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Abstract: Point-of-interest (POI) recommendation has been well studied in recent years. However,
most of the existing methods focus on the recommendation scenarios where users can provide explicit
feedback. In most cases, however, the feedback is not explicit, but implicit. For example, we can only
get a user’s check-in behaviors from the history of what POIs she/he has visited, but never know
how much she/he likes and why she/he does not like them. Recently, some researchers have noticed
this problem and began to learn the user preferences from the partial order of POIs. However, these
works give equal weight to each POI pair and cannot distinguish the contributions from different POI
pairs. Intuitively, for the two POIs in a POI pair, the larger the frequency difference of being visited
and the farther the geographical distance between them, the higher the contribution of this POI pair
to the ranking function. Based on the above observations, we propose a weighted ranking method
for POI recommendation. Specifically, we first introduce a Bayesian personalized ranking criterion
designed for implicit feedback to POI recommendation. To fully utilize the partial order of POIs, we
then treat the cost function in a weighted way, that is give each POI pair a different weight according
to their frequency of being visited and the geographical distance between them. Data analysis and
experimental results on two real-world datasets demonstrate the existence of user preference on
different POI pairs and the effectiveness of our weighted ranking method.

Keywords: point-of-interest; location recommendation; LBSNs

1. Introduction

With the popularity of smart mobile devices and the development of the global positioning system
(GPS), it has become easier for people to acquire real-time information regarding their locations, which
has triggered the advent of location-based social networks (LBSNs), such as Foursquare, Gowalla,
Facebook place, etc. These online systems enable people to check in and share life experiences with
friends when they visit a point-of-interest (POI; e.g., restaurants, tourist spots and stores), which has
not only led to location-based socializing becoming a new form of social interaction, but has also
created the opportunities for people to explore interesting unknown places. To achieve the latter goal,
POI recommendation has become one of the important means.

The task of POI recommendation is to model the users’ visiting preferences and recommend to
a user the POIs that she/he may be interested in, but has never visited. Compared with traditional
recommender systems, POI recommendation is challenging for two reasons. First, the check-in data in
LBSNs are not explicit, but implicit. In explicit feedback, such as movie rating data, users can explicitly
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denote their “like” or “dislike” of an item with different rating scores. With check-in data, however,
we can only get a user’s positive behaviors from the history of which POI she/he has checked-in
and never know her/his interest in the POIs without check-ins, which are either unattractive or
undiscovered, but potentially attractive. Therefore, the learning task for this kind of data is how to
infer the users’ preference and non-preference from only positive check-in data. However, most existing
POI recommendation methods overlook the implicit feedback facts and cannot reach reasonable results.
Fortunately, some researchers have recently realized this problem and began to consider check-ins as
implicit feedback. For example, Lian et al. [1] exploited a weighted matrix factorization for this task.
Their work fit the nonzero check-ins by using large weights and zero check-ins by using small weights,
but directly fitting zero check-ins may not be very reasonable, because zero check-ins may be missing
values. Li et al. [2] considered the POI recommendation based on the ordered weighted pairwise
classification (OWPC) criterion and proposed a new ranking-based factorization method. However,
their work emphasized the classifications at top-N positions by assigning higher weights. Ying et al. [3]
integrated users’ geographical preference and latent preference into the Bayesian personalized ranking
(BPR) framework and proposed a hybrid pair-wise POI recommendation approach. However, their
work gave equal weight to each POI pair. Intuitively, as a user usually has different preference for
different POIs, different POI pairs should not be treated equally in the ranking cost function.

Second, geographical coordinates of POIs are available. Geographical coordinates are an
important type of context information, since users have a much higher probability of visiting nearby
POIs [4]. Previous works have developed different approaches to exploit this particular type of
context to assist POI recommendation. For example, Ye et al. [5] discovered the spatial clustering
phenomenon exhibited in user check-in activities and employed a power-law probabilistic model
to capture the geographical influence among POIs. Different from the work in [5], Cheng et al. [6]
modeled the probability of a user’s check-in on a location as a multi-center Gaussian. Rather than
making a universal distribution for all users, Zhang et al. [7] used a kernel density estimation approach
to personalize the geographical influence on users’ check-in behaviors as individual distributions.
To avoid the cost of computing the distance between paired locations, Liu et al. [8] modeled the
spatial clustering phenomenon in terms of geo-clustering and tried to estimate the individual spatial
distribution. Recently, Lian et al. [1] incorporated this context into the factorization model by
augmenting users’ and POIs’ latent factors with activity area vectors of users and influence area
vectors of POIs. Li et al. [2] introduced one extra latent factor matrix to model the interaction between
users and POIs to incorporate the geographical influence. Actually, by modeling the spatial clustering
phenomenon, it becomes possible to particularly distinguish the preference difference from POI pairs
with large geographical distance. In particular, it is much more likely that unvisited POIs with a large
distance to a frequently-visited location are very unattractive, and this likelihood depends on the
distance to that location. Therefore, the weighted ranking criterion will benefit from the introduction
of such a phenomenon.

