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Abstract: Location-based services (LBS) have long been recognized as a significant component of the
emerging information services. However, the localization cost and the performance of algorithm still
need to be optimized. In the study, an improved particle swarm optimization algorithm based on a
feed-forward neural network (IMPSO-FNN) combined with RFID sensors is proposed, which can
achieve the best indoor positioning location and overcome the problems effectively. In IMPSO-FNN,
an improved PSO algorithm (IMPSO) is developed to determine the optimal connecting weights
and markedly optimize the network parameters and structural parameters for the FNN, and then an
optimal location prediction model is established by the IMPSO-FNN. To avoid the interference of
environmental noise for the experimental data, some preprocessing methods are used during the
positioning process. The computational results for learning two continuous functions show that the
proposed positioning algorithm has a faster convergence rate and higher generalization performance.
The model evaluation results also verify that the proposed positioning method really is superior to
other algorithms in terms of the learning ability, efficiency, and positioning accuracy.

Keywords: positioning system; Radio Frequency IDentification (RFID); improved particle swarm
optimization; Feed-forward Neural Network (FNN)

1. Introduction

With the large-scale deployment of mobile computing devices and wireless networks, the
application of location-based services (LBS) in an indoor environment has attracted more and more
attention. The Global Positioning System (GPS)-based positioning technology is mature, with ever
increasing accuracy, availability, and reliability [1]. However, GPS can only be used in the outdoor
environment where the satellite signals can be received. When it comes to indoor areas, due to the poor
reception of satellite signals, GPS is unreliable. At the same time, GPS is expensive for deployment to
automatically track individual material items [2]. To solve this problem, a variety range of technologies
were used for indoor location sensing, such as wireless local area network (WLAN) [3], ultra-wideband
(UWB) [4], indoor GPS-based solutions [5], and infrared positioning systems [6].

Radio frequency identification (RFID) [7] technology may also be applied in the indoor positioning
field. RFID is one of the recent wireless communication technologies, which has many advantages,
such as contactless, high repeated availability, durability, and multi-readability. It is important that
RFID data can be stored in tags and retrieved with readers that can communicate with these tags, using
radio frequency waves [8]. Ranky [9] proposed RFID as one of the most important ten technologies of
this century. Li and Becerik-Gerber [10] presented a comparative study of eight indoor positioning
sensing technologies taking into consideration the accuracy, power supply, affordability, wireless
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communication, line of sight, on-board data storage, context independence, and wide application in
the industry. On the basis of that study, they suggested that RFID technology is the most suitable for
indoor positioning sensing technology. Choi [11] stated that the passive UHF RFID-based localization
overcomes the shortcomings of the traditional indoor positioning systems. Wang et al. [12,13]
proposed a method based on measured phase to track mobile RFID tags with millimeter-level
(mm-level) accuracy.

Therefore, RFID was used in this study, which has already been successfully implemented for
indoor positioning system at a relatively lower cost. A back-propagation neural network (BP) can
learn the relationship between the received signal strength indication (RSSI) values measured by the
RFID reader and the location of the tags, and establish a positioning model. Unfortunately, the BP
neural network uses the steepest descent method to determine the connecting weights, and is easy to
be trapped in a local minimum. In addition, the structure and optimization network parameters of the
BP network are difficult to be determined. Therefore, in view of the excellent performance of particle
swarm optimization (PSO) in many fields [14], we first develop an improved PSO algorithm (IMPSO)
to determine the connecting weights and optimize the network parameters and structural parameters
for the feed-forward neural network (FNN), and then establish an optimal location prediction model
based on the IMPSO-FNN to solve the problem of positioning accuracy. The simulation results show
that the proposed IMPSO-FNN algorithm outperforms the compared algorithms in searching ability
and learning ability of the particles, and in approximation ability.

The remaining parts of the paper are organized as follows: Section 2 reviews the important related
works about the current research; Section 3 discusses the details of the proposed indoor positioning
system; Section 4 demonstrates the feasibility of the proposed method using some benchmark functions
and RFID positioning data, respectively; and, finally, the conclusions and a discussion of future research
directions are presented in Section 5.

2. Literature Review

This section briefly presents the relevant research in the areas of RFID, particle swarm optimization,
and applications of the proposed IMPSO-FNN method to an indoor positioning system.

2.1. Localization Techniques

With respect to measuring the distance between the sensor nodes, localization techniques can
be divided into the range-free and range-based methods [15]. In the range-free methods, they do
not require specific ranging devices, and provide a direct and simple localization option for many
wireless sensing location applications. However, due to its limited localization accuracy, the range-free
localization techniques cannot provide satisfactory localization solutions for the RFID applications
that require high-precision positioning. In the range-based methods, the time of arrival (TOA), angle
of arrival (AOA), time difference-of arrival (TDOA), and received signal strength indicator (RSSI) [16]
are some of the commonly used physical measures for the localization. TDOA and TOA measure the
signal travel time between the signal source and the receiver. AOA is a category of signal measurement,
which considers the direction of the signal propagation. Amongst these measures, a class of low-cost
and easily-implemented range-based localization schemes is provided by the RSSI-based localization
technique [17,18]. Therefore, this study also adopts RSSI as the basic measure for localization.

