, like the Highway Capacity Manual (HCM)
or the Canadian Capacity Guide for Signalized Intersections:

tintersection
q =

C · (1− g
C )

2

2(1− X · C
g )

(11)

where tintersection
q is the queuing time caused by the intersection, C denotes the traffic signal cycle

length (s), X = v/c = volume-to-capacity ratio, and g is the effective green interval duration (s).
The queuing time TQ and delay time TD can be summarized with Equations (10) and (11) according

with the number of stops Nstop and intersections Nintersection, which are described in Equation (12).
Due to its lengthiness, Equation (12) is not decomposed:

TQ + TD = (td + tstop
q ) · Nstop + (td + tintersection

q ) · Nintersection (12)
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3. Path Utilities for Passengers

3.1. In-FBS Congested Cost

Passengers’ utilities (explained at Section 2.1) are divided into necessary time cost, congestion
utility YK(xk), and waiting utility UW . The congestion utility has been developed in some literature.
Numerous approaches to transit assignment considering seat capacities have been developed.
A “fail-to-sit” probability is introduced at boarding points with travel costs without relying on
a first-come-first-serve (FCFS) principle for many crowded buses in European countries [11].
A schedule-based equilibrium model is proposed assuming passengers use their own individual
strategies [7]. For instance, the on-board passengers have priority to obtain seats and queuing rules
are limited under a FCFS principle. The seat capacity is incorporated into the hyperpath-based
transit assignment model and considered a different discomfort cost for the seated and standing
passengers [39]. This model has been further applied in Paris in large-scale URT [40]. Therefore, the cost
of passengers’ standing or seating in a FBS is different, which is derived from either oversaturated
or undersaturated conditions. The in-vehicle congested cost is mainly decided by the number of
passengers, described in Equation (13):

YK(xk) =

{
A · xk− fb ·nseat

fb ·nseat
fb · nseat < xk ≤ KR

A · xk− fb ·nseat
fb ·nseat

+ B · xk− fb ·KR
fb ·nseat

xk > KR
(13)
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where xk denotes the assigned passenger flow belonging to the path k, nseat is the number of the seats
of a given bus, and A and B are the converting parameters, whose suggested values are A = 1 and B = 1.

3.2. Waiting Utilities

A different number of demands would influence what different passengers perceive at the waiting
process. It might be too complex to apply into the proposed model if all different scenarios are classified
relying on the demands. Thus, a certain scale of value scenario almost covers passenger demand
conditions even though it is separated into only two scenarios (high and low demand) in the model.
In order to apply our proposed assignment model to a certain scale of value scenario, we separated the
passenger demand into two groups: a percentage Ph of high demand (possible under oversaturated
conditions) and a percentage Pl of low demand (scarcely fail to board), which are derived from the
Equation (14):

Ph =

{
xk− fb ·ck

xk
xk ≥ fb · ck

0 xk ≤ fb · ck
∀ fb ∈

[
f min
b , f max

b

]
, (14)

Pl = 1− Ph (15)

The waiting utilities UW under a specific periodical segment are described as Equation (15):

UW =
∫ hk

0
uW(t)dt (16)

uW(t) = xk · Pl · [hk/2 + (τD − t) · µ1] + xk · Ph · [hk/2 + (τD − t) · µ2] (17)

hk =
1
fb

(18)

µ1 =

{
0 i f 6 veh/h ≤ fb ≤ f max

b
1 i f f min

b ≤ fb ≤ 6 evh/h
(19)

µ2 =

{
1 i f 6 veh/h ≤ fb ≤ f max

b
Pl
Ph

i f f min
b ≤ fb ≤ 6 evh/h

(20)

where hk is the headway of the path k, derived from the reciprocal of the frequency fb. In addition, µ1

and µ2 is the penalty coefficient of low and high demand respectively.

