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Abstract: Electricity demand forecasting can provide the scientific basis for the country to formulate
the power industry development strategy and the power-generating target, which further promotes
the sustainable, healthy and rapid development of the national economy. In this paper, a new
mathematical hybrid method is proposed to forecast electricity demand. In line with electricity
demand feature, the framework of joint-forecasting model is established and divided into two
procedures: firstly, the modified GM(1,1) model and the Logistic model are used to make single
forecasting. Then, the induced ordered weighted harmonic averaging operator (IOWHA) is applied to
combine these two single models and make joint-forecasting. Forecasting results demonstrate that this
new hybrid model is superior to both single-forecasting approaches and traditional joint-forecasting
methods, thus verifying the high prediction validity and accuracy of mentioned joint-forecasting
model. Finally, detailed forecasting-outcomes on electricity demand of China in 2016–2020 are
discussed and displayed a slow-growth smoothly over the next five years.

Keywords: electricity demand; joint-forecasting model; IOWHA operator; modified GM(1,1) model;
logistic model

1. Introduction

Electric power industry, as the foundation and pillar industry for China’s economic development,
affords the guarantee of social power demand and rapid economy expansion [1]. In addition, electricity
is a special commodity that has the characteristics of instantaneous production, transportation and
consumption as well as non-storage. Thus, there is important practical significance for forecasting
future electricity demand. On the one hand, electricity demand forecasting contributes to reasonable
electricity development formulation theoretically. On the other hand, such a sort of prediction
can assist in addressing and timely adjusting electricity demand variation condition towards the
sustainability [2].

At present, electricity consumption demand has been at the vanguard of attention by numerous
scholars and organizations. Trotter et al. [3] carried out a long-term and probabilistic electricity demand
prediction for Brazil during 2016–2100. Kishita et al. [4] discussed the electricity consumption of Japan’s
telecommunications industry up to 2030. Schweizer et al. [5] applied a simple analytical approach to
US’s long-term electricity demand foresting. In light of the necessity to diminish the high temperatures
of Singapore’s buildings, Seung et al. [6] proposed a power consumption forecasting model in the long
term. Likewise, D’Errico [7] and Kandananond et al. [8] recommended different forecasting methods
to prediction modeling and estimation of the electricity demand respectively in the district of Italy and
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Thailand. Hernandez et al. [9] presented a data processing system to demonstrate energy consumption
patterns in industrial parks, and the system is validated with real load data from an industrial park
in Spain.

Plentiful studies on electricity demand foresting approaches have been adopted in depth.
In general, predicted-electricity methods in the demand side have be split into two separate
aspects, known as conventional approaches and modern intelligent methods. When it comes to
conventional dimension, models like the time series method [10,11], index decomposition method [12],
grey prediction [13], fuzzy prediction method [14], regression analysis [15], etc. are extensively
utilized. Herewith, Tepedino et al. [10] presented a time series analysis model and its application
to the electricity consumption of public transportation in Sofia (Bulgaria) in 2011, 2012 and 2013.
Pappas et al. [11] proposed an adaptive method based on the multi-model partitioning algorithm
including autoregressive integrated moving average (ARIMA) model, for short-term electricity demand
forecasting. Perez-Garcia et al. [12] presented an alternative analysis of electricity demand on the
basis of a simple growth rate decomposition scheme that allows the key factors identified under
this evolution—while, until 2030, the proposed methodology is illustrated using Spain as a case
study to obtain demand projections. Zhao et al. [13] recommended an improved GM(1,1) model
to forecast the electricity consumption of Inner Mongolia, which has enhanced the forecasting
performance of annual electricity consumption significantly. Torrini et al. [14] proposed an extension
of fuzzy logic methodology to forecast electricity consumption in Brazil and concluded with
meaningful outcomes. Simple and multiple linear regression analysis along with a quadratic regression
analysis were performed by Fumo et al. [15] using hourly and daily data from a research house.
In spite of well-developed theory, thorough validated tools and simplified calculation comparatively,
this traditional means proved to display a simplex range of application and low-accuracy prediction.