2.2. Particle Swarm Optimization

The particle swarm optimization algorithm (PSO) has, at its origin, the simulation of the social
behavior of organisms; for example, the movement of schools of fish, animal herds, and birds in a
flock, which is a population-based stochastic optimization technique [19]. In PSO, the basic element
handled by the algorithm is the particle. A particle represents a possible solution to a given problem.
The swarm represents a set of the possible solutions. Every iterative process, the position and velocity
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of the ith particle is updated according to Equations (1) and (2), respectively, until a fixed number of
times is iterated or a predetermined minimum error is achieved.

xt+1
i = xt

i + vt+1
i (1)

vt+1
i = wvt

i + c1rand1( )
(

pi − xt
i
)
+ c2rand2( )

(
pg − xt

i
)

(2)

where i = 1, 2, · · · , M, M is the number of particles in the population; xi and vi are the position and
velocity of the ith particle, respectively; the t + 1 is the index of the current, new, iteration and t refers
to the previous, old, iteration; w is a parameter that weighs the inertia of the particle; c1 and c2 are the
parameters that weigh the cognitive and social constituents, respectively; rand1 and rand2 are random
numbers which are uniformly distributed within the range [0, 1]; pg is the best position inferred by
the swarm considering the experience of all the particles, and pi is the best position visited by the ith
particle so far.

For Equations (1) and (2), in order to make the component part of xt
i , vt

i in the reasonable area,
setting xi ∈ [−xmax, xmax], vi ∈ [−vmax, vmax], where the maximum value of the velocity is determined
according to the length of the particle. Generally, if the scope of solution is [−xmax, xmax], then
vmax = t ∗ xmax, 0.1 ≤ t ≤ 0.2. Figure 1 shows the particles constantly update their position and
velocity to approach the target.
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Figure 1. The process of the position and velocity update of particles. 
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In addition, the velocity vi of the ith particle is updated based on three constituents: the social
term, which is based on the global best solution found by the swarm; the cognition of the particle,
which is based on the best solution obtained by the particle so far; and the inertia of the particle.

It is worth mentioning that some variants of the classical PSO are not discussed in this section.
However, in order to improve the performance of the algorithm it has been developed, in particular,
with regard to the avoidance of convergence to a local optimum [20,21].

2.3. Applications of Soft Computing Techniques to Indoor Positioning System

In order to overcome the shortcomings that are faced by traditional positioning methods (relying
on empirical models and inability to establish the accurate signal loss model), machine learning
methods, such as classification, have been applied to solve complex positioning problems.

Li and Chung [22] used an ant colony system (ACS) to find the connecting weights for a
back-propagation (BP) neural network to improve its predictive performance. Lin et al. [23] also
utilized simulated annealing to determine the training rate, momentum and number of hidden layer
nodes for a BP neural network, which makes the BP neural network perform better. Ceravolo et al. [24]
combined the genetic algorithm (GA) and the BP algorithm to predict and control the environmental
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temperature. The result showed that it can provide better performance compared to the conventional
BP neural network. Kuo et al. [25] developed an intelligent supplier decision support system which
employed a PSO-based fuzzy neural network to derive the rules for qualitative data and build an
integration model by taking into account both qualitative and quantitative factors. Gong et al. [14]
developed a novel PSO algorithm with the tentative reader elimination (TRE) operator to deal with
the RFID network planning (RNP) problem. The TRE operator tentatively deletes readers during
the search process of PSO and the mutation operator is embedded into the algorithm to improve the
success rate of TRE. Wang et al. [26] proposed a PSO-BP-based positioning algorithm, which uses the
PSO to optimize the BP network and the Gauss method to pre-process the experimental data. The
results indicate that the proposed PSO-BP can provide better predictions than a traditional method. In
addition, Tao et al. [27] proposed an improved particle swarm method (SA-PSO), which can restrict the
position change of original and new particles in the iteration process and accelerate the convergence
speed of the algorithm. The simulation results show that the addressed SA-PSO algorithm can solve a
problem of multi-objective combination optimization.

Huang et al. [28] employed the fuzzy neural network architecture to adaptively tune the
environmental parameters. Kehua et al. [29] proposed a GA-BP neural network-based indoor
positioning algorithm to solve the problems caused by the complication and variation of indoor
environments. Sá et al. [30] also presented genetic and backtracking search optimization algorithms
to solve localization problems, in the case of a single hop. Lin et al. [31] proposed a combination of a
functional-link based neural fuzzy network (FNFN) with immune particle swarm optimization (IPSO)
to solve prediction and control problems. It is noteworthy to mention that the above research has
achieved some good results, however, for a positioning model based on PSO-FNN, the relationship
between the inertia weight and learning factor parameters was still neglected, and the improved
algorithms for parameter were relatively few.