Based on the above observations, we consider the POI recommendation task as a pair-wise ranking
problem and propose a weighted Bayesian personalized ranking method for the POI recommendation
task. Specifically, in order to learn from check-in implicit feedback, we reconstruct the user-POI visit
frequency matrix using the data policy proposed by Rendle et al. [9] and learn the user and POI latent
factors by making use of the partial order of POIs. To investigate the usefulness of visit frequency,
we assume that the higher the check-in frequency is, the more the POI is preferred by a user, and
accordingly, we incorporate the check-in frequency into the ranking criterion by giving different item
pairs with different weights. To explore the impact of geographical distance, we then assume the larger
the distance of the unvisited POI to their previous locations is, the smaller the likelihood it will be
visited by a user and the larger the contribution of this POI pair is. By merging these two contexts
together, we reached our final weighted POI recommendation model. Data analysis and experimental
results on two real-world datasets demonstrate the existence of a POI difference in visit frequency and
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geographical distance, and the proposed weighted ranking method incorporating these two contexts
can achieve higher recommendation results.

The remainder of this paper is organized as follows. First, we briefly review the related
recommendation methods. Second, we derive the weighted ranking criterion from the Bayesian
analysis of the problem by making two assumptions. Then, we conduct data analysis and experiments
to demonstrate the existence of a POI difference in visit frequency and geographical distance and the
effectiveness of our proposed method. Finally, we conclude this paper and give our future work.

2. Related Work

Due to a wide range of potential applications (e.g., personalized location service in GPS trajectory
logs [10,11] and the LBSN data [12,13]), POI recommendation has attracted great research interest
in recent years [14–16]. In LBSN data, a pioneer work of POI recommendation was discussed in
a work by Ye et al. [17], which studied the location recommendation by exploiting the social and
geographical characteristics of users and locations and proposed two friend-based collaborative
filtering approaches. To achieve more accurate recommendation, Ye et al. [5] further extended and
studied this work, wherein they discovered the spatial clustering phenomenon of user check-in
activities and employed a power-law probabilistic model to capture the geographical influence among
POIs. Yuan et al. [18] integrated spatial information into POI recommendation by making a different
assumption; that is, humans tend to visit POIs near their previous locations, and their willingness to
visit a POI decreases as the distance increases. Instead of making a power law distribution assumption,
Cheng et al. [6] modeled the probability of a user’s check-in at a location as a multi-center Gaussian
model. Moreover, Zhang et al. [19] argued that the geographical influence on users should be unique
and personal and should not be modeled as a common distribution. In their work, kernel density
estimation was used to model the geographical influence as a personalized distance distribution for
each user.

Some other related works focus on how to utilize other different contexts (e.g., social
influence, temporal influence) to enhance the POI recommendation approach [18,20,21]. For example,
social influence-enhanced POI recommendation approaches assume that friends in LBSNs share
much more common interests than non-friends and utilize social relationships to enhance POI
recommendation [6,17]. Temporal influence-enhanced POI recommendation approaches assume that
users’ interests vary with time and that users’ visiting behaviors are often influenced by time, since
users visit different places at different times in a day [18,22]. However, the above existing approaches
are usually developed to fit the check-in frequency under a rating-based learning criterion, and ignoring
the check-in data is a type of implicit feedback. Different from explicit rating data, check-in data can
only provide us positive samples that a user likes, and the unvisited POIs are either unattractive or
undiscovered, but potentially attractive locations.

Recently, some researchers have realized this problem and began to consider check-in data as
a type of implicit feedback. For example, Lian et al. [1] proposed a weighted matrix factorization
approach for POI recommendation. They incorporated the geographical clustering phenomenon by
augmenting users’ and POIs’ latent feature vectors with an activity area vector of users and influence
area vectors of POIs. This method fit the nonzero check-ins by using large weights and zero check-ins
by using small weights. Although assigning large weights can highlight nonzero check-ins, directly
fitting zero check-ins may not be very reasonable, because zero check-ins may be missing otherwise
negative values. Li et al. [2] considered that the check-in frequency characterizes users’ visiting
preference and learned the factorization by ranking the POIs correctly. Ying et al. [3] proposed a
hybrid pair-wise POI recommendation approach that integrates POI coordinates into the Bayesian
personalized framework. However, these existing works give each POI pair equal weight and did not
consider the POI difference in visit frequency and geographical distance. Intuitively, different POI
pairs should impact the ranking criterion differently.
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In this paper, we consider POI recommendation based on the Bayesian personalized ranking
criterion [9]. Our proposed method differs from the existing approach in two aspects. First, the existing
BPR was developed for the ranking problem with binary values, while in this work, we extend the
objective function to rank POIs with different visiting frequencies. Second, we develop a weighted
means to improve the learning criterion, which is able to exploit the visit frequency and geographical
distance context information.

3. POI Recommendation with Weighted Ranking Criterion

In this section, we will systematically interpret how to model the visit frequency and geographical
information as weighted terms to constrain the ranking-based POI recommendation method. We first
describe the POI recommendation problem with only positive check-in observations and then derive
the ranking criterion from the Bayesian analysis of the problem. Finally, we explore the impact of visit
frequency and geographical distance by giving each POI pair different weights.

3.1. Problem Description

The POI recommendation problem we studied in this paper is different from traditional
recommender systems for two reasons: first, the former can only provide implicit feedback, which
means we can only learn user preferences from their positive check-in behaviors; that is, we can
only know which POI a user has visited, but do not know which POI the user is not willing to visit.
Second, a POI usually has geographical information, from which we can get the exact location of
a POI and the distance among POI pairs. Figure 1a shows an overview of POI recommendation in
LBSNs. This process includes two central elements: the user-POI check-in frequency matrix (as shown
in Figure 1b) and the geographical information of POIs (as shown in Figure 1a), i.e., latitude and
longitude. Take a real-world recommendation scenario for example; suppose a user lives in Beijing,
and she/he often checks in near the area of Zhongguancun (a famous technology hub of China). In this
case, when we recommend the unvisited POIs to this user, both her/his check-in behaviors and the
POI location need to be considered, and the closer to the area of Zhongguancun, the more priority the
POIs have to be recommended.