As for the practical implementation of modern intelligent methods, Dong et al. [16] developed
a hybrid model to tackle the drawbacks of residential load forecasting hour and day ahead through
the integration of data-driven techniques with a physics-based model. Their findings showed that
improvements of variance coefficient between the best data-driven model and hybrid model are
6%–10% and 2%–15%, respectively. While Alamaniotis et al. [17] employed two types of kernel
machines, namely Gaussian process regression and relevance vector regression, for medium-term load
projections. In addition, Ekonomou et al. [18,19] used artificial neural networks (ANN) to forecast the
long-term energy consumption in Greece and made a comparison among several ANNs. Apparently,
these modern intelligent methods have obtained a series of achievements, including avoidance of
the traditional process from induction to deduction, transduction inference realization from training
samples to predicted samples, as well as simplified regression course. Nevertheless, its requirement for
massive historical data as a training sample to maintain favourable precision of prediction is especially
dispensable for annual power demand forecasting issues.

Indeed, the above-mentioned power demand forecasting approaches reflect the single
characteristic notably, thus aggravating the risk of predicted method selection and accompanying
forecast error. Comparatively, it is preponderant inevitably for joint-forecasting modeling to develop
less sensitive reaction to single inferior method and improve the prediction precision in the integration
of sorts of single methods. Based on this point, Bates and Granger [20] primarily proposed
joint-forecasting modeling by the principle that weight coefficient varies from various single method
varieties. The weight of a single method at each time point is changeless [21–24]. However, the reality
is that the performance of a single method is not the same at different times, that is, the prediction
accuracy is higher at a certain point in time and the prediction accuracy is lower at another time.
Therefore, such methods, usually called traditional joint-forecasting models, exist, and the defects
do not match the facts. In consideration of its deficiency, from Chen et al. [25], the optimized
joint-forecasting modeling process is introduced through the reduction of an induced ordered weighted
harmonic averaging operator (IOWHA) and relevant joint-forecasting methods on IOWHA-layered
levels. Its basic idea is that the weights of each single forecasting method are ordered according to
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the prediction accuracy at each time point, which can effectively improve the forecasting accuracy.
Without a doubt, this modified joint-forecasting modeling on the basis of integration of the ordered
weighted averaging operator (OWA) [26–28] with ordered weighted geometric averaging operator
(OWGA) [29] is superior to the existing combined prediction modes.

Herewith, this paper establishes a new joint-forecasting model based on the IOWHA operator to
predict the electricity demand in China. In the selection of single forecasting methods, GM(1,1) has the
advantages of small sample size, simple calculation and testability, which is suitable for short-term
prediction. For long-term prediction, the gray value of the predicted value is too large, and the accuracy
is gradually reduced with time extension. Thus, this paper chooses modified GM(1,1) based on the
moving average method as one of the single forecasting methods. Additionally, the Logistic curve
can be illustrated by a growth curve. The growth of biological multiplication approximately fits
the logistics curve, which could be classified into the basic stage, growth stage and stable stage [30],
and so it is with some natural and social issues. To be exact, the development tendency of electricity
demand is consistent with the Logistic growth curve. Thus, the Logistic model is selected as another
single forecasting method in this paper. Forecasting results demonstrate that this new hybrid model is
superior to both single-forecasting approaches and traditional joint-forecasting methods, thus verifying
the high prediction validity and accuracy of the above-mentioned joint-forecasting model. In addition,
the detailed forecasting outcomes on electricity demand of China in 2016–2020 displayed a smooth,
slow growth over the next five years. The remainder of this paper is organized as below: Section 2
describes the variation tendency of China’s electricity demand; Section 3 presents a single prediction
model, respectively. In Section 4, an overview of joint-forecasting analysis of China’s electricity demand
is introduced, including joint-forecasting modeling, results and discussions. Finally, Section 5 provides
conclusions and policy implications.

2. Variation Tendency of China’s Electricity Demand

Up to 2015, China’s electricity consumption was estimated to meet about 5654.44 million MW·h,
and be responsible for roughly a quarter of global gross electricity consumption. On account of being
the top global-electricity consumer, China is a powerful selection as the study objective.