3. The Proposed IMPSO-FNN Method-Based Positioning System

The main objective of this study is to propose a RFID positioning system which employs an
improved PSO algorithm to optimize the FNN. Compared to other hybrid optimization algorithms,
it does not need to be combined with other algorithms, and does not increase the complexity of the
original algorithm. In addition, the proposed algorithm can quickly learn the relationship between the
RSSI signals and tag positions, and through the established optimal positioning model, the position of
a new tag can be accurately estimated.

The proposed RFID-based positioning system is consisted of two parts. The first part is the
establishment of an indoor positioning model. In the second part, the IMPSO-FNN algorithm is
introduced in detail.

3.1. Location Prediction Model Based on PSO-FNN

For the RFID positioning system, in order to locate the position of tags, it is essential to build the
mapping relationship between the RSSI values measured by the RFID reader and the location (Loca) of
tags, which can be expressed as follows:

RSSIi → Locai

Assuming that Fi = {RSSIm
1 , RSSIm

2 , · · · , RSSIm
j , · · · , RSSIm

n } is the RSSI measurement vector in
the positioning system, which is measured by the reader every time, at a fixed point S; RSSIm

j is the
RSSI value of jth reference tag, which is measured by the corresponding mth reader at the fixed point
S; Pi is the location of the ith tag, Pi = (xi, yi). The given training data set is defined as the RFingk.
RFingk = {(Fi, Pi)|Fi ∈ R′, Pi ∈ R, i = 1, 2, · · · , Q}, where Q is the number of reference tags. The goal
of positioning is to find a mapping relationship f : R′ → R , making f (xi) ≈ Pi. Since the mapping
relation belongs to the nonlinear mapping relation, and the FNN can be used to solve the problem of
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nonlinear relation, the PSO-FNN is selected in this study, and the problem of LBS can be equivalent to
the optimization problem of the PSO-FNN. Defining Z : A→ Rn , min Z(t), t ∈ A, the mathematical
model of the PSO-FNN can be expressed as follows:

Min Z(w, v, θ, γ) =
1
M

M

∑
k=1

N

∑
t=1

[yk(t)− ŷk(t)]
2 < ε (3)

where yk(t) is the expected output matrix of training sample network; ŷk(t) is the actual output matrix
of training sample network. M is the population size of the PSO. N is the number of training samples.

ŷk(t) =
l

∑
j=1

(
f

(
n

∑
i=1

Xiwi j + θj

))
vj k + rk (4)

where w is nonlinear inertia weight parameters of the PSO; θ is the threshold between the input layer
and the hidden layer; v is the connection weight between hidden layer and output layer; r is the
threshold between the hidden layer and the output layer.

f (x) =
1

1 + e−x (5)

S.t. v ∈ Rp×N , w ∈ Rn×p, r ∈ RN , θ ∈ Rl

where f (x) is the activation function.
In order to evaluate the quality of each particle in the population, the fitness function is introduced.

The quality of particles indicates the accuracy of neural network. In the process of network training,
the smaller the mean square error of the sample, the better the corresponding particle's fitness will be.
The fitness function f it(t) is defined in Equation (6):

f it(t) = 1/

[
1
M

M

∑
k=1

N

∑
t=1

[yk(t)− ŷk(t)]
2

]
(6)

where the larger the fitness function value is, the better the solution will be; t represents a particle
position considering a swarm of N particles.

In the PSO-FNN, Pi is the position of the ith particle, which can be taken as a solution of the stated
problem. (xi, yi) ∈ Pi represents the coordinates of the ith tag, and the original particle Pold will be
replaced by the new one Pnew with the probability of pro, according to Equation (7).

pro =

{
exp
(

∆e
Mtem

)
i f ∆e ≤ 0

1 i f ∆e > 0
(7)

∆e can be expressed as:
∆e = f it(Pnew)− f it(Pold) (8)

where Mtem represent the parameter of temperature in the Metropolis rule. Through a certain number
of iterations, the particle will reach the optimal fitness value and the function has an optimal solution,
and the ultimate estimated location (xi, yi) of the tag can be obtained.

3.2. The Main Idea and Parameter Setting of the IMPSO-FNN Algorithm

3.2.1. The Learning Factor of Asynchronous Change Strategy

There are two learning factors, c1 and c2, in the PSO algorithm, which determine the relative
influence of the social and cognitive components. c1 regulates the maximum step size of flight in the
direction of its individual extreme value, and the c2 regulates the maximum step size of flight in the
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direction of global extreme value. They reflect the experience of the individual and group, and, further,
influence the motive trace and information exchange within the particle swarm. Thus, the right c1

and c2 can not only speed up the rate of convergence, but also cannot easily fall into local optimum.
Moreover, it can reflect the optimization performance of the algorithm.