Map
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Check-in or Visit

POI

<latitude, longitude>

2

5
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4? ?
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? ? 9

(a) 
(b) 

Figure 1. Example of point-of-interest (POI) recommendation in location-based social networks
(LBSNs). (a) Overview of location-based social network; (b) user-POI check-in frequency matrix.

In this toy example, each user visited some POIs with different check-in frequencies to express
their favor toward POIs, but only positive behaviors can be observed. The remaining unknown data
(denoted as “?”) are a mixture of actually negative and missing values. We cannot use a common
approach to learn user features directly from unobserved data, as they are no longer able to be
distinguished from the two levels. Moreover, different from traditional items (e.g., movies, books or
products), each POI also has geographic coordinate information, from which one can get the exact POI
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locations and distances. In the real world, the willingness of a user to move from one POI to another is
a function of their distance. The problem we studied in this paper is how to effectively and efficiently
predict the personalized POI rankings by employing these two central elements.

3.2. Bayesian Personalized Ranking Criterion

Let U be the set of all users and I be the set of all items. In our POI recommendation scenario,
the check-in frequency matrix R ⊆ U × I is available (see the left side of Figure 2), where each entry
rui ∈ R indicates the visit frequency of user u to POI i, and rui =? indicates that i is unvisited by u in
the past (the status of u to i is unknown). To learn from this implicit feedback data, we reconstruct
the user-POI visit frequency matrix using the following data policy; that is, if a POI i has been visited
by user u (i.e., (u, i) ∈ R), then we assume that the user prefers this POI over all other unvisited POIs
(e.g., POI i1 and i4 for user u1 in Figure 2). For the POIs that have both been visited by a user u, if the
visit frequency to POI i is higher than j (i.e., rui > ruj), then we assume that the user prefers i over
j, and the higher the check-in frequency is, the more the POI is preferred by the user. For example,
in Figure 2, POIs i2 and i3 have both been visited by user u1, and the visit frequency ru1i3 > ru1i2 ; so
we assume that this user prefers POI i3 over i2: i3 >u1 i2. For POIs that have both been visited by a
user, but have the same visit frequency, we cannot infer any preference. The same is true for two POIs
that a user has not visited yet (e.g., POIs i1 and i4 for user u1 in Figure 2). To formalize this, we create
training data DR: U × I × I by:

DR := {(u, i, j)|i ∈ I+u ∧ (j ∈ I \ I+u ∨ j ∈ Li)}

where I+u is the visited POI set, I \ I+u is the unvisited POI set and Li is the visited POI set, but the
visit frequency is less than POI i. The semantics of (u, i, j) ∈ DR is that user u is assumed to prefer i
over j. As >u is antisymmetric, the negative cases are regarded implicitly.
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Figure 2. On the left side, the observed data R are shown. Our approach creates user-specific pairwise
preferences i >u j between a pair of POIs. On the right side, a plus sign (+) indicates that a user prefers
POI i over POI j; a minus sign (−) indicates that a user prefers j over i.

In order to find the correct personalized ranking for all POIs i ∈ I , we introduce the BPR [9]
method as our basic recommendation framework. BPR is derived by a Bayesian analysis of the problem
and maximizes the following posterior probability:

p(Θ| >u) ∝ p(>u |Θ)p(Θ),

where p(>u |Θ) represents the user-specific likelihood function, p(Θ) is the prior probability function
and Θ denotes the parameter vector of an arbitrary model class (e.g., k-nearest-neighbor and matrix
factorization). With the assumption that all users act independently and the ordering of each pair
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of POIs for a specific user is independent of the ordering of every other pair, the likelihood function
p(>u |Θ) of all users can be written as:

∏
u∈U

p(>u |Θ) = ∏
(u,i,j)∈DR

p(i >u j|Θ)

where p(i >u j|Θ) is the individual probability that a user prefers item i to item j and can be defined as:

p(i >u j|Θ) := σ(r̂uij(Θ))

σ is the logistic sigmoid function [9] and r̂uij(Θ) is an arbitrary real-valued function of the model
parameter vector Θ. By decomposing the estimator r̂uij as:

r̂uij := r̂ui − r̂uj

any standard collaborative filtering model can be applied to predict r̂uv (the preference of user u to
POI v).

By viewing the problem of predicting r̂uv as the task of estimating a matrix R : U × I and using
matrix factorization (MF) to approximate the target matrix R (r̂uv = UT

u Vv), the objective function of
the BPR method for POI recommendation (BPR-POI) can be achieved:

BPR− POI = − ∑
(u,i,j)∈DR

ln σ(r̂ui − r̂uj)+

λU
2
||U||2F +

λV
2
||V||2F (1)

where λU and λV are the regularization parameters and U ∈ Rl×m and V ∈ Rl×n are the latent user
and POI matrices, with column vectors Uu, Vi or Vj representing user-specific and POI-specific latent
feature vectors, respectively. As in MF, the zero-mean spherical Gaussian priors [23] are placed on user
and item feature vectors:

p(U|σ2
U) =

m

∏
u=1
N (Uu|0, σ2

U I)

p(V|σ2
V) =

n

∏
k=1
N (Vk|0, σ2

V I) (2)

where I is the identity matrix and N (x|µ, σ2) is the probability density function of the Gaussian
distribution with mean µ and variance σ2.