Above all, there is a necessity to depict the variation tendency of China’s electricity demand.
Data is derived from the China Statistical Yearbook. As illustrated in Table 1 and Figure 1, the annual
electricity demand of China has enjoyed stable and relatively fast growth during the period from 2000
to 2015, with an average annual growth rate of 10.13% and the steepest increase beginning in 2003 with
a growth rate of 16.53%. In 2000–2007, electricity demand still maintains a high upward speed with
an average growth rate of 13.54%, while electricity demand in 2008–2009 slowed down especially for
export-oriented areas (such as East China and Guangdong, at merely 5.59% and 7.21%) due to several
constraint factors, including crunch domestic credit, RMB appreciation, changes in international
market demand, adjusted import–export policy, and regulatory resources, climate anomaly, etc.

Since 2010, along with the comprehensive implementation of the “12th Five-Year Program”,
China has been accelerating the shift in the economic growth model to achieve sound and fast
economic growth, together with an attempt on strategic emerging industries and an upgrade of
traditional industries. Subsequently, continuous adjusted consumption structure has curbed the
excessive expansion of heavy energy-consuming industries (including chemical industries, building
materials, black metal smelting and smelting non-ferrous metal) and suppressed China’s electricity
demand at a lower level. In 2015, China typically shows a year-on-year electricity demand growth of
0.5% together with a year-on-year growth rate drop 3.3%. Under the existence of multiple uncertainties,
electricity demand prediction is worthy of further exploration for prospective programming.
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Table 1. Annual electricity consumption of China in 2000–2015.

Year Gross Electricity Consumption
[Million MW·h] Growth Rate [%]

2000 1347.24 -
2001 1463.35 8.62
2002 1633.15 11.60
2003 1903.16 16.53
2004 2197.14 15.45
2005 2494.03 13.51
2006 2858.80 14.63
2007 3271.18 14.42
2008 3454.14 5.59
2009 3703.22 7.21
2010 4193.45 13.24
2011 4700.09 12.08
2012 4976.26 5.88
2013 5420.34 8.92
2014 5626.31 3.80
2015 5654.44 0.50

Data source: China Statistical Yearbook [31].
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3. Methodology

In order to forecast China’s electricity demand efficiently and precisely, an IOWHA operator-based
joint-forecasting method is proposed here. In addition, this study chooses modified GM(1,1) and the
Logistic model as single predicted models.

3.1. Modified GM(1,1)

For the purpose of settling an overlarge gray level in the GM(1,1) model, it is reasonable to process
data using a moving averaging method to eliminate the extremum effect and reinforce variation trends
towards an ascending series. Data processing is described as follows.

The original series is denoted as
{

x(0)(t)
}

, t = 1, 2, · · · , n, while moving average is calculated as
Equation (1):

x′(0)(t) =
x(0)(t− 1) + 2x(0)(t) + x(0)(t + 1)

4
. (1)

The above calculation not only adds the weight of previous data, but also avoids
excessive volatility.
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Equations (2) and (3) explain the computation at two endpoints:

x′(0)(1) =
3x(0)(1) + x(0)(2)

4
, (2)

x′(0)(n) =
x(0)(n− 1) + 3x(0)(n)

4
. (3)

Through the former steps to improve original data and remaining procedures equal to the original,
the resulting modified GM(1,1) model on the basis of a moving averaging method can be obtained.