In this study, the learning factor of asynchronous change strategy (Equations (9) and (10)) is
constructed, which makes the learning factor dynamically adjusted in the iterative process for the
algorithm. As presented in Figure 2, in the initial stage of the search, c1 takes a larger value, while
c2 takes a smaller value, which can make the particles learn more from their own optimal solutions
and learn less from the social optimal solutions, so that the global search ability of the particle is
strengthened. On the contrary, in the later stage of the search, c1 takes a smaller value, while c2 takes
a larger value, which can make the particles learn more from the social optimal solutions and learn
less from their own optimal solutions, and is conducive to quickly converge to the global optimal
solution. In addition, in the reference literature [32–34], the relative nonlinear adjustment pairing
experiments were carried out, and it was found that when the sum of c1 and c2 is less than 3, the
algorithm performance is the best. Therefore, the learning factor of asynchronous change strategy is
adopted in this study, as shown in Equations (9) and (10). It is helpful to maintain the diversity of
population and improve convergence speed of the algorithm.

c1 = c1i −
(

c1i − c1 f

)
∗ (t/Tmax) (9)

c2 = c2i +
(

c2 f − c2i

)
∗ (t/Tmax) (10)

where the initial value of c1 and c2 are c1ini and c2ini, respectively; the final values are c1 f in and c2 f in,
respectively; Tmax is the maximum number of iterations, and t is the current number of iterations.
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3.2.2. The Nonlinear Inertia Weight Parameters w

The inertia weight w reflects the searching ability of particle. Controlling w can adjust the global
and local optimization ability of the PSO algorithm. If the w value is larger, the global search ability is
stronger, and the local search ability is weaker; conversely, the local search ability is enhanced, and the
global search ability is weakened. However, the most improved PSO algorithms usually employ a
linear decreasing strategy (LDW) [19] to change the inertia weight, and in the actual search process it is
not effective to reflect the complex nonlinear behavior of the particle swarm. In addition, the direction
of the heuristic search of the particle is not strong since some of the information cannot be fully utilized,
which is provided by the objective function. In the early stage, the initial inertia weight can acquire
the larger value of the global search, but the algorithm requires very high computing resources, and
convergence speed is slow [35]. Moreover, it is easy to be trapped into a local optimal solution in the
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late stage. Therefore, the inertia weight is also very important to the optimization performance of the
algorithm. If we cannot find the suitable inertia weight in the early stage, it will be very difficult for
the algorithm to converge to its best point.

In order to avoid the particles falling into a local optimum, we need to strengthen the global
search ability of particles at the initial stage of iteration, and increase the corresponding global search
time; once the approximate range of the optimal solution is determined, it is required to strengthen the
local search ability of the particles, and increase the corresponding local search time to perform fine
local search. Therefore, the nonlinear inertia weight w is defined in Equation (11):

w(t) = wmax + (wmax − wmin) ∗ exp
(
−20 ∗ (t/Tmax)

k
)

(11)

where wmax is 0.9, wmin is 0.4, k is a regulatory factor; when k is 6, the inertia weight w change curve is
shown in Figure 3.
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It can be seen from Figure 3 that the inertia weight w maintains a larger value for a long time
in the initial period of iteration, and maintains a smaller value for a long time in the later period of
iteration; thus, the global search time at the beginning of iteration and the local search time at the
later stage of iteration are increased, further, improving the global search ability at the initial stage of
iteration, and the local search ability at the late stage of iteration, and provides better balance to the
global and local search capabilities. Therefore, the improved w can improve the convergence rate of
the algorithm and avoid falling into a local optimal solution.

3.2.3. Maximum Velocity

The maximum velocity Vmax determines the maximum moving distance of particles in an iterative
process, regulating movement velocity of each particle, which can helpfully prevent search divergence.
In a sense, setting the maximum velocity is the variable range of each dimension, and choosing the
maximum problems requires a certain prior knowledge of the research problem. In this study, the
maximum speed Vmax is set in the interval [−1, 1]. The flowchart of the proposed IMPSO-ANN based
indoor positioning system is shown in Figure 4 and the pseudo-code is shown in Algorithm 1.

3.2.4. Data Collection

At time tv, all RFID tags with known positions located within the detection range of the
reader antennas were activated, and the RFID signals between the tags and the antennas of reader
were obtained. Defining DQj =

{
Lj, Fl, tv

∣∣j = 1, 2, · · · , n; l = 1, 2, · · · , m; tv = t1, t2, · · · , tk
}

, where
Lj =

(
xj, yj

)
represents the coordinate of the jth tag to be measured; m is the number of the antennas of



Information 2017, 8, 9 8 of 18

reader; and Fl =
{

RSSIj,l
1, RSSIj,l

2, · · · , RSSIj,l
k
}

is the acquired RSSI vector for tag j that is composed
of different RSSI values at k time measured by the lth antennas of reader. The acquired RFID signal
DQi was stored in the original database, and the dataset can be expressed as D = (x, y|F1, F2, F3, F4),
where m is 4.Information 2017, 8, 9 8 of 18 
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Algorithm 1. IMPSO-ANN algorithm of the proposed method. 
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Algorithm 1. IMPSO-ANN algorithm of the proposed method.

