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Abstract: Based on dynamic information collected from different time intervals in some real situations,
this paper firstly proposes a dynamic single valued neutrosophic multiset (DSVNM) to express
dynamic information and operational relations of DSVNMs. Then, a correlation coefficient between
DSVNMs and a weighted correlation coefficient between DSVNMs are presented to measure the
correlation degrees between DSVNMs, and their properties are investigated. Based on the weighted
correlation coefficient of DSVNMs, a multiple attribute decision-making method is established under
a DSVNM environment, in which the evaluation values of alternatives with respect to attributes are
collected from different time intervals and are represented by the form of DSVNMs. The ranking
order of alternatives is performed through the weighted correlation coefficient between an alternative
and the ideal alternative, which is considered by the attribute weights and the time weights, and thus
the best one(s) can also be determined. Finally, a practical example shows the application of the
proposed method.
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1. Introduction

The theory of neutrosophic sets presented by Smarandache [1] is a powerful technique
to handle incomplete, indeterminate and inconsistent information in the real world. As the
generalization of a classic set, fuzzy set [2], intuitionistic fuzzy set [3], and interval-valued intuitionistic
fuzzy set [4], a neutrosophic set can independently express a truth-membership degree, an
indeterminacy-membership degree, and a falsity-membership degree. All the factors described by
the neutrosophic set are very suitable for human thinking due to the imperfection of knowledge that
humans receive or observe from the external world. For example, consider the given proposition
“Movie X would be a hit.” In this situation, the human brain certainly cannot generate precise answers
in terms of yes or no, because indeterminacy is the sector of unawareness of a proposition’s value
between truth and falsehood. Obviously, the neutrosophic components are very suitable for the
representation of indeterminate and inconsistent information.

A neutrosophic set A in a universal set X is characterized by a truth-membership function µA(x),
an indeterminacy-membership function τA(x) and a falsity-membership function νA(x). The functions
µA(x), τA(x), νA(x) in X are real standard or nonstandard subsets of ]−0, 1+[, such that µA(x): X→ ]−0,
1+[, τA(x): X → ]−0, 1+[, and νA(x): X → ]−0, 1+[. Then, the sum of µA(x), τA(x) and νA(x) is no
restriction, i.e., −0 ≤ sup µA(x) + sup τA(x) + sup νA(x) ≤ 3+. Since the functions µA(x), τA(x) and
νA(x) are defined in the nonstandard interval ]−0, 1+[, it is difficult to apply the neutrosophic set
to science and engineering fields. So, we can constrain the functions µA(x), τA(x) and νA(x) in the
real standard interval [0, 1] to easily apply to real situations. Thus, Wang et al. [5,6] defined a single
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valued neutrosophic set (SVNS) and an interval neutrosophic set (INS), which are the subclasses of
the neutrosophic set. SVNSs and INSs are more suitable for the representation of indeterminate and
inconsistent information in science and engineering applications.

Recently, neutrosophic sets have become research topics in engineering areas, such as
decision-making [7–17], clustering analysis [18,19], and image processing [20–22]. By means of
combining neutrosophic sets with other sets, some extensions of them have been recently developed,
such as neutrosophic soft sets [23–25], single valued neutrosophic hesitant fuzzy sets [26,27], interval
neutrosophic hesitant sets [28], interval neutrosophic linguistic sets [29], single valued neutrosophic
linguistic sets [30]. Moreover, these have been successfully applied in decision-making. Furthermore,
multi-valued neutrosophic sets for medical diagnosis [31] and decision-making [32,33] were proposed
under multi-valued neutrosophic environments. Neutrosophic refined sets and bipolar neutrosophic
refined sets were also developed for solving medical diagnosis problems [34–37]. Normal neutrosophic
fuzzy numbers were presented to handle multiple attribute decision-making problems with normal
neutrosophic fuzzy information [38,39].

In general, all of the above studies have significantly advanced in the theory and applications
of various neutrosophic sets. However, the aforementioned neutrosophic information is collected
all at once, at the same time, which is also called static information. But, as for some complex
problems in real situations, such as some complex decision-making problems, moving image processing
problems, complex medical diagnosis problems, and personnel dynamic examination, we have to
consider these dynamic problems in different time intervals. In these cases, how can we express the
dynamic problems? One solution is to express dynamic information collected from different time
intervals by dynamic single valued neutrosophic multisets. To do so, the main aims of this paper are:
(1) to propose a dynamic single valued neutrosophic multiset (DSVNM) as a better tool for expressing
dynamic information of dynamic problems; (2) to develop correlation coefficients between DSVNMs
for measuring the correlation degree between two DSVNMs; and (3) to apply the correlation coefficient
to multiple attribute decision-making problems with DSVNM information.