3.3. The Total Utilities

The final Equation (21) for passengers’ total utilities is to switch the accumulated time to
a utility-based criterion:

Un
k, τD

(t) = µR · TR + µQ · TQ + µD · TD + µK ·YK(xk) + µW · TW (21)

where the parameters µR, µQ, µD, µK are the weighted factors switching the accumulated time to
a utility-based criterion. Finally, after deriving the expressions for passengers’ utilities, the total utility
minimization problem is formulated as Equations (22) and (23):

Un
k, τD

(t) = U( fb, η, ξ, xk) = µR · TR + µQ · TQ + µD · TD + µK ·YK(xk) + µW · TW (22)

minZ(ql) =
1
θ
·∑

l
ql · ln(ql) + ∑

k

∫ xk

0
Un

k, τD
(xk)dx, ∀ l ∈ K (23)

Subject to the following real constraints,

f min
b ≤ fb ≤ f max

b (24)
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Zi ∈ {Z2, Z3} = 0 or 1 (25)

∑
l

ql = xk, ∀l ∈ K (26)

ql ≥ 0, ∀l (27)

where Equation (24) is a frequency constraint that ensures that a minimum policy frequency f min
b

(set to have a minimum level of service, if desired) and the maximum feasible frequency f max
b are

feasible. Equation (25) states the FBS berths layout may be 1, 2, or 3, which means a more complex
berth layout will not be taken into account. ql is the assigned passenger flow of route l belonging to
the flow xk (Equation (26) on path k, and the value of ql may be null (Equation (27)). The factor θ is
used to investigate stochastic properties of the optimal formulation of Equation (18), so we henceforth
assume θ to be non-negative. The higher the value θ, the more the passengers’ understanding of
the path’s utility. The recommended value θ is in the range of [15,25] for our case study after our
observing experiments.

The final Equations (22) and (23) are given in Equation (28) (see Appendix A for details):

ql = xk ·
exp(−θ ·Un

l,τD
)

∑
l′∈K

exp(−θ ·Un
l′ ,τD

)
∀ l ∈ K, l′ ∈ K, l 6= l′ (28)

The logit assignment model is applied, leading to the proportion of demand ql on the path l based
on the utility Un

l,τD
. Then the feasible path flow ql and the actual utility un

l,τD
are updated. Therefore,

with the time going on, the passengers will form a typical and accustomed time series analyzed to
describe the complexities of traveler choice behavior.

4. Solution Algorithm

The investigated subject includes dynamic aspects: the user’s updating process of the travel time
perceived, experience of the traveling path, and information acquired. In order to take into account
these dynamics, the model proposed in this work is a day-to-day model. Path choice is simulated
along several days. A traversal search algorithm is adopted to solve the transit assignment problem.
This solution is applied at the path level based on the day-to-day information evolution. The main
steps of our proposed algorithm are described in the form of a flowchart in Figure 3.

Step 0: (Initialization): Initialize the previous distribution of passenger flow. Input the data
structures, including default parameters, feeder bus operation parameters, and day-to-day information
evolution regulation.

Step 1: (Path choice): Find the optimal path using Equation (28) based on the stochastic user
equilibrium (Equations (1)–(27)) as the initial solution.

Step 2: (Transit simulation): Sum up the path choice of each node or station; calculate the path
and segment passenger flow; and calculate the path travel time.

Step 3: (Perceived utilities’ information update): Update maximum, average, minimum,
and expected segment travel times. Then, update maximum, average, minimum, and perceived
path travel times. Update the parameters of assignment.

Step 4: (Path evolution): Find the second-best path by Equation (3) and calculate the assignment
probability of path evolution by Equation (28). If the path is changed based on the combination
between perceived and actual utilities, Step 1 is entered into again; otherwise, shift into Step 2.
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5. Numerical Test

The ability of the proposed model to capture day-to-day information evolution of the
oversaturated effect was tested by an application on a realistic case study, whose numerical results
are discussed, providing a day-to-day self-learning mechanism. The application case is abstracted
from three FBS lines at Xizhimen District in Beijing, China. There are a total of eight stops along
their respective lines. Suppose the traffic capacity of the three lines are 1200 veh/h, with the
volume-to-capacity ratio X = 0.6. There exist three intersections belonging to their lines, shown in
Figure 4. The actual path diagram is translated into the topological structure of the network, shown
in Figure 5.