%% Input: The RSSI values between the reference tags
(

RSSI′j,l
)

and the antennas of reader; the

coordinates of reference tags Lj =
(
xj, yj

)
%%

%% Output: The locations of the positioning tags Lj,pos =
(
xj,pos, yj,pos

)
%%

begin
for 1 ≤ l ≤ N do %% l is each particle

Vl ∈ [−1, 1], Xl ∈ [−1, 1]; %% Vl and Xl are the velocity and position of lth
particle respectively

if f (Xl) > f (pBestl) then %% pBestl is the best position of lth particle
pBestl = Xl ;

end if
end for
gBest = opti{pBestl |1 ≤ l ≤ N} %% obtain the optimum solution

while not stop
for 1 ≤ l ≤ N do

Vt+1
l = wVt

l + c1rand1( )
(

pl − Xt
l
)
+ c2rand2( )

(
pg − Xt

l
)
, Vl ∈ [−1, 1];

Xt+1
l = Xt

l + Vt+1
l , Xl ∈ [−1, 1];

if f (Xl) > f (pBestl) then pBestl = Xl ;
end if

if f (pBestl) > f (gBest) then gBest = pBestl ;
end if

end for
end while

location
(

Lj,trak

)
← gBest

end begin
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3.2.5. RFID Data Preprocessing

This section consists of the data filtering and the data normalization.

• Step1: Data filtering

The signal measurement is susceptible to environmental effects (such as people walking) that
cause the RSSI measurements collected to be embedded with noise. The Gaussian filter is used to
process the RSSI values, because the RSSI value of the repeated measurement in a fixed position by the
reader obeys the Gauss distribution (Equation (12)).

f (RSSI) =
1

σ
√

2π
exp

[
− (RSSI − ϕ)2

2σ2

]
(12)

where σ2 is the variance, and ϕ is the expected value.
The original Gaussian filter is improved to adapt the filtering of RSSI values, and the standard

deviation via σ̃ is estimated as in Equation (13):

σ̃ =

√√√√ 1
(n− 1)

n

∑
j=1

(
RSSIj,l − ϕ̃

)2
(13)

where ϕ̃ is the estimation of expected value of RSSI, according to Equation (14):

ϕ̃ =
1
n

n

∑
j=1

RSSIj,l (14)

where n is the number of all RSSI; RSSIjl is the jth RSSI for jth tag received by the lth antenna of reader.
According to the 3σprinciple of Gaussian distribution, the small probability event of∣∣∣RSSIj,l − ϕ̃

∣∣∣ > 3σ is excluded, and the data of
∣∣∣RSSIj,l − ϕ̃

∣∣∣ < 3σ is chosen as effective experimental

data. The effective RSSI value from the jth tag received by the lth antenna of reader is RSSI′j,l , RSSI′j,l ⊆
RSSIj,l (j = 1, 2, · · · , n; l = 1, 2, · · · , m).

• Step2: Data normalization

In order to ensure all of the RSSI vectors have the same contribution for training and testing, all
RSSI values from the jth tag should be normalized in [0, 1]. The RSSI value of the jth tag received by
the lth antenna of reader was normalized according to the following formula:

f : RSSIj,l → ­RSSI′j,l =
RSSI′j,l − RSSI′j,l(min)

RSSI′j,l(max) − RSSI′j,l(min)
(15)

where the preprocessed RFID signal ­RSSI′j,l was stored in the new database, and the dataset can be

expressed as D
′
=
(

x, y
∣∣∣F′1, F

′
2, F

′
3, F

′
4

)
, where F

′
l =

{
­RSSI′j,l

1
, ­RSSI′j,l

2
, · · · , ­RSSI′j,l

k
}

, l = 1, 2, 3, 4.

The RFID data D
′

will be input to the proposed positioning system for training and testing.

4. Simulation Results and Analysis

4.1. Performance Analysis

Based on the IMPSO-FNN algorithm presented in Section 3, this section will apply two benchmark
functions to evaluate the proposed algorithm first. MATLAB (2013a Version, MathWorks Corporation,
Natick, MA, USA) is used to design a computer program that simulates different algorithms. Two
non-linear functions, the Ackley function and the Rastrigrin function, are selected, and the dimension
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of the data is m, as shown in Table 1. Training results are used to demonstrate the fitness value of
test data. In order to determine the algorithm performance of the IMPSO-FNN, the performance
is compared with a genetic algorithm-based FNN (GA-FNN), the linearly decreasing weight PSO
algorithm-based FNN (LDWPSO-FNN) [19] and the random inertia weight PSO algorithm-based FNN
(RWPSO-FNN) [36]. The detailed parameters of the algorithm are presented in Table 1.

Table 1. The parameters setting for different algorithms.