The rest of the article is organized as follows. Section 2 introduces some concepts and basic
operations of SVNSs and a correlation coefficient between SVNSs. Section 3 presents a DSVNM and its
basic operational relations. A correlation coefficient between DSVNMs and a weighted correlation
coefficient between DSVNMs are proposed and their properties are investigated in Section 4. Section 5
develops a multiple attribute decision-making method using the weighted correlation coefficient of
DSVNMs under DSVNM environment. In Section 6, a practical example of a decision-making problem
concerning investment alternatives is provided to demonstrate the applications of the proposed
decision-making method under DSVNM environment. Conclusions and further research are given in
Section 7.

2. Some Concepts of SVNSs

Smarandache [1] originally presented the concept of a neutrosophic set from a philosophical
point of view. To easily use it in real applications, Wang et al. [6] introduced the concept of SVNS as a
subclass of the neutrosophic set and gave the following definition.

Definition 1 [6]. Let X be a universal set. A SVNS A in X is characterized by a truth-membership function
µA(x), an indeterminacy-membership function τA(x) and a falsity-membership function νA(x). Then, a SVNS
A can be denoted by the following form:

A = {〈x, µA(x), τA(x), νA(x)〉|x ∈ X}

where µA(x), τA(x), νA(x) ∈ [0, 1] for each x in X. Therefore, the sum of µA(x), τA(x) and νA(x) satisfies the
condition 0 ≤ µA(x) + τA(x) + νA(x) ≤ 3.
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For two SVNSs A = {〈x, µA(x), τA(x), νA(x)〉|x ∈ X} and B = {〈x, µB(x), τB(x), νB(x)〉|x ∈ X},
there are the following relations [6]:

(1) Complement: Ac = {〈x, νA(x), 1− τA(x), µA(x)〉|x ∈ X};
(2) Inclusion: A ⊆ B if and only if µA(x) ≤ µB(x), τA(x) ≥ τB(x), νA(x) ≥ νB(x) for any x in X;
(3) Equality: A = B if and only if A ⊆ B and B ⊆ A;
(4) Union: A ∪ B = {〈x, µA(x) ∨ µB(x), τA(x) ∧ τB(x), νA(x) ∧ νB(x)〉|x ∈ X};
(5) Intersection: A ∩ B = {〈x, µA(x) ∧ µB(x), τA(x) ∨ τB(x), νA(x) ∨ νB(x)〉|x ∈ X};
(6) Addition: A + B = {〈x, µA(x) + µB(x)− µA(x)µB(x), τA(x)τB(x), νA(x)νB(x)〉|x ∈ X};
(7) Multiplication:

A× B = {〈x, µA(x)µB(x), τA(x) + τB(x)− τA(x)τB(x), νA(x) + νB(x)− νA(x)νB(x)〉|x ∈ X}.

Then, Ye [8] defined a correlation coefficient between A and B as follows:

R(A, B) =

n
∑

j=1

[
µA(xj)µB(xj) + τA(xj)τB(xj) + νA(xj)νB(xj)

]
√

n
∑

j=1

[(
µA(xj)

)2
+
(
τA(xj)

)2
+
(
νA(xj)

)2
]√ n

∑
j=1

[
(µB(xj))

2 +
(
τB(xj)

)2
+
(
νB(xj)

)2
] (1)

The correlation coefficient between A and B satisfies the following properties [8]:

(P1) 0 ≤ R(A, B) ≤ 1;
(P2) R(A, B) = 1 if A = B;
(P3) R(A, B) = R(B, A).

3. Dynamic Single Valued Neutrosophic Multiset

This section proposes a dynamic single valued neutrosophic multiset and its operational relations.