With the origin and destination assumed as stop 1 and stop 8, alternatively, unidirectional
passenger assignment is tested relying on the series of time stamps. Based on the former context,
the similar capacities of three lines are 1200 veh/h, which can be applied into BPR functions
(Equation (7)). The acceleration and deceleration delays are the same, whose approximate value
is two seconds, alternatively. Coincidently, there are five stops along the three lines based on the
different paths.
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The form of FBS in Beijing is the standard bus (Sb = 12 m), which can load 80 pax/veh.
The frequency of FBS is 10 bus/h, which means that the headway is almost 6 min. The factor θ

in Equation (28) is 20 based on the numerical experiments, because it might be consistent with our
empirical survey. Table 1 provides all parameters of our proposed model. Based on the statistical data
of behavioral habits during a period, the passengers are frequent travelers served by FBS with strong
habits. With typical information according to which the regular timetable changed, detailed data were
captured throughout September 2015. The observed assignment conditions were recorded belonging
to different segments of three paths, certainly, which were analyzed depending on the scheduled time
buckets. We found that the passengers served by FBS were not disturbed strongly by the changed
departure and arrival times. This was reflected at the whole average times of the own paths within the
day-to-day evolution. Thus, we can primarily estimate the values α and β, and even conclude that the
passengers are frequent travelers served by FBS with strong habits, the latter of which is assistant proof
of appropriate values (less than 50%). Thus, α and β being less than 50% indicates their insensitivity of
updating the perceived utilities deriving from the day-to-day information evolution [6]. For the sake
of simplifying assumptions and calculation convenience, fundamental elements of uniform passenger
arrival conditions will be shown in Table 2 and the total eight stops’ layout is constructed similarly
with two berths. Additionally, the specified boarding and alighting policy is provided by Equation (9),
referring to boarding at the front door and alighting at the behind door. Then, the accumulative total
flow of boarding and alighting passengers for one hour can be obtained, as expressed in Figure 6.
The three lines share nine communal composed segments, the lengths of which are measured in Table 3.
Thus, the preliminary results can be calculated easily from the basic algorithm of Equations (1)–(27),
such as the departure and arrival times in Table 4.
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Table 1. Model parameters following appearing orders.

fi ff ϕ(sb) σf v0 L1 L2 L3 a0

0.2 0.3 2.19 3 min 20 km/h 5.5 km 5.1 km 4.8 km 1.2 m/s2

a1 ∂0 ∂1 cdoor λ+ λ− C g X
1.2 m/s2 0.15 4 0.2 s 1.2 0.7 60 s 30 s 0.6

f k
a A B µR µQ µD µk µW nseat

720 veh/h 1 1 1 1 1 1.1 1.2 20

Note: L means the length of the bus.

Table 2. Average arrival and leave rate at each stop (unit: people/min).

FBS Stop 1 2 3 4 5 6 7 8

Arrival rate 2.63 2.48 1.93 2.12 1.75 1.66 1.21 0
Leave rate 0 0.83 1.12 0.98 1.40 1.53 2.61 5.25
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Table 3. Length of Segment li (i ∈ 1, 2, . . . , 8).

Segment li 1 2 3 4 5 6 7 8 9

Length (km) 0.5 0.5 0.5 0.3 0.5 0.5 0.7 0.4 0.4

Suppose that the three buses belonging to their own lines leave the terminal, stop 1, at the same
time 17:00:00. The running time (Equation (7)), the deceleration and acceleration time (Equation (8)),
as well as the intersection delay time (Equation (11)) at segment 1 can be taken as tR = 103.1 s, td = 6.9 s
and tintersection

q = 10.7 s. Thus, the arrival time of stop 2 is 17:02:01, which adds to the boarding time

tb = 13.1 s (Equation (9)) and the queuing time tstop
Q = 0.6 s (Equation (10)) with td = 6.9 s is equal

to the departure time 17:02:12. Subsequently, a complete cycle can be tested for the sustaining buses
tracking the scheduled stops. Then we can amplify each segment by the respective calculated utility,
expressed in Table 5. Thus, the passenger flow of each cell (segment 1–9) can be elaborated and divided
from the origin-destination matrix (Table A3, see Appendix C).
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Table 4. Time stamps of FBS at each stop for the three lines illustrated as an example.