3.3. Frequency-Based Weighted Ranking Criterion

As we have shown in Equation (1), BPR-POI is a pair-wise POI ranking approach, which does not
try to regress a single predictor r̂uv to a single number, but instead tries to classify the difference of two
predictions r̂ui − r̂uj. Compared with the point-wise or rating-based approach [24], it is closer to the
concept of “ranking”, as it does not focus on accurately predicting the rating of each POI. However,
this method gives equal weight to each POI pair and does not distinguish between their different
contributions in learning the objective function. Intuitively, the higher the visit frequency of a user to a
POI, the more preference this user expresses for that POI. In other words, if the frequencies of two
POIs in one POI pair are obviously different, we are more confident to derive this as a positive training
sample. Based on this intuition, we propose our first weighted Bayesian personalized ranking model
with visit frequency (WBPR-F):
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WBPR− F = − ∑
(u,i,j)∈DR

ln σ(wuij(r̂ui − r̂uj))+

λU
2
||U||2F +

λV
2
||V||2F (3)

where wuij ∈ [0.5, 1] denotes the weight of the difference of two predictions r̂ui − r̂uj, and its value is
determined by the difference of two visit frequencies fuij = fui − fuj,

wuij = 0.5
fuij −min f

max f −min f
+ 0.5 (4)

Equation (4) is the normalization version of wuij, in which the Min-Max normalization method [25]
is used to bound the range of wuij into [0.5, 1]. min f and max f are the minimum value and maximum
of all of the frequency differences, respectively. In our experiments, we found that choosing 0.5 as the
minimum value of wuij can reach the best result. A very small value of wuij indicates that only the later
information of Equation (5) is used, and the former information of Equation (5) is lost. fuv is the visit
frequency of user u to POI v, and when a POI is unvisited by user u, fuv is defined as fuv = 0. When
the frequency difference fui − fuj is equal to min f , wuij achieved its minimum value of 0.5, and when
fui − fuj is equal to max f , wuij achieved its maximum value of one.

The weight factor wuij allows the ranking function to treat each POI pair differently. For example,
suppose that user u has visited POI i and j; if their visit frequency is very close, a small weight value of
this POI pair is achieved (say wuij = 0.55), then this POI pair i >u j (suppose the visit frequency of i is
higher than j) should contribute less in learning the ranking order of u, since we cannot confidently
deduce the ranking preference from item i and j for user u. On the other hand, if the visit frequencies
of two POIs have a great difference, a larger weight value of this POI pair is achieved (say wuij = 0.95),
and this POI pair should contribute more to the learning function, since we are very confident in
deriving the user preference from these two POIs.

As the optimization criterion denoted by Equation (3) is differentiable, gradient descent-based
algorithms are an obvious choice for minimization. As we can see, however, due to the huge number
of preference pairs (O(|R||I|)), standard gradient descent is expensive to update the latent features
over all pairs. To solve this issue, we exploit the strategy proposed in the BPR method, which is a
stochastic gradient descent algorithm based on bootstrap sampling of the training triples (u, i, j). Then,
the corresponding latent factors Uu, Vi and Vj can be updated by the following gradients:

∂WBPR− F
∂Uu

= − 1
1 + er̂uij

wuij(Vi −Vj) + λUUu

∂WBPR− F
∂Vi

= − 1
1 + er̂uij

wuijUu + λVVi

∂WBPR− F
∂Vj

=
1

1 + er̂uij
wuijUu + λVVj (5)

3.4. Geographically-Based Weighted Ranking Criterion

The WBPR-F model imposes a weighted factor to constrain the contribution of each POI pair
by exploring the visit frequency of users, which provides a more effective way to learn the ranking
function. However, this approach does not consider the geographical information of POIs. In fact,
when we derive user preferences from POI pairs, if the POIs are neighborhood locations, according to
the geographical clustering phenomenon of human mobility behaviors, these two POIs are both much
more likely to be visited by this user. We cannot deduce user preference from two indistinguishable
POIs, and this POI pair should contribute less to the ranking function. On the other hand, if the POIs
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have a large distance from each other, we can deduce the user preference from these POI pairs with
high confidence. The large distance makes these samples contribute more to the ranking function.
Based on the above intuition, we propose our second weighted Bayesian personalized ranking model
with geographical distance (WBPR-D),

WBPR− D = − ∑
(u,i,j)∈DR

ln σ(dij(r̂ui − r̂uj))+

λU
2
||U||2F +

λV
2
||V||2F (6)

where dij ∈ [0.5, 1] denotes the weight factor of geographical distance between location i and j, and its
normalization version can be written as:

dij = 0.5
disij −mind

maxd −mind
+ 0.5

The distance disij between POI i and j can be computed by the Haversine formula [26] with
latitude and longitude. mind and maxd are the minimum and maximum value of all of the location
distances, respectively. In our experiments, we chose 0.5 as the minimum value of dij.