Algorithm GA-FNN Improved PSO-FNN LDWPSO-FNN RWPSO-FNN

Inertia weight (w) —
w(t) = wmax + (wmax − wmin)

∗ exp
(
−20 ∗ (t/Tmax)

k
) wmax = 0.9

wmin = 0.4 rand

Number of iterations (Tmax) 100 100 100 100

The population size (N) 50 50 50 50

learning factor (c1, c2) —

c1 = c1i −
(

c1i − c1 f

)
(t/Tmax)

c2 = c2i +
(

c2 f − c2i

)
(t/Tmax)

where c1i = c2 f = 2.5,
c2i = c1 f = 0.5

c1 = c2 = 2 c1 = c2 = 2

Range of velocity (Vl)
and position (Xl)

— [−1, 1] [−1, 1] [−1, 1]

Crossover rate (µ) 0.75 — — —

Mutation rate (α) 0.01 — — —

4.2. Performance Test

In this study, the 200 groups of four-, six-, and eight-dimensional data were randomly selected
from the two experimental functions, respectively. In addition, the 150 group data were randomly
selected from the 200 group data to train the neural network, and the remaining 50 group data as the
network prediction samples. Figures 5 and 6 show the optimal fitness value curves of the four, six, and
eight dimensions for four different algorithms in the training process of neural network.

In order to evaluate the performance of the proposed positioning algorithm, some performance
evaluation criteria such as the average error (AE) and average relative errors (ARE) are described
as follows:

AE =
1
n

n

∑
i=1

(
yi − y′i

)
(16)

ARE =
1
n

n

∑
i=1

∣∣∣∣yi − y′i
yi

∣∣∣∣ (17)

where n is the number of samples; yi is the actual output value, and y′i is the expected output value.

Case 1: Ackley function

The related information about Ackley function is as follows:

(1) Definition:

f (x) = −20 exp

(
−0.2

√
1
m

m

∑
i=1

xi
2

)
− exp

(
1
m

m

∑
i=1

cos 2πxi

)
+ 20 + e

(2) Search domain: xi ∈ [−100, 100], i = 1, 2, · · · , m; m = 4, 6, 8
(3) Number of local minima: Some
(4) The global minima: (x1, x2, · · · , xm) = (0, 0, · · · , 0), f (x1, x2, · · · , xm) = (0, 0, · · · , 0)
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From Figure 5, we can see that, for the fitness curve of the Ackley function, the fitness value of
the IMPSO-FNN is the largest, and the mean square error is the smallest in the process of training
the neural network, which shows that the IMPSO-FNN algorithm has high training accuracy and
good learning ability. As seen in Figure 5b, for the fitness change curve of the training sample of
the IMPSO-FNN, in the first 10 iterations, the fitness curve changes faster; in iterations 10–60, the
fitness curve changes slowly, while the fitness curve changes very quickly in iterations 60–73, and
after 73 iterations, the fitness curve trends the optimal value. However, in the fitness curve of the
training sample of the other three algorithms (LDWPSO-FNN, RWPSO-FNN, and GA-FNN) a fitness
stagnation phenomenon appears in many places, which indicates that the algorithm falls into a local
solution in the evolutionary process of the neural network.
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Table 2 lists the training error of the neural network for the Ackley function, which shows that the
AE and ARE of the IMPSO-FNN algorithm are the smallest in the training process, and the algorithm
has high training accuracy and good learning ability.

Case 2: Rastrigrin function

The related information about the Rastrigrin function is as follows:

(1) Definition:

f (x) =
m

∑
i=1

[
xi

2 − 10 cos (2πxi) + 10
]
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(2) Search domain: xi ∈ [−5.12, 5.12], i = 1, 2, · · · , m; m = 4, 6, 8
(3) Number of local minima: Some
(4) The global minima: (x1, x2, · · · , xm) = (0, 0, · · · , 0), f (x1, x2, · · · , xm) = (0, 0, · · · , 0)

Table 2. The error results of training data for the Ackley function.

Dimension Algorithm GA-FNN LDWPSO-FNN RWPSO-FNN IMPSO-FNN

6
AE 0.16002 0.14871 0.15813 0.14016

ARE 0.007158 0.006632 0.007014 0.006486

8
AE 0.16946 0.16704 0.16733 0.16663

ARE 0.007913 0.007683 0.007828 0.007630

10
AE 0.18013 0.17308 0.17887 0.16858

ARE 0.008422 0.007965 0.008311 0.007806
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Similar to the analysis with Case 1, in the fitness curves of the GA-FNN, LDWPSO-FNN, and
RWPSO-FNN algorithms, a fitness stagnation phenomenon also appears in some places in the evolution
process, which indicates that the algorithms easily fall into a local optimal and cannot achieve the
optimal location information. However, in the case of the same number of iterations, the fitness value
of the IMPSO-FNN algorithm is the largest for different training data, which shows that the output
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value of the network is closest to the actual value, and the training error is the minimum. It also
indicates that it can be used for indoor positioning to achieve a good positioning result.