3.2. Logistic Model

Logistic model, known as the Verhulst–Pearl equation, was firstly put forward by Verhulst–Pearl
in 1938. Under certain circumstances, the Logistic model refers to properties in which the actual growth
rate decreased gradually in the pursuit of growth’s upper threshold. The Logistic model equation is
constructed as Equation (4) [27]:

y =
K

1 + ea−rt . (4)

Parameters K, a, r of the Logistic model are estimated from Equations (5)–(10).
Firstly, a three-point method or four-point method is applied to compute K and transform

Equation (4) into Equation (5):

ln
K− y

y
= a− rt = g(t). (5)

Set the measured data as (t1, y1), (t2, y2), · · · , (tn, yn), where n is the number of measured data.
If n is odd, the three-point method will be chosen to identify initial point (t1, y1), middle point(

t(1+n)/2, y(1+n)/2

)
and end point (tn, yn). Put these three points into Equation (5), and K can be

calculated through the relationship 2t(1+n)/2 = t1 + tn. The estimated value of K is shown as follows:

K̂ =
2y1y(1+n)/2yn − y2

(1+n)/2(y1 + yn)

y1yn − y2
(1+n)/2

. (6)

Likewise, if n is even, a four-point method is selected to affirm initial point (t1, y1), two middle
points (tn/2, yn/2), (tn/2+1, yn/2+1) and end point (tn, yn). Put these four points into Equation (5),
and K can be computed through relationship tn/2 + tn/2+1 = t1 + tn. The estimated value of K is
shown in Equation (7):

K̂ =
y1yn(yn/2 + yn/2+1)− yn/2yn/2+1(y1 + yn)

y1yn − yn/2yn/2+1
. (7)

Secondly, estimate the value of a and r. Set g(t) = ln(K− y(t)/y(t)). According to the measured
data (t1, y1), (t2, y2), · · · , (tn, yn), data (t1, g1), (t2, g2), · · · , (tn, gn) can be obtained. Thus,

g(t) = a− rt. (8)
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Equation (8) is a linear function of g(t) with respect to t. From the scatter plot of (ti, gi),
the regression line ĝ(t) = â − r̂t can be calculated according to the least square principle, where
â and r̂ are the estimated values of a and r. The sum of deviations squares between measured values
and theoretical value remains Q(â, r̂) = ∑n

i=1(gi(t)− ĝi(t))
2. Q(â, r̂) describes the deviation degree

between splashes and regression line ĝ(t) = â− r̂t. Since Q(â, r̂) is a nonnegative binary function,
the minimum value exists. Compute the first derivative of Q(â, r̂) to â, r̂ and let it be zero, shown in
Equations (9) and (10):

â = g + r̂t, (9)

r̂ = ∑n
i=1 tigi − ntg

nt2 −∑n
i=1 t2

i

, (10)

where t = ∑n
i=1 ti/n and g = ∑n

i=1 gi/n.

3.3. IOWHA Operator-Based Joint-Forecasting Model

The IOWHA operator-based joint-forecasting model can overcome the shortcomings of the
traditional weighted combination forecasting method. Its basic idea is that the weights of each single
forecasting method is ordered according to the prediction accuracy at each time point, which can
effectively improve the forecasting accuracy. The operation steps of proposed model is shown as
follows [25].

The forecasting accuracy is defined as Equation (11):

λit =

{
1− |(xt − xit)/xt| i f |(xt − xit)/xt| < 1
0 i f |(xt − xit)/xt| ≥ 1

i = 1, 2 t = 1, 2, · · · , N , (11)

where λit represents the forecasting accuracy of method i at time t. Obviously, λit ∈ [0, 1]. In this
paper, the number of single forecasting method is set as 2.

Taken as induced value of xit, forecasting accuracy λit at time t and a relevant sample interval can
construct two two-dimensional arrays 〈λ1t, x1t〉 and 〈λ2t, x2t〉. Supposing W = (w1, w2)

T as a weight
vector of OWHA in two single forecasting methods, the forecasting accuracy sequences λ1t and λ2t
of two kinds of single forecasting methods’ prediction methods at time t are arranged in descending
order. Set λ− index(it) as the subscript of the i-th large forecasting accuracy. Thus,

IOWHA(〈λ1t, x1t〉, 〈λ2t, x2t〉) = 1/∑2
i=1

(
wi

xλ−index(it)

)
. (12)

Suppose Equation (12) is the IOWHA joint-forecasting value based on forecasting accuracy
sequences λ1t and λ2t at time t.