Time

Stop FBS Stop

1 2 3 4 5 6 7 8

Line 1
Arrival - 17:02:01 - 17:04:23 - 17:06:43 17:09:26 17:11:37

Departure 17:00:00 17:02:22 - 17:04:43 - 17:06:55 17:09:47 -

Line 2
Arrival - 17:02:01 - 17:04:23 17:06:23 - 17:08:23 17:10:16

Departure 17:00:00 17:02:22 - 17:04:43 17:06:43 - 17: 08:36 -

Line 3
Arrival - 17:02:01 17:04:13 17:05:42 - - 17:07:31 17:09:32

Departure 17:00:00 17:02:22 17:04:32 17:06:01 - - 17:07:52 -

Note: “-” means null. In other words, the bus would not depart from or arrive at this stop.

Table 5. The passenger assignment of each segment for three paths based on a SUE (accumulative
total flow/h).

Passengers
Segment Total

Number1 2 3 4 5 6 7 8 9

Path 1 66 95 0 0 0 124 132 0 97 514
Path 2 35 68 0 0 79 0 0 96 75 353
Path 3 57 0 102 151 0 0 0 155 125 590

If there is a smaller threshold η estimating whether the path is changed or not, the assignment
evaluation process tends to convergence. It should be noted that the SUE result is selected as the
initial reference scheme for evaluation comparison. First, the dependency of the final assignment
on the process of day-to-day evaluation is shown (from two days to eight days). The changing
rating of passengers’ travel utilities is set as 10%, which is mainly used in Step 3 (perceived utilities’
information update) as the upper threshold of changing passengers’ travel utilities each day. In all
results, the model converges to a stable scheme of 10 days. From Table 6, the utilities threshold seems
to have no effect on the final assignment. Certain stability results are summarized and the convergence
of the route-swapping process is illustrated using a three-route example. In the day-to-day evaluation
model, the experience of demands is accumulated with a self-learning rate. When the self-learning
rate is high, a path choice result might not remain stable and may not even converge for a long period.
To the contrary, if the rate drops excessively, the model would require long and tardy evaluation
duration. This means that the parameters in the learning model play a core role in the path choice
and assignment. In other words, the convergence depends on the parameters set of η, β related to
the self-leaning mechanism. This indicates that the assignment results are insensitive to the given
parameters in the day-to-day evaluation model.

Second, considering results obtained through the numerical experiments presented above, some
qualitative findings might be clarified. On one hand, the path-changing behavior is characterized
by a specific converged assignment, shown as Table 6. A possible hypothesis of assignment is the
long-tailed distribution. In further study, more investigations about the assignment that are able to
represent the day-to-day information self-learning mechanism should be carried out. Moreover, having
sufficient duration necessary to meet the demands in order to consider their perceived predilection has
to be investigated further. The self-learning process leading to a path-changing decision is influenced
by multiple factors; for instance, the availability and the class of information provided. The amount of
time necessary to complete the learning process was studied in the numerical test above but greater
understanding is required in order to identify factors that influence the length of the learning process.
Therefore, more experiments should be developed.



Information 2017, 8, 19 15 of 19

Table 6. Path flow and travel time according to the day-to-day evaluation.