Similar to the frequency-based weight factor, geographically-based weight factor dij also allows
the ranking function to treat each POI pair differently. For example, suppose user u has visited POI i
and j; if the distance between i and j is very short, a small value of dij is achieved (e.g., dij = 0.55), and
this POI pair should contribute less to the ranking function. The closer these two POIs are, the less
they should contribute to the ranking function. On the other hand, if the distance between i and j is
very large, a large value of dij is achieved (say dij = 0.95), and this POI pair should contribute much to
the ranking function.

As in the first model, a local minimum of the objective function given by Equation (6) can be
found by performing stochastic gradient descent in latent feature vectors Uu, Vi and Vj:

∂WBPR− D
∂Uu

= − 1
1 + er̂uij

dij(Vi −Vj) + λUUu

∂WBPR− D
∂Vi

= − 1
1 + er̂uij

dijUu + λVVi

∂WBPR− D
∂Vj

=
1

1 + er̂uij
dijUu + λVVj (7)

3.5. Fused Weighted Ranking Criterion

In order to further improve the recommendation result, we further combine the visit frequency
and geographical distance in a linear model and arrive at our final weighted Bayesian personalized
ranking model with visit frequency and distance (WBPR-FD). The ranking criterion of this model can
be written as:

WBPR− FD = − ∑
(u,i,j)∈DR

ln σ(((1− α)wuij + αdij)(r̂ui − r̂uj))+

λU
2
||U||2F +

λV
2
||V||2F (8)

In Equation (8), the weight factors wuij and dij are smoothed by the parameter α, which naturally
fuses two central contexts into the POI recommender systems. The parameter α controls how the
weight of the ranking function depends on the geographical distance.
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Similar to the first and second models, a local minimum of this objective function can also be
found by performing stochastic gradient descent in latent feature vectors Uu, Vi and Vj:

∂WBPR− FD
∂Uu

= − 1
1 + er̂uij

((1− α)wuij + αdij)(Vi −Vj) + λUUu (9)

∂WBPR− FD
∂Vi

= − 1
1 + er̂uij

((1− α)wuij + αdij)Uu + λVVi (10)

∂WBPR− FD
∂Vj

=
1

1 + er̂uij
((1− α)wuij + αdij)Uu + λVVj (11)

where r̂uij = ((1− α)wuij + αdij)(r̂ui − r̂uj). The learning algorithm for estimating the latent low rank
matrices U and V is described in Algorithm 1.

Algorithm 1: Learning procedure of WBPR-FD.

1 Input:
2 The check-in frequency matrix R, weight factors w and d, parameter α

learning rate η, regularization parameter λU and λV
3 Output:
4 U, V
5 initialize U and V
6 repeat
7 draw (u, i, j) from U × I × I
8 r̂uij ← r̂ui − r̂uj
9 Update Uu, the u-th row of U according to Equation (9);

10 Update Vi, the i-th row of V according to Equation (10);
11 Update Vj, the j-th row of V according to Equation (11);
12 Compute the objective function WBPR-FD(t) in step t according to Equation (8);
13 until WBPR-FD(t)-WBPR-FD(t− 1) < ε (tolerate error);
14 return U and V;

3.6. Complexity Analysis

The main cost of training the objective function of WBPR-FD is in computing the loss function
(denoted by Equation (8)) and its gradients against feature vectors Uu, Vv offline, as a real-time online
prediction can be performed immediately by computing r̂uv = UT

u Vv. The complexity of Equation (8)
is O(|R||I|l), where l is the dimension of latent feature vectors, |R| is the number of check-in frequency
matrix and |I| is the number of POIs. Since in our experiments, l is a very small number (set as 10), the
complexity of Equation (8) mainly depends on the huge number of training triples O(|R||I|). To reduce
the training complexity, we exploit the strategy proposed in the BPR method and use a stochastic
gradient descent algorithm based on bootstrap sampling of training triples in each update step. With
this approach, WBPR-FD chooses the triples randomly (uniformly distributed) and can converge very
quickly. The computational complexities for gradients ∂WBPR−FD

∂U , ∂WBPR−FD
∂V are both O(Nl), where N

is the number of sampled triples. Therefore, the total computational complexity is O(|R||I|l) + O(Nl),
which is linear with respect to the number of sampled triples.

4. Data Analysis and Experiments

In this section, we first investigate the relationship between two central contexts (i.e., visit
frequency and geographical distance) and users’ preferences on real-world LBSNs and then conduct
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several experiments to compare the recommendation performance of our approach with other
collaborative filtering methods and the state-of-the-art POI recommendation methods.

4.1. Datasets

We make use of two real-world datasets—Gowalla [27] and Brightkite [28]—as the data source
in our experiments [29]. Gowalla is a location-based social network launched in 2007, where users
are allowed to check into locations that they have visited, and users with similar interests can make
friends with each other. The Gowalla dataset was collected by using their public API over the period
of February 2009–October 2010. The total number of the crawled check-ins for Gowalla is 6.4 million
from 196,591 users. Brightkite is another location-based social networking website, where users are
able to check-in at places by using text message or one of the mobile applications. Brightkite also
allowed registered users to connect with their existing friends and meet new people based on the
places that they have gone. Once a user has checked in at a place, they could post notes and photos
to a location, and other users could comment on those posts. The Brightkite dataset was collected by
using their public API over the period of April 2008–October 2010 and resulted in 4.5 million check-ins
from 58,228 users. To simplify, we only consider check-in data for POI recommendation in these two
datasets. To alleviate the data sparsity, for Gowalla, we only keep users that have checked in at least
five different POIs and POIs that have been checked in at least 30 times, resulting in a user-POI matrix
with 575,323 nonzero entries. For Brightkite data, we only keep users that have checked in at least
three different POIs, and POIs that have been checked in at least 20 times, resulting in a user-POI
matrix with 100,069 nonzero entries. More details of our dataset can be found in Table 1.