Table 3 lists the training error of neural network for the Rastrigrin function. The training results
are similar to the results of Table 2. In addition, we found that the performance of the algorithm is
increased with a decrease in the dimension of the test function, and the performance of the IMPSO-FNN
algorithm is significantly better than the other four algorithms.

Table 3. The error results of training data for the Rastrigrin function.

Dimension Algorithm GA-FNN LDWPSO-FNN RWPSO-FNN IMPSO-FNN

6
AE 0.51563 0.47835 0.48014 0.33861

ARE 0.182461 0.166731 0.167742 0.110384

8
AE 0.53723 0.51376 0.52144 0.48034

ARE 0.198683 0.189171 0.192887 0.129792

10
AE 0.72858 0.72054 0.71163 0.56976

ARE 0.268981 0.265975 0.180892 0.173195

5. Case Study

This section will demonstrate the way to apply the proposed IMPSO-FNN algorithm to the
RFID-based positioning system. The RFID system includes the UHF RFID reader (LJYZN-401), UHF
antennas (Laird-S8658WPL) with a main working frequency of 865–956 MHz, and passive UHF RFID
tags (IMPINJ-H47), and are shown in Figure 7a. In our experiments, all of the passive tags in the
experimental area can be activated [11,37], and the reader can obtain their RSSI values because of
the effective radio frequency coverage of the reader antennas can be as long as 10 m, as shown in
Figure 7b. The measured RSSI values by the reader were not inversely proportional to distance due to
the influence of various factors in the environment. Therefore, this study repeatedly tested the signal
value and had obtained its feature through the network training. For the purpose of comparison, three
other algorithms, including the GA-FNN, LDWPSO-FNN, and RWPSO-FNN, will also be tested.
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5.1. Experimental Scenario

Figure 7 shows the simulated experimental environment, and the size of the environment was
approximately 10 m × 6 m with 45 reference tags and four UHF RFID antennas. The distance between
adjacent markers is about 1.2 m. In addition, in order to increase the measurement accuracy of RSSI
values, a wired RFID receiver was connected to four receiving antenna, and the four antennas of the
reader was placed at the four positions, which are Antenna 1 (0.3, 0.2), Antenna 2 (0.3, 5.4), Antenna 3
(10.5, 5.4), and Antenna 4 (10.5, 0.2). The RSSI values collected from the antennas are regarded as input
values of the IMPSO-FNN network.

Based on the experiments presented in the Section 4, compared with other algorithms, the
convergence rate of the IMPSO-FNN algorithm is the fastest and the generalization ability is the best.
In addition, we found that the dimension of training sample affects the performance of the algorithm.
In this study, the original data is reduced dimension and normalized processing. The optimal fitness
value curves of four and six-dimensions for the training sample in the training process of the neural
network are shown in Figure 8. The error results of training sample for RFID data is presented in
Table 4.
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Table 4. The error results of training data for RFID data.

Dimension Algorithm GA-FNN LDWPSO-FNN RWPSO-FNN IMPSO-FNN

4
MAE 0.10348 0.052186 0.090634 0.042622
ARE 0.004108 0.003338 0.003913 0.002701

RMSE 0.28471 0.25865 0.28103 0.24416

6
MAE 0.12986 0.055563 0.104191 0.051143
ARE 0.004983 0.003665 0.004138 0.003612

RMSE 0.32517 0.28561 0.30837 0.25326

5.2. Performance Results

The mean absolute error (MAE) and root mean square error (RMSE) are used to make a better
analysis for the experimental results, according to the following equations:

MAE =
1
n

n

∑
j=1

∣∣Errj
∣∣ (18)
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RMSE =

√√√√ 1
n

n

∑
j=1

Errj
2 (19)

where Errj =

√(
xj − x′j

)2
+
(

yj − y′j
)2

,
(

xj, yj
)
,
(

x′j, y′j
)

represents the real location coordinates and

estimated location coordinates of the jth tag, respectively.
Figure 8 shows that applying the IMPSO algorithm to train the FNN can have the maximum

fitness value, while the GA-FNN algorithm is the worst. The IMPSO-FNN algorithm has a faster
convergence rate, and can be better used for indoor positioning. In addition, for the LDWPSO-FNN and
RWPSO-FNN algorithms, in the fitness curves of the training sample a fitness stagnation phenomenon
appears in many places, which indicates that they fall into the local solution in the process of network
evolution. That is to say, the acquired position data in the process of localization is not the optimal.

Based on the results listed in Table 4, the performance of proposed IMPSO-FNN-based positioning
algorithm can achieve better performance compared to other algorithms, and not only are ARE
and MAE the smallest, but the RMSE is also the least, which reveals that IMPSO-FNN has good
extensiveness and robustness, and contributes to improving the accuracy of indoor positioning.
Additionally, when the dimension of RFID data is four, the performance of the algorithm is obviously
superior to the performance of the six-dimensional RFID data. Therefore, the performance of the
algorithm can be improved by further reducing the dimension of the training RFID data for the
positioning system.