Definition 2. Let X be a nonempty set with generic elements in X denoted by x, and t = {t1, t2,
. . . , tq} be a time sequence. A dynamic single valued neutrosophic multiset (DSVNM) A(t) collected
from X and t is characterized by a truth-membership time sequence (µA(t1, x), µA(t2, x), ..., µA(tq, x)), an
indeterminacy-membership time sequence (τA(t1, x), τA(t2, x), ..., τA(tq, x)), and a falsity-membership time
sequence (νA(t1, x), νA(t2, x), ..., νA(tq, x)) such that µA(tk, x): X→ R, τA(tk, x): X→ R, νA(tk, x): X→ R
for tk ∈ t and x ∈ X, where R is the set of all real numbers in the real unit interval [0, 1]. Then, a DSVNM A(t)
is denoted by:

A(t) =


〈 x, (µA(t1, x), µA(t2, x), ..., µA(tq, x)),

(τA(t1, x), τA(t2, x), ..., τA(tq, x)),
(νA(t1, x), νA(t2, x), ..., νA(tq, x))

〉
|tk ∈ t, x ∈ X


Obviously, the sum of µA(tk, x), τA(tk, x), νA(tk, x) ∈ [0, 1] satisfies the condition 0≤ µA(tk, x) + τA(tk, x)

+ νA(tk, x) ≤ 3 for tk ∈ t and x ∈ X and k = 1, 2, . . . , q.

For convenience, a DSVNM A(t) can be denoted by the following simplified form:

A(t) = {〈x, µA(tk, x), τA(tk, x), νA(tk, x)〉|tk ∈ t, x ∈ X}

For example, a DSVNM in the time sequence t = {t1, t2, t3} and a universal set X = {x1, x2} is
given as:

A(t) = {<x1, (0.3, 0.2, 0.5), (0.4, 0.3, 0.5), (0.6, 0.8, 0.9)>, <x2, (0.4, 0.4, 0.3), (0.1, 0.2, 0.1), (0.3, 0.5, 0.4)>}



Information 2017, 8, 41 4 of 9

Definition 3. Let A(t) = {〈x, µA(tk, x), τA(tk, x), νA(tk, x)〉 | tk ∈ t, x ∈ X} and B(t) = {〈x, µB(tk, x),
τB(tk, x), νB(tk, x)〉 | tk ∈ t, x ∈ X} be any two DSVNMs in t = {t1, t2, . . . , tq} and X. Then, there are the
following relations:

(1) Inclusion: A(t) ⊆ B(t) if and only if µA(tk, x) ≤ µB(tk, x), τA(tk, x) ≥ τB(tk, x), νA(tk, x) ≥ νB(tk, x) for
k = 1, 2, . . . , q and x ∈ X;

(2) Equality: A(t) = B(t) if and only if A(t) ⊆ B(t) and B(t) ⊆ A(t);
(3) Complement: Ac(t) = {〈x, νA(tk, x), (1− τA(tk, x)), µA(tk, x)〉|tk ∈ t, x ∈ X} ;
(4) Union:

A(t) ∪ B(t) = {〈x, µA(tk, x) ∨ µB(tk, x), τA(tk, x) ∧ τB(tk, x), νA(tk, x) ∧ νB(tk, x)〉|tk ∈ t, x ∈ X};
(5) Intersection:

A(t) ∩ B(t) = {〈x, µA(tk, x) ∧ µB(tk, x), τA(tk, x) ∨ τB(tk, x), νA(tk, x) ∨ νB(tk, x)〉|tk ∈ t, x ∈ X}.

For convenience, we can use a(t) = 〈(µ(t1, x), µ(t2, x), . . . , µ(tq, x)), (τ(t1, x), τ(t2, x), . . . , τ(tq, x)),
(ν(t1, x), ν(t2, x), . . . , ν(tq, x))〉 to represent a basic element in a DSVNM A(t) and call it a dynamic single
valued neutrosophic multiset element (DSVNME).