Table 1. Statistics of user-POI check-in matrix.

Statistics Gowalla Brightkite

number of users 32,134 11,142
number of POIs 8867 4369

number of check-ins 575,323 100,069
Min. number of POIs per user 5 3

Min. number of check-ins per POI 1 1
Check-in sparsity 99.838 99.833

4.2. Empirical Data Analysis

To gain a better understanding of users’ check-in behaviors, in this section, we investigate the
existence of a POI difference with different visit frequency and geographical distance and try to
answer the following two questions: (1) Do POIs with similar visit frequency tend to share similar
user preferences? (2) Do POIs located in neighborhood places tend to be preferred by similar users?
To answer the first question, we need to define how to measure the similarity between a pair of POIs
from user check-in behaviors.

Let A(i) be the set of users that have visited POI i and A(j) be the set of users that have visited
POI j. The similarity between POI i and j can be computed by the cosine similarity:

Simij =
|A(i)

⋂
A(j)|√

|A(i)||A(j)|
(12)

where |A(i)| denotes the length of set A(i). However, this cosine similarity function does not consider
the influence of popular users. Intuitively, active users usually visit a wide range of POIs (she/he
may check in all of the POIs that she/he has ever gone), but many of them are not in her/his interests.
However, when we know that two POIs are often visited by inactive common users, we can say
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that these two POIs are similar with high confidence. Based on the above intuition, Breese et al. [30]
proposed the adjusted cosine similarity function:

Simij =
∑u∈A(i)∩A(j)

1
log(1+|A(u)|)√

|A(i)||A(j)|
(13)

where A(u) is the set of POIs visited by user u. The term 1/log(1 + |A(u)|) punishes the influence of
active users.

Figure 3 plots the relationship between the POI similarity and the frequency difference of
randomly-chosen POI pairs. For both Gowalla and Brightkite datasets, we can observe that the
mean value of POI similarities decreases with the increasing of frequency difference. This evidence
suggests a positive answer to our first question: POIs with similar visit frequency tend to share more
similar user preferences.
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Figure 3. Relationship between frequency difference and POI similarity in the (a) Gowalla and (b)
Brightkite datasets.

To answer the second question, we first randomly choose POI pairs from a POI dataset and then
compute the similarities of locations by using Equation (13). The geographical distance between
every POI pair is computed by the Haversine formula. Figure 4 plots the relationship between
POI similarity and the geographical distance of randomly-chosen POI pairs. From Figure 4, we can
observe that POI similarity decreases with increasing of geographical distance, which indicates that
geographically-adjacent POIs tend to be visited by the same set of users. This evidence suggests
a positive answer to our second question: neighborhood POIs are more likely to share similar
user preferences.
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Figure 4. Relationship between geographical distance and POI similarity in the (a) Gowalla and (b)
Brightkite datasets.
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4.3. Evaluation Metrics

We use three widely-used metrics [22] Precision@k, Recall@k and normalized discounted
cumulative gain (NDCG)@k to measure the personalized ranking performance of our proposed
approaches. Precision@k measures how many previously-labeled POIs are recommended to the users
among the total number of recommended POIs, and Recall@k measures how many previously-labeled
POIs are recommended to the users among the total number of labeled POIs. The formulations of
Precision@k and Recall@k are defined as follows:

Precision@k =
1
M

M

∑
u=1

|Lk(u) ∩ LT(u)|
k

Recall@k =
1
M

M

∑
u=1

|Lk(u) ∩ LT(u)|
|LT(u)|

Given an individual user u, LT(u) denotes the set of corresponding visited locations in the
testing data, and Lk(u) denotes the top k recommended POIs by a method. k is the number of the
recommendation list. M is the number of users. Specifically, we choose Precision@5 and Recall@5 as
evaluation metrics in our experiments.

Normalized discounted cumulative gain (NDCG) measures the ranking quality of a
recommendation algorithm based on the graded relevance of the recommended POIs. It varies from
0–1, with one representing the ideal ranking of the POIs. The NDCG at position k (NDCG@k) of a
ranked POI list for a given user is defined as follows [31,32]:

NDCG@k =
DCG@k
IDCG@k

where DCG@k is the discounted cumulative gain accumulated at a particular rank position k and
IDCG@k is the ideal DCG through that position k:

DCG@k =
k

∑
i=1

reli
log2(i + 1)

and IDCG@k =
|REL|

∑
i=1

reli
log2(i + 1)

where reli is the graded relevance (denoted by visit frequency in this work) of the result at position i
and |REL| is the list of relevant POIs (ordered by their relevance) in the corpus up to position k.

4.4. Performance Comparison

In order to evaluate the recommendation performance of our proposed approaches, we compare
the recommendation results with the following methods:

Random: This method provides the basic recommendation result in our experiments, which ranks
the POIs randomly for the users in the test set.

MostPopular: This method weights the POIs by how often they have been visited in the past;
that is, the order of the recommend POIs is determined by their popularity. This simple method is
supposed to have reasonable performance, since many people tend to visit the popular locations.