Evaluated Days Path 1 Path 2 Path 3 Average
Time (min)

SUE
Flow 514 353 590

5101.0
Travel time 6053.9 3625.3 5623.7

2
Flow 507 381 569

5102.6
Travel time 5972.46 3912.87 5422.57

3
Flow 475 393 576

5040.3
Travel time 5595.5 4036.1 5489.3

4
Flow 482 397 563

5040.2
Travel time 5678.0 4077.2 5365.4

5
Flow 479 403 558

5033.1
Travel time 5642.6 4138.8 5317.7

6
Flow 475 411 554

5032.0
Travel time 5595.5 4221.0 5279.6

7
Flow 474 413 553

5031.8
Travel time 5583.7 4241.5 5270.1

8
Flow 473 415 552

5031.5
Travel time 5571.9 4262.1 5260.6

A frequency-based assignment model enables us to estimate how passengers’ choice evolves
during the varying operational time and optimal multi-factors, especially under oversaturated
conditions. For example, we can see that running time plays an important role in deciding the
strategy. Furthermore, the higher a FBS’s frequency is, the greater a path appeals to frequent travelers,
even though the logical performance is not presented following the simulation results.

6. Conclusions

In this paper, we have introduced a time-valuing utility assignment model based on the
frequency of the day-to-day information self-learning evolution oversaturated condition for FBS.
The disaggregated origin destination demand and multiple travel paths are decided with the aim of
optimizing the passengers’ utilities. The influence of FBS congestion is highlighted as we analyze the
probability of fail-to-board and keep-standing under the bus’ capacity and seat layout.

The influence of bus crowding is highlighted as we analyze its impact on both the design of the
bus service and the congestion level on the road. The consideration of crowding utilities as increasing
the discomfort of FBS users pushes towards having a regular day-to-day evolution, which in turn
may affect both bus and traffic flow on shared roads. The number of seats in buses is introduced as
a decision variable for the first time in a microeconomic FBS model; the number of seats is the result of
the trade-off between passengers’ comfort (that drives the number of seats up) and vehicle capacity
(which might be increased by removing seats). The model is applied to the Xizhimen District in Beijing,
and results discussed under daily information evolution in the route choice can be clarified in order to
encourage high-quality service.

FBS paths involve sequential segment decision-making that rely on passenger accumulated
knowledge and the prior-estimated available information, which evolves from the day-to-day
information self-learning process. In the sphere of frequency-based assignment modeling of an FBS all
operational parameters under explicit bus capacity are synthesized. Demand-supply interaction is
defined from the congested performance, in which the failed-to-sit state, and even the failed-to-board
state, is evaluated, decreasing the LOS attributes. The higher frequency path cultivates the frequent
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travelers’ customs for acquainted commuting behaviors, reducing fails. One parametric case as
evidence is raised that a theoretical simulation is combined with a frequency-based assignment model
under day-to-day information evolution. However, the essential long-term data collection is scarce,
which will be completed in further research. As a problem of the dynamic assignment approaches,
a new solution algorithm will be put forward towards an open issue, which will be achieved in
future work.
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Appendix A. The Derivation Process of the Logit Model

We will provide the proof on the objective function (Equation (23)) defining the logit model.
The first order random condition of Equation (23) is the equilibrium formulation (A1).

1
θ · (ln ql + 1) + ∑

l∈K
Un

l,τD
− λ− L = 0, ∀l ∈ K

−L · ql = 0, ∀l ∈ K
(A1)

where λ and L are Lagrange multipliers corresponding to Equation (26) and (27), respectively,
designated by DO. To determine the optima of Z(ql) in DO, we construct the Lagrangian L as:

L = Z(ql) + ∑
l∈k

λ · (ql − xk) (A2)

Based on Fisk’s theory [40,41], Equating the partial derivatives of L to zero will give the conditions
that a stationary point q∗l of Z(ql), subject to Equations (26) and (27) being satisfied. Since ∂L

∂ql
does not

exist when ql = 0, a solution will only be valid if all components of q∗l are strictly positive. Setting the
derivatives of L to zero we find:

∂L
∂ql

=
1
θ
· (ln q∗l + 1) + ∑

l∈k
ql + λ = 0 (A3)