Definition 4. Let a1(t) = 〈(µ1(t1, x), µ1(t2, x), . . . , µ1(tq, x)), (τ1(t1, x), τ1(t2, x), . . . , τ1(tq, x)), (ν1(t1, x),
ν1(t2, x), . . . , ν1(tq, x))〉 and a2(t) = 〈(µ2(t1, x), µ2(t2, x), . . . , µ2(tq, x)), (τ2(t1, x), τ2(t2, x), . . . , τ2(tq, x)),
(ν2(t1, x), ν2(t2, x), . . . , ν2(tq, x))〉 be two DSVNMEs and λ ≥ 0, then the operational rules of DSVNMEs are
defined as follows:

a1(t)⊕ a2(t) =

〈 (µ1(t1, x) + µ2(t1, x)− µ1(t1, x)µ2(t1, x),
µ1(t2, x) + µ2(t2, x)− µ1(t2, x)µ2(t2, x),

..., µ1(tq, x) + µ2(tq, x)− µ1(tq, x)µ2(tq, x)),
(τ1(t1, x)τ2(t1, x), τ1(t2, x)τ2(t2, x), ..., τ1(tq, x)τ2(tq, x)),
(ν1(t1, x)ν2(t1, x), ν1(t2, x)ν2(t2, x), ..., ν1(tq, x)ν2(tq, x))

〉

a1(t)⊗ a2(t) =

〈
(µ1(t1, x)µ2(t1, x), µ1(t2, x)µ2(t2, x), ..., µ1(tq, x)µ2(tq, x)),

(τ1(t1, x) + τ2(t1, x)− τ1(t1, x)τ2(t1, x),
τ1(t2, x) + τ2(t2, x)− τ1(t2, x)τ2(t2, x),

..., τ1(tq, x) + τ2(tq, x)− τ1(tq, x)τ2(tq, x)),
(ν1(t1, x) + ν2(t1, x)− ν1(t1, x)ν2(t1, x),
ν1(t2, x) + ν2(t2, x)− ν1(t2, x)ν2(t2, x),

..., ν1(tq, x) + ν2(tq, x)− ν1(tq, x)ν2(tq, x))

〉

λa1(t) =

〈 (
1− (1− µ1(t1, x))λ, 1− (1− µ1(t2, x))λ, ..., 1−

(
1− µ1(tq, x)

)λ
)

,(
τλ

1 (t1, x), τλ
1 (t2, x), ..., τλ

1 (tq, x)
)
,
(
νλ

1 (t1, x), νλ
1 (t2, x), ..., νλ

1 (tq, x)
) 〉

aλ
1 (t) =

〈 (
µλ

1 (t1, x), µλ
1 (t2, x), ..., µλ

1 (tq, x)
)
,(

1− (1− τ1(t1, x))λ, 1− (1− τ1(t2, x))λ, ..., 1−
(
1− τ1(tq, x)

)λ
)

,(
1− (1− ν1(t1, x))λ, 1− (1− ν1(t2, x))λ, ..., 1−

(
1− ν1(tq, x)

)λ
)
〉

4. Correlation Coefficient of DSVNMs

Correlation coefficients are usually used in science and engineering applications. They play an
important role in decision-making, pattern recognition, clustering analysis, and so on. In regards to
this, this section proposes a correlation coefficient of DSVNMs and a weighted correlation coefficient
of DSVNMs.
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Based on DSVNMs constructed by dynamic truth-membership degrees, dynamic indeterminacy-
membership degrees, and dynamic falsity-membership degrees corresponding to t = {t1, t2, . . . , tq},
we can give the following definition of a correlation coefficient between DSVNMs.

Definition 5. Let A(t)= { 〈x, µA(tk, x), τA(tk, x), νA(tk, x)〉 |tk ∈ t, x ∈ X} and B(t) = { 〈x, µB(tk, x), τB(tk, x),
νB(tk, x)〉 | tk ∈ t, x ∈ X} be any two DSVNMs in t = {t1, t2, . . . , tq} and X = (x1, x2, . . . , xn). Then,
a correlation coefficient between A(t) and B(t) is defined as:

ρ(A(t), B(t)) =

1
q

q
∑

k=1

n
∑

j=1
[µA(tk ,xj)µB(tk ,xj)+τA(tk ,xj)τB(tk ,xj)+νA(tk ,xj)νB(tk ,xj)]

√
n
∑

j=1

[(
µA(tk, xj)

)2
+
(
τA(tk, xj)

)2
+
(
νA(tk, xj)

)2
]

√
n
∑

j=1

[
(µB(tk, xj))

2 +
(
τB(tk, xj)

)2
+
(
νB(tk, xj)

)2
]


(2)

Theorem 1. The correlation coefficient between A and B satisfies the following properties:

(P1) 0 ≤ ρ(A(t), B(t)) ≤ 1;
(P2) ρ(A(t), B(t)) = 1 if A(t) = B(t);
(P3) ρ(A(t), B(t)) = ρ(B(t), A(t)).