Thus, the IOWHA operator-based joint-forecasting model is established in Equation (13):

minF(W) =
2
∑

i=1

2
∑

j=1
wiwj(

N
∑

t=1
ea−index(it)ea−index(jt))

s.t.


2
∑

i=1
wi = 1

wi ≥ 0, i = 1, 2

, (13)

where ea−index(it) = 1/xt − 1/xλ−index(it).
In addition, due to the non-negativity of an IOWHA operator-based joint weight vector, the most

optimal solution of Equation (13) is determined by Equation (14):

W∗ = E−1R/RTE−1R, (14)
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where Eij = ∑N
t=1 ea−index(it)ea−index(jt); i, j = 1, 2, R = (1, 1)T ; and E = (Eij)2×2 is an informative

square matrix of a second-order reciprocal error of IOWHA operator-based joint-forecasting.
Thus far, the electricity demand joint-forecasting mode based on an IOWHA operator combing

modified GM(1,1) and the Logistic model is constructed entirely. Detailed operational process is shown
in Figure 2.
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4. Joint Forecasting of China’s Electricity Demand

4.1. Single Forecasting

Hereby, total electricity demand of China in 2000–2015 is filtered as the benchmark to test
the effectiveness and superiority of proposed joint-forecasting model. Firstly, modified GM(1,1)
(abbreviated as MGM(1,1)) and the Logistic model are employed separately to calculate electricity
demand (shown in Table 2). The definition of forecasting accuracy in Table 2 is shown in Equation (11).
In the application of the Logistic model to address even date number, we exploit Equation (7) to
compute parameter K and Eviews software (Version 7.2, IHS Global Inc., Irvine, CA, USA) in order to
estimate the parameter value a and r, demonstrated in Table 3.
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Table 2. Single forecasting results.

Year
Actual Demand Value

[Million MW·h]
Forecasting Demand Value Forecasting Accuracy

MGM(1,1) Logistic MGM(1,1) Logistic

2000 1347.24 1352.44 1245.88 0.9961 0.9248
2001 1463.35 1475.88 1453.32 0.9914 0.9931
2002 1633.15 1657.40 1686.09 0.9852 0.9676
2003 1903.16 1889.27 1944.29 0.9927 0.9784
2004 2197.14 2163.75 2227.09 0.9848 0.9864
2005 2494.03 2473.10 2532.51 0.9916 0.9846
2006 2858.80 2809.58 2857.42 0.9828 0.9995
2007 3271.18 3165.46 3197.59 0.9677 0.9775
2008 3454.14 3533.00 3547.78 0.9772 0.9729
2009 3703.22 3904.46 3902.13 0.9457 0.9463
2010 4193.45 4272.11 4254.47 0.9812 0.9854
2011 4700.09 4628.19 4598.77 0.9847 0.9784
2012 4976.26 4964.99 4929.56 0.9977 0.9906
2013 5420.34 5274.75 5242.21 0.9731 0.9671
2014 5626.31 5549.75 5533.19 0.9864 0.9834
2015 5654.44 5782.24 5800.14 0.9774 0.9742

Table 3. Parameter estimation result of Logistic model.

Parameter K a r

Estimation value 7573.5763 1.8124 0.1873

In line with Equation (11), the respective forecasting accuracy of single forecasting method
MGM(1,1) and Logistic model can be computed shown in Figure 3. As can be seen from Table 2
and Figure 3, ten years in the MGM(1,1) model, excluding 2001, 2004, 2006, 2007, 2009, and 2010,
appears to be a stricter prediction level than the Logistic model; however, the Logistic model possesses
a more pregnant accuracy over the MGM(1,1) model in six years including 2001, 2004, 2006, 2007,
2009 and 2010. Visibly, the same single-forecasting method varies discrepantly at different moments,
i.e., accuracy fluctuation at a higher level at some points and lower levels at another point. Thus,
the combination of different single-forecasting methods and flexible assignment of weight coefficient
values can efficiently and vitally deal with this weakness.
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4.2. Joint Forecasting

According to Equation (12), joint-forecasting value can be obtained at each point on the basis of
the IOWHA operator. Detailed results are shown as follows:

IOWHA(〈λ11, x11〉, 〈λ21, x21〉) = 1/(w1/1352.44 + w2/1245.88),

IOWHA(〈λ12, x12〉, 〈λ22, x22〉) = 1/(w1/1453.32 + w2/1475.88),

IOWHA(〈λ13, x13〉, 〈λ23, x23〉) = 1/(w1/1657.40 + w2/1686.09),

IOWHA(〈λ14, x14〉, 〈λ24, x24〉) = 1/(w1/1889.27 + w2/1944.29),

IOWHA(〈λ15, x15〉, 〈λ25, x25〉) = 1/(w1/2227.09 + w2/2163.75),

IOWHA(〈λ16, x16〉, 〈λ26, x26〉) = 1/(w1/2473.10 + w2/2532.51),

IOWHA(〈λ17, x17〉, 〈λ27, x27〉) = 1/(w1/2857.42 + w2/2809.58),

IOWHA(〈λ18, x18〉, 〈λ28, x28〉) = 1/(w1/3197.59 + w2/3165.46),

IOWHA(〈λ19, x19〉, 〈λ29, x29〉) = 1/(w1/3533.00 + w2/3547.78),

IOWHA(〈λ110, x110〉, 〈λ210, x210〉) = 1/(w1/3902.13 + w2/3904.46),

IOWHA(〈λ111, x111〉, 〈λ211, x211〉) = 1/(w1/4254.47 + w2/4272.11),

IOWHA(〈λ112, x112〉, 〈λ212, x212〉) = 1/(w1/4628.19 + w2/4598.77),

IOWHA(〈λ113, x113〉, 〈λ213, x213〉) = 1/(w1/4964.99 + w2/4929.56),

IOWHA(〈λ114, x114〉, 〈λ214, x214〉) = 1/(w1/5274.75 + w2/5242.21),

IOWHA(〈λ115, x115〉, 〈λ215, x215〉) = 1/(w1/5549.75 + w2/5533.19),

IOWHA(〈λ116, x116〉, 〈λ216, x216〉) = 1/(w1/5782.24 + w2/5800.14),

where w1 and w2, respectively, represent the weight vector of two types of forecasting methods in joint
prediction. They are calculated as reciprocal errors and substituted into Equation (13), thus requiring
the optimized model as below:

minF(w1, w2) =
(
5.2520w2

1 + 5.3658× w1 × w2 + 47.6656w2
2
)
× 0.0001

s.t.


2
∑

i=1
wi = 1

wi ≥ 0, i = 1, 2

The optimum weight coefficients of joint-forecasting models are obtained from Equation (14),
namely, w1 = 0.945 and w2 = 0.055. For the sake of verifying the validity and superiority of the
proposed joint-forecasting model, the traditional joint-forecasting method is introduced in this paper
for comparison. The basic idea of traditional joint-forecasting methods is with the foundation of
a minimum square sum of error, and the detailed procedures are shown in Reference [24]. Accordingly,
joint-forecasting modeling results are included in Table 4.
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Table 4. Joint-forecasting modeling results.

Year
Actual Demand Value

[Million MW·h]

Forecasting Demand Value [Million MW·h]

Traditional
Joint-Forecasting Model

IOWHA Operator-Based
Joint-Forecasting Model

2000 1347.24 1352.80 1346.11
2001 1463.35 1475.95 1454.54
2002 1633.15 1657.30 1658.95
2003 1903.16 1889.08 1892.21
2004 2197.14 2163.54 2223.51
2005 2494.03 2472.90 2486.29
2006 2858.80 2809.42 2854.75
2007 3271.18 3165.36 3215.80
2008 3454.14 3532.95 3483.81
2009 3703.22 3904.47 3802.26
2010 4193.45 4272.17 4225.44
2011 4700.09 4628.29 4626.57
2012 4976.26 4965.11 4963.03
2013 5420.34 5274.86 5342.95
2014 5626.31 5549.81 5588.84
2015 5654.44 5782.18 5683.22