5.3. Comparison with Other Algorithms

This experiment aims to further determine the proposed algorithm can achieve a higher
positioning accuracy. The parameter selection for all localization algorithms is presented in Table 1,
Figure 8 shows a comparison of the position-prediction performance of the five methods, and the
positioning error is shown in Table 5.

Table 5. Error of location results for different methods (m).

Dimension Test Sample GA-FNN LANDMARC RWPSO-FNN LDWPSO-FNN IMPSO-FNN

4

50% 0.838 1.116 0.801 0.728 0.532
70% 1.305 1.411 1.260 1.221 0.986
90% 1.602 1.756 1.571 1.503 1.412
MAE 1.168 1.504 1. 006 0.898 0.687

6

50% 0.887 0.917 0.846 0.787 0.702
70% 1.371 1.417 1.293 1.272 1.085
90% 1.748 1.772 1.673 1.584 1.436
MAE 1.201 1.506 0.986 0.924 0.726

For the Figure 9a, with a positioning error tolerance of 1.00 m, the average positioning
accuracy probability of IMPSO-FNN, LDWPSO-FNN, RWPSO-FNN, LANDMARC, and GA-FNN are
72.36%, 64.1%, 62.2%, 48.97%, and 59.3%, respectively. The IMPSO-FNN enhances the cumulative
percentile positioning accuracy by 12.9% over LDWPSO-FNN, 16.3% over RWPSO-FNN, 47.8%
over LANDMARC, and 22.0% over GA-FNN. When the error tolerance is 1.50 m, the cumulative
percentile of positioning accuracy for the IMPSO-FNN is 100%. Generally, the optimizing machine
learning-based positioning algorithms have the ability to obtain higher localization accuracy than
LANDMARC. We can come to a conclusion that the IMPSO-FNN algorithm performs best among
the three machine-learning algorithms in terms of training and positioning accuracy. Additionally,
as seen in Figure 9b, with a positioning error tolerance of 1.00 m, the average positioning accuracy
probability of IMPSO-FNN, LDWPSO-FNN, RWPSO-FNN, LANDMARC, and GA-FNN are 67.85%,
60.5%, 56.0%, 48.01%, and 54.4%, respectively. Compared with Figure 9a, the cumulative percentile
positioning accuracy of IMPSO-FNN, LDWPSO-FNN, RWPSO-FNN, LANDMARC, and GA-FNN are
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reduced by 4.5%, 3.6%, 6.2%, 1.0%, and 4.9%, respectively. This indicates that the dimension of the
original data can be reduced to a certain extent, which can further improve the indoor positioning
accuracy. The experimental results also demonstrate that the proposed algorithm achieves the highest
positioning accuracy among all five algorithms due to its relatively fast convergence rate.Information 2017, 8, 9 16 of 18 
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5.4. Analysis and Discussion

We designed an RFID indoor positioning system based on the IMPSO-FNN. From the experimental
results, we found that the traditional positioning algorithms (such as LANDMARC) cannot solve
this problem accurately and efficiently for complex environments. Machine learning provides a
different perspective to solve the problem. In Table 5, the IMPSO-FNN can obtain higher localization
accuracies than other positioning methods. Further, the IMPSO-FNN-based positioning algorithm
can better overcome the problem of signal fluctuation, which is caused by environment layout and
fluctuations of signal strength. On the other hand, the LANDMARC methods require extensive
searching/ranking of reference tags and, thus, the efficiency is low. Machine learning algorithms can
run faster than conventional positioning algorithms when solving the positioning problem. Further,
the IMPSO-FNN performs best among the four machine-learning algorithms in terms of training and
testing efficiency, and is capable of improving the indoor positioning accuracy and efficiency due to its
better generalization ability and faster convergence.

6. Conclusions and Future Work

In this study, we comprehensively take into account the localization cost and the performance of
the positioning algorithm, and an improved particle swarm optimization-based feed-forward neural
network (IMPSO-FNN) algorithm combined with RFID sensors has been presented, which introduces
the improved particle swarm optimization algorithm, and can achieve the optimal connecting weights
and network parameters and structural parameters for the FNN in the iteration process and accelerate
the convergence speed of the algorithm. Furthermore, the proposed IMPSO-FNN algorithm can quickly
learn the relationship between the RSSI values and the position of tags, and establish an optimal indoor
localization model. The experimental results demonstrate that the proposed positioning system
effectively achieves the highest positioning accuracy and efficiency among all five methods.

However, in the experiments, we found that the specific theoretical guidance information about
improving the inertia weight and learning factors of the PSO are less; therefore, other soft computing
techniques, such as artificial fish swarm optimization and artificial bee colony optimization, might be



Information 2017, 8, 9 17 of 18

integrated into the heuristics to provide better estimation. In addition, future study will also analyze the
relation between the positioning accuracy and the dimension of RFID data for the positioning system.
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