Proof. (P1) The inequality ρ(A(t), B(t)) ≥ 0 is obvious. Then, let us prove ρ(A(t), B(t)) ≤ 1.
According to the Cauchy–Schwarz inequality:

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤

(
x2

1 + x2
2 + · · · x2

n

)
·
(

y2
1 + y2

2 + · · · y2
n

)
where (x1, x2, . . . , xn) ∈ Rn and (y1, y2, . . . , yn) ∈ Rn. Then, we can obtain the following inequality:

(x1y1 + x2y2 + · · ·+ xnyn) ≤
√(

x2
1 + x2

2 + · · · x2
n
)
·
√(

y2
1 + y2

2 + · · · y2
n
)

According to the above inequality, there is the following inequality:

n
∑

j=1
µA(tk, xj)

n
∑

j=1
µB(tk, xj) +

n
∑

j=1
τA(tk, xj)

n
∑

j=1
τB(tk, xj) +

n
∑

j=1
νA(tk, xj)

n
∑

j=1
νB(tk, xj) ≤√

n
∑

j=1

(
µA(tk, xj)

)2
+

n
∑

j=1

(
τA(tk, xj)

)2
+

n
∑

j=1

(
νA(tk, xj)

)2
√

n
∑

j=1
(µB(tk, xj))

2 +
n
∑

j=1

(
τB(tk, xj)

)2
+

n
∑

j=1

(
νB(tk, xj)

)2

Hence, there is:

n
∑

j=1

[
µA(tk, xj)µB(tk, xj) + τA(tk, xj)τB(tk, xj) + νA(tk, xj)νB(tk, xj)

]
≤√

n
∑

j=1

[(
µA(tk, xj)

)2
+
(
τA(tk, xj)

)2
+
(
νA(tk, xj)

)2
]√ n

∑
j=1

[
(µB(tk, xj))

2 +
(
τB(tk, xj)

)2
+
(
νB(tk, xj)

)2
]

From Equation (2), we have ρ(A(t), B(t)) ≤ 1. Thus, 0 ≤ ρ(A(t), B(t)) ≤ 1.
(P2) A(t) = B(t) ⇒ µA(tk, xj) = µB(tk, xj), τA(tk, xj) = τB(tk, xj), and νA(tk, xj) = νB(tk, xj) for

tk ∈ t and xj ∈ X⇒ ρ(A(t), B(t)) = 1.
(P3) It is straightforward.

In practical applications, we should consider different weights for each element xj (j = 1, 2, . . . , n)
in X and each time tk (k = 1, 2, . . . , q) in t. Then, let w = (w1, w2, . . . , wn)T be the weighting vector of
xj (j = 1, 2, . . . , n) with wj ≥ 0 and ∑n

j=1 wj = 1 and ω(t) = (ω(t1), ω(t2), . . . , ω(tq))T be the weighting
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vector of tk (k = 1, 2, . . . , q) with ω(tk)≥ 0 and ∑
q
k=1 ω(tk) = 1. Hence, we further extend the correlation

coefficient of Equation (2) to the following weighted correlation coefficient:

ρw(A(t), B(t)) =

q
∑

k=1
ω(tk)

n
∑

j=1
wj[µA(tk ,xj)µB(tk ,xj)+τA(tk ,xj)τB(tk ,xj)+νA(tk ,xj)νB(tk ,xj)]

√
n
∑

j=1
wj

[(
µA(tk, xj)

)2
+
(
τA(tk, xj)

)2
+
(
νA(tk, xj)

)2
]

√
n
∑

j=1
wj

[
(µB(tk, xj))

2 +
(
τB(tk, xj)

)2
+
(
νB(tk, xj)

)2
]


(3)

when wj = 1/n (j = 1, 2, . . . , n) and ω(tk) = 1/q (k = 1, 2, . . . , q), Equation (3) reduces to Equation (2).

Theorem 2. The correlation coefficient ρw(A(t), B(t)) also satisfies the following three properties:

(P1) 0 ≤ ρw(A(t), B(t)) ≤ 1;
(P2) ρw(A(t), B(t)) = 1 if A(t) = B(t);
(P3) ρw(A(t), B(t)) = ρw(B(t), A(t)).

By the previous similar proof method in Theorem 1, we can prove the properties (P1)–(P3) (omitted).