4.3. Forecasting Effect Discussion

Figure 4 is derived from the summary of single forecasting in Table 2 and joint-forecasting
results in Table 4, indicating the contrastive analysis of electricity demand separately using single and
IOWHA operator-based joint-forecasting methods (Figure 4a), single and traditional joint-forecasting
methods (Figure 4b), as well as traditional and IOWHA operator-based joint-forecasting methods
(Figure 4c). Their findings show that, for single methods, forecasting accuracy of the MGM(1,1) model
is higher than the Logistic model, while that of traditional joint means and IOWHA operator-based
joint-forecasting approaches all exceed single MGM(1,1) models and Logistic models. Compared
with traditional joint means, IOWHA operator-based joint-forecasting approaches own more precise
prediction capacity.Information 2017, 8, 33  11 of 16 
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Figure 4. Single and joint-forecasting results of electricity demand. (a) The results comparison of
MGM(1,1), Logistic and IOWHA operator model; (b) The results comparison of MGM(1,1), Logistic
and traditional joint model; (c) The results comparison of IOWHA operator and traditional joint model.

For validity examination of the proposed IOWHA operator-based joint-forecasting model,
the following six aspects served as the evaluation index, including relative error (RE), error of sum
square (SSE), mean square error (MSE), mean absolute error (MAE), mean absolute percentage error
(MAPE) and mean square percent error (MSPE):

RE = (x̂t − xt)/xt, (15)

SSE = ∑N
t=1(xt − x̂t)

2, (16)

MSE =
1
N

√
∑N

t=1(xt − x̂t)
2, (17)

MAE =
1
N ∑N

t=1|xt − x̂t|, (18)

MAPE =
1
N ∑N

t=1|(xt − x̂t)/xt|, (19)

MSPE =
1
N

√
∑N

t=1[(xt − x̂t)/xt]
2, (20)

where xt denotes the actual value, x̂t represents the forecasting value and N means the number
of samples.

Figure 5 and Table 5 show the relative error analysis of forecasting results of China’s electricity
demand. Table 6 summarizes the forecasting results of China’s electricity demand. As can be seen from
Figure 5, rangeability of relative error in IOWHA operator-based joint-forecasting models ranks the
lowest, followed by the traditional joint-forecasting model and the MGM(1,1) model, and the Logistic
model is at the bottom. The rangeability of relative error shows a great disparity, i.e., the maximum
of the Logistic model, traditional joint methods and the MGM(1,1) model, respectively, are −7.52%,
5.43% and 5.37%, yet the maximum of the IOWHA operator-based method is 2.67% and the minimum
is −0.08%. Observed from Table 5, being that the variation range of relative error is [−1%, 1%],
the IOWHA operator-based method possesses 10 units of years at about 62.5%, followed by traditional
joint methods and the MGM(1,1) model separately in five at about 31.25%, and then the Logistic model
in three at about 18.75%. However, during the interval of (−8%,−2%)∪ (2%, 8%), the least occupancy
is the IOWHA operator-based method at one at about 6.25%, followed by traditional joint methods and
MGM(1,1) model separately at five at about 31.25%, and then Logistic model at nine at about 56.25%.
Moreover, the evaluation index values of the IOWHA operator-based method are all less than the
other forecasting models, especially MAPE at 0.0093. Above all, the proposed IOWHA operator-based
joint-forecasting method enhances prediction accuracy dramatically and is appropriate for electricity
demand forecasting.
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Table 5. Relative error statistics of forecasting results of China’s electricity demand.

Forecasting
Model

[−1%, 1%] [−2%, −1%)∪(1%, 2%] (−8%, −2%)∪(2%, 8%)

Number Percentage Number Percentage Number Percentage

MGM(1,1) 5 31.25 6 37.5 5 31.25

Logistic 3 18.75 4 25 9 56.25

Traditional
joint 5 31.25 6 37.5 5 31.25

IOWHA
operator 10 62.5 5 31.25 1 6.25

Table 6. Forecasting result estimation of China’s electricity demand.