WRMF: The weighted matrix factorization method for one-class rating (WRMF) was proposed
by Pan et al. [33] and Hu et al. [34] for item prediction with only positive implicit feedback, which
extends the matrix factorization method and adds weights in the error function to decrease the impact
of negative samples.

GeoMF: This method was proposed by Lian et al. [1] and is the state-of-the-art method for POI
recommendation.

BPR-POI: This is our proposed method that introduces the Bayesian personalized ranking
criterion [9] for POI recommendation.

WBPR-R: This is the POI recommendation method that weights each POI pair with
randomly-generated values (bounded in [0.5, 1]).
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WBPR-F: This is our frequency-based weighted ranking method proposed for POI
recommendation by giving different weights to each POI pair.

WBPR-D: This is our geographically-based method that weights each POI pair with different
geographical distances.

WBPR-FD: This is our fused weighted ranking method that can consider the frequency difference
and geographical distance simultaneously.

In our experiments, we split the training data with different ratios to test the above algorithms.
For example, training data 80% means we randomly select 80% actions (80% user-item pairs) of each
user for training and predict the remaining 20% actions. The action selection is conducted five times
independently. The parameter settings of our approaches are: for Gowalla, we set the parameter
α = 0.8, and for Brightkite, we set α = 0.9. The regularization parameters of latent factors are set as
λU = λVi = 0.0025, λVj = 0.00025. The latent factor dimension l is set as 10.

Table 2 shows the comparison results for two real-world datasets in the measure of Precision@k
and Recall@k. Although the MostPopular method only ranks the POIs based on their popularity,
we can observe that this simple method has reasonable performance, since many people tend to
focus on popular POIs. WRMF, as the state-of-the-art matrix factorization method proposed for item
recommendation with implicit feedback, achieves a better precision than the MostPopular method,
but does worse than the BPR-POI method. BPR-POI achieves a substantial improvement over WRMF,
which indicates that optimizing the pairwise rank criteria directly for POI recommendation is more
reasonable. In this work, we also include comparisons with the state-of-the-art POI recommendation
method GeoMF. We find that our weighted ranking method WBPR-FD outperforms GeoMF in both
Gowalla and Brightkite datasets. This result indicates that treating each POI pair in a weighted way
can utilize the check-in data more effectively, and our method can model the users’ ranking preference
more accurately.

Table 2. Performance comparisons with different training datasets in the metrics of Precision@k and
Recall@k (training = 80%, k = 5). WRMF, weighted matrix factorization method for one-class rating;
BPR, Bayesian personalized ranking; WBPR-F, weighted Bayesian personalized ranking model with
visit frequency; WBPR-D, weighted Bayesian personalized ranking model with geographical distance.

Metric Dataset Random MostPopular WRMF GeoMF BPR-POI WBPR-F WBPR-D WBPR-FD

Precision@k Gowalla 0.00046 0.01562 0.0500 0.0602 0.0613 0.0665 0.06846 0.06952
Brightkite 0.00058 0.01811 0.04828 0.04987 0.04739 0.04866 0.05091 0.05227

Recall@k Gowalla 0.00055 0.02236 0.0667 0.1004 0.1001 0.10531 0.10803 0.11140
Brightkite 0.00104 0.04146 0.10484 0.10943 0.10929 0.10852 0.1164 0.11794
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Figure 5. Performance comparisons with different training datasets in the metric of normalized
discounted cumulative gain (NDCG)@k (Dimensionality = 10, k = 5). (a) NDCG@k in Gowalla; (b)
NDCG@k in Brightkite.
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Figure 5 shows the comparison results in the measure of NDCG@k, from which similar results
can be observed, that is our weighted ranking method can also do well in the metric that considers the
positions of the result list.

To explore the effectiveness of different ways of deducing the weight factor, we conduct
experiments on three methods by utilizing visit frequency, geographical distance and fused information
separately, where the WBPR-FD method outperforms WBPR-F and WBPR-D and reaches the best
performance. This result demonstrates that only using the frequency or distance context to weight POI
pairs will not get satisfactory results, and it is beneficial to fuse them together. To further explore the
impact of weight factors on the recommendation results, we conduct experiments on the method that
generates the weight values randomly. As shown in Figure 6, although WBPR-R generates the weight
values randomly, it slightly does better than the method BPR-POI that treats each POI pair equally,
but does worse than WBPR-F and WBPR-D. This result also indicates that treating each POI pair in a
weighted way is helpful, and the weight factors we learned are effective for POI recommendation. Note
that with a small value of latent factor dimensions, the results of MF-based methods BPR-POI, WRMF,
WBPR-F, WBPR-D and WBPR-FD can achieve a reasonable performance, which can significantly
reduce the computational complexity. Hence, in our following experiments, we set the latent factor
dimension to 10.
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Figure 6. Impact of weight factors on the recommendation performance in Gowalla and Brightkite
(Dimensionality = 10, k = 5). (a) Precision@k in Gowalla; (b) Recall@k in Gowalla; (c) Precision@k in
Brightkite; (d) Recall@k in Brightkite.