Using Equations (A1)–(A3) into Equation (26), this can be simplified to:

ql = xk ·
exp(−θ ·Un

l,τD
)

∑
l′∈K

exp(−θ ·Un
l′ ,τD

)
∀l ∈ K, l′ ∈ K, l 6= l′ (A4)

Appendix B. Boarding and Alighting Behaviors Estimation

If there are multiple doors provided for passengers’ to choose for boarding and alighting,
the accurate threshold of the dwell time of a bus should be determined by the time slice when
the last person gets on or off the bus. At the same time, the multi-doors lead to various boarding
(or alighting) rules that have produced complicated and dynamic boarding (or alighting) percentages.
Certainly, we have some empirical reasons to consider that the waiting queues are not distributed
homogeneously at all doors. On one hand, some doors may be obstructed by some people carrying
large luggage or faltering men (or women). On the other hand, rational passengers are willing to take
more chances to obtain seats or avoid a failed-to-board state. As illustrated in the statistics from the
No. 87 and 651 buses in Beijing, we can see that passengers can board (or alight) from arbitrary doors



Information 2017, 8, 19 17 of 19

at the original (or terminal) station, hence, some certain percentage values of either 98% or 2% occur
under defined rules. Many people have more preference for rear doors, which is shown as Table A1.

Table A1. Boarding and alighting behaviors for multi-policy.

The Number of Doors 1 2 3

The doors’ positions only Front Behind Front Middle Behind
Alighting Percentage (%) 100 98 2 3 96 1
Boarding Percentage (%) 100 2 98 38 2 60

To estimate the queuing delay of buses, we use the bus stop simulator IRENE [34], which can
determine the capacity, queuing delay, dwell time, berth usage, and other indicators of the performance
of a bus stop as a function of a number of inputs such as the boarding and alighting demand, the number
of berths, bus size, and frequency. For a more detailed description of the program see Son [38].

Regarding inputs, the following conditions are made:
Bus size: Four different bus sizes are considered in accordance with standard commercial vehicle

sizes: 8 m, 12 m, 15 m, and 18 m long buses.
Number of berths: Three configurations are simulated, with one, two, and three contiguous berths.

For a split bus stop with two stopping areas with two berths each, we assume that half of the buses are
assigned to each stopping area.

Berth length: Each berth is assumed to be 1.5 times the bus length, which is the minimum distance
necessary for buses to maneuver and overtake a preceding bus if necessary. The attributes directly
reflected on the values γ0, γ1, γ2, γ3, γ4, γ5, γ6, γ7.

Bus saturation flow: This parameter depends on the length of the bus and influences the queuing
delay. We assume a basic saturation flow of s = 2086 passengers per hour per lane [37] and apply the
following equivalency factors depending on the size of the bus, yielding estimated saturation flows of
1262, 951, 823, and 694 veh/h for 8 m, 12 m, 15 m, and 18 m buses, respectively.

A total of 265 simulations were run encompassing all bus sizes and bus stop designs previously
described for a range of frequencies from 20 to 220 veh/h and dwell times between 10 and 65 s. Buses
are assumed to arrive at a constant rate at stops (no bus bunching) and bus stops are isolated from
traffic lights. The fitting parametric is given as Table A2.

Table A2. Queuing delay parameters for Equation (10).

Parameter fl0 fl1 fl2 fl3 fl4 fl5 fl6 fl7

Estimate 0.25 5.28 1.9 2.1 25 1.1 0.37 0.63

Appendix C. Origin-Destination Matrix

The origin-destination matrix obtained with data investigation in presented in Table A3,
with 25 unidirectional trips in the evening peak (17:00:00–18:00:00), from which three intersections are
shared under oversaturated conditions.

Table A3. Origin–destination matrix.

O/D 1 2 3 4 5 6 7 8

1 0 53 27 13 15 38 9 3
2 0 40 46 21 18 16 8
3 0 0 29 0 31 56
4 0 19 36 47 25
5 0 0 20 85
6 0 34 66
7 0 73
8 0
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