Forecasting Model SSE MAE MSE MAPE MSPE

MGM(1,1) 1.1771×107 660.6250 214.4280 0.0178 0.0054
Logistic 1.4880×107 792.1275 241.0911 0.0244 0.0075

Traditional Joint 1.1770×107 661.1094 214.4269 0.0177 0.0053
IOWHA operator 3.0217×106 332.0750 108.6445 0.0093 0.0029

SSE: error of sum square; MAE: mean absolute error; MSE: mean square error; MAPE: mean absolute percentage
error; MSPE: mean square percent error.

4.4. Future Electricity Demand Forecasting

A future electricity demand forecasting model is put forward and recognized as Equation (21) at
time [n + 1, n + 2, · · · , n + k]:

IOWHA(〈λ1t, x1t〉, 〈λ2t, x2t〉) = 1/
2

∑
i=1

(
wi

xλ−index(it)

)
, t = n + 1, n + 2, · · · , n + k, (21)

where n represents the number of original data. λ1t and λ2t denote the forecasting accuracy at
time [n + 1, n + 2, · · · , n + k], which are obtained from the average forecasting accuracy shown in
Equation (22):

λit =
1
k

n
∑

t=n−k+1
λit, i = 1, 2 . (22)
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Then, the joint-forecasting results can be obtained according to the optimal weight coefficients.
The forecasting results of China’s electricity demand from 2016 to 2020 are shown in Table 7.

Table 7. China’s electricity demand forecasting results in 2016–2020 (Unit: Million MW·h).

Year MGM(1,1) Logistic IOWHA Operator

2016 5964.49 6041.83 5968.69
2017 6088.75 6258.05 6157.83
2018 6147.30 6449.43 6283.18
2019 6132.39 6617.23 6357.20
2020 6036.28 6763.12 6412.17

5. Discussion

Figure 6 depicted China’s electricity demand forecasting results using single and IOWHA
operator-based joint-forecasting models, respectively. Figure 7 explained the annual growth rate
variation of electricity demand forecasting values. Diagnosed from these two diagrams, electricity
demand from the Logistics model embodies an upward trend rapidly with an average growth rate
at nearly 3.5%. Comparatively, the MGM(1,1) model expresses a downward trend slowly, signifying
the decline of the future electricity demand of China to some extent. Annual growth rate from the
IOWHA operator-based joint-forecasting model lies in the intermediate state, i.e., 2%. In combination
with the actual economic conditions of China, being an epoch of industrial structure adjustment and
industrial transformation and upgrades, its electricity demand maintains a rising trend steadily and
slowly, which is consistent with the IOWHA operator-based joint-forecasting model.Information 2017, 8, 33  14 of 16 
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6. Conclusions

This paper puts forward a new joint-forecasting model of electricity demand, and the framework
is divided in two procedures. Firstly, the modified GM(1,1) model and Logistic model are used to make
single forecasting. Then, the IOWHA operator is applied to combine these two single models and
make joint-forecasting for China’s electricity demand in 2016–2020. Accordingly, several conclusions
have been drawn and discussed in a modest detail, just as follows:

(1) Because forecasting accuracy of one single predicted-method varies greatly at various moments
and deteriorates overall precision, joint-forecasting modeling could remarkably facilitate the overall
precision by the weight assignment to combine different kinds of single models.

(2) Deduced from numerical analysis, the new proposed IOWHA operator-based joint-forecasting
modeling is superior to both single-forecasting approaches and traditional joint-forecasting methods.
More specifically, the IOWHA operator-based joint-forecasting method could efficiently avoid
imperfection of other models, including addressing weight coefficient discrepancy with reality in
traditional joint-forecasting methods, curbing the declining tendency of prediction accuracy over time,
targeted weight assignment by fitting precision degree, and so on. Thus, the new proposed model
enhances prediction accuracy dramatically and is appropriate for electricity demand forecasting.

(3) Detailed forecasting outcomes on electricity demand of China in 2016–2020 derived from this
numerical study displayed a smooth, slow growth over the next five years. The forecasting trend is
consistent with deepening the reformation of industrial structures and industrial transformation, and
upgrading in China.
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