4.5. Impact of Parameters

4.5.1. Impact of the Normalization Boundary of the Weight Factors

In WBPR-F and WBPR-D, we use the normalized version of the weight factors (wuij and dij)
to weight POI pairs and bound them into [0.5, 1]. To explore the impact of different normalization
boundaries of the weight factors on the recommendation performance, we conduct experiments on a
real-world dataset by varying the value of the normalization boundary from 0–1. Figure 7 shows the
comparison results on Gowalla and Brightkite data. We observe that when the normalization boundary
increases, the values of Precision@k and Recall@k increase (recommendation performance increase) at
first, but when the boundary surpasses a certain threshold (0.5), the values of Precision@k and Recall@k
decrease with the boundary further increasing. The reason that a small normalization boundary does
not work is that in our data, many POI pairs are neighborhood places and have similar visit frequencies.
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In these cases, when we update the latent factors (denoted in Equations (5) and (7)), only the latter
information (i.e., λUUu, λVVi and λVVj) is used, and the former information of Equations (5) and (7) is
lost. Hence, in the experiments, we choose 0.5 as the normalization boundary.
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Figure 7. Impact of normalization boundary of the weight factors on the recommendation performance
in Gowalla and Brightkite (dimensionality = 10, k = 5). (a) Precision@k in Gowalla; (b) Recall@k in
Gowalla; (c) Precision@k in Brightkite; (d) Recall@k in Brightkite.

4.5.2. Impact of Parameter α

In WBPR-FD, the parameter α plays an important role and balances the information from visit
frequency and geographical distance to weight POI pairs. It controls how much our weighted Bayesian
personalized ranking method WBPR-FD should depend on the geographical distance. If α = 0, we
will only utilize the visit frequency to weight the difference of two POIs. If α = 1, we will only utilize
the geographical distance to weight POI differences. In other cases, we simultaneously weight the POI
difference from the information of visit frequency and geographical distance.

To get an appropriate α value, we use a five-fold cross-validation to learn and test. We conduct
each experiment five times and take the mean value as the final result. Figure 8 illustrates how the
changes of α affect the recommendation results on the measures Precision@k and Recall@k. We notice
that although the metrics Precision@k and Recall@k jump all over the place by varying α from 0–1, but
in overview, purely utilizing visit frequency or geographical distance for recommendations cannot
make better results than fusing them together. This result also indicates that although the geographical
distance and visit frequency are both impact factors, it is difficult to distinguish which factor has a
greater impact on the recommendation results. In experiments, we choose the settings that can reach
the best results as the final α value. For Gowalla, we set α as 0.8. For Brightkite, we set α as 0.9.
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Figure 8. Impact of parameter α on the recommendation performance in Gowalla and Brightkite
(dimensionality = 10, k = 5). (a) Precision@k in Gowalla; (b) Recall@k in Gowalla; (c) Precision@k in
Brightkite; (d) Recall@k in Brightkite.

4.6. Impact of Recommended POI Sizes

In the top-k POI recommendation systems, users can specify the number of most relevant POIs
that the system shall return to her/him. Appropriate POI size helps to avoid overwhelming the user
with a large number of POIs by returning only the number of the most relevant ones that she/he
wishes. In our experiments, we varied the number of recommended POIs provided to the users, and
set the POI size k from 1–10.
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Figure 9. Impact of recommended POI size in the Gowalla and Brightkite data. (a) Precision@k in
Gowalla. (b) Recall@k in Gowalla. (c) Precision@k in Brightkite. (d) Recall@k in Brightkite.
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Figure 9 shows how the change of k affects the recommendation results of our WBPR-FD method
on Precision@k and Recall@k, which only considers the top-most results returned by the system. We
observe that when the number of recommended POIs increases, the hits of correct POIs increase, and
this results in the increase of Recall@k values and the decrease of Precision@k values. The increase of
the Recall@k denotes that the recommended POI list can cover more previous labeled POIs, which
indicates that the ability of retrieving relevant POIs of our method is increasing. The decrease of
Precision@k denotes that the recommended POI list can hit less correct POIs, which indicates that the
ability of predicting correct POIs of our method is decreasing.

4.7. Convergence Analysis

We further compare the convergence of the WBPR-FD and the BPR-POI method. Figure 10 shows
the comparison results on the Gowalla and Brightkite data. For these two methods, in each iteration,
we select the same number of instances for training and set the learning rate for both as 0.05. From
the results, we see that both BPR-POI and WBPR-FD can converge within 50 iterations in Gowalla
data and within 60 iterations in Brightkite data. Incorporating a weight factor does not slow down the
convergence rate of WBPR-FD, but makes it achieve a higher performance than BPR-POI.
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Figure 10. Convergence analysis on the Gowalla and Brightkite datasets. (a) Precision@k in Gowalla;
(b) Recall@k in Gowalla; (c) Precision@k in Brightkite; (d) Recall@k in Brightkite.

5. Conclusions

With the rapid growth of LBSNs, how to effectively recommend POIs to users has become more
and more important. In this work, we focused on the POI recommendation problem in the implicit
feedback and proposed a novel weighted POI ranking method named WBPR-FD. We derived the
optimization criterion of WBPR-FD from a Bayesian analysis of the problem, where we weighted each
POI pair by utilizing visit frequency and geographical distance to improve the POI recommendation
performance. Data analysis and experimental results on two real-world datasets demonstrated the
existence of POI differences and the effectiveness of the weighted POI ranking method WBPR-FD.

In this work, we mainly focused on how to model the POI difference by giving different weights
to each POI pair, but we did not consider the users’ social interests. In fact, users who have similar
social relations tend to visit similar POIs. As future work, we plan to develop new social interest-aware
algorithms to further improve our weighted POI ranking method.
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