5. Correlation Coefficient for Multiple Attribute Decision-Making

In this section, we apply the weighted correlation coefficient of DSVNMs to multiple attribute
decision-making problems with DSVNM information.

For a multiple attribute decision-making problem with DSVNM information, let G = {g1, g2, . . . , gm}
be a discrete set of alternatives, X = {x1, x2, ..., xn} be a set of attributes, and t = {t1, t2, . . . , tq} be a time
sequence. If the decision makers provide an evaluation value for the alternative gi (i = 1, 2, ..., m) regarding
the attribute xj (j = 1, 2, . . . , n) at a time tk (k = 1, 2, . . . , q), the evaluation value can be represented
by the form of a DSVNME dij(t) = 〈 (µi(t1, xj), µi(t2, xj), . . . , µi(tq, xj)), (τi(t1, xj), τi(t2, xj), . . . , τi(tq, xj)),
(νi(t1, xj), νi(t2, xj), . . . , νi(tq, xj)) 〉 (j = 1, 2, . . . , n; i = 1, 2, . . . , m). Therefore, we can elicit a DSVNM
decision matrix D(t) = (dij(t))m×n, where dij(t) (i = 1, 2, ..., m; j = 1, 2, ..., n) is in a DSVNME form.

In multiple attribute decision-making problems, the ideal alternative is used to help the
identification of the best alternative in the decision set. Therefore, we define each ideal DSVNME
dj*(t) = 〈(µ*(t1, xj), µ*(t2, xj), . . . , µ*(tq, xj)), (τ*(t1, xj), τ*(t2, xj), . . . , τ*(tq, xj)), (ν*(t1, xj), ν*(t2, xj), . . . ,
ν*(tq, xj))〉 = 〈(1, 1, . . . , 1), (0, 0, . . . , 0), (0, 0, . . . , 0)〉 (j = 1, 2, ..., n) in the ideal solution (ideal alternative)

g∗(t) =
{〈

xj, d∗j (t)
〉
|tk ∈ t, xj ∈ X

}
(k = 1, 2, . . . , q; j = 1, 2, ..., n).

Assume that the weighting vector of attributes for the different importance of each attribute
xj (j = 1, 2, ..., n) is given by w = (w1, w2, . . . , wn)T with wj ≥ 0, ∑n

j=1 wj = 1 and the time weighting
vector for the different importance of each time tk (k = 1, 2, . . . , q) is given by ω(t) = (ω(t1), ω(t2), . . . ,
ω(tq))T with ω(tk) ≥ 0 and ∑

q
k=1 ω(tk) = 1.

Then, we utilize the weighted correlation coefficient for multiple attribute decision-making
problems with DSVNM information.

The weighted correlation coefficient between an alternative gi(t) (i = 1, 2, . . . , m) and the ideal
solution g*(t) is calculated by use of the following formula:

ρw(gi(t), g∗(t)) =
q

∑
k=1

ω(tk)

n
∑

j=1
wj
[
µi(tk, xj)

]
√

n
∑

j=1
wj

[(
µi(tk, xj)

)2
+
(
τi(tk, xj)

)2
+
(
νi(tk, xj)

)2
] (4)

The bigger the value of ρw(gi(t), g*(t)), the better the alternative gi. Then, we rank the alternatives
and select the best one(s) according to the values of weighted correlation coefficients.
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6. Practical Example

A practical example about investment alternatives for a multiple attribute decision-making
problem adapted from Ye [8] is used to demonstrate the applications of the proposed decision-making
method under a DSVNM environment. There is an investment company, which wants to invest
a sum of money in the best option. There is a panel with four possible alternatives to invest the
money: (1) g1 is a car company; (2) g2 is a food company; (3) g3 is a computer company; (4) g4 is
an arms company. The investment company must take a decision according to the three attributes:
(1) x1 is the risk factor; (2) x2 is the growth factor; (3) x3 is the environmental factor. Let us consider
the evaluations of the alternatives on the attributes given by decision makers or experts in the time
sequence t = {t1, t2, t3}. Assume that the weighting vector of the attributes is given by w = (0.35, 0.25,
0.40)T and the weighting vector of times is given by ω(t) = (0.25, 0.35, 0.40)T. The four possible
alternatives of gi (i = 1, 2, 3, 4) regarding the three attributes of xj (j = 1, 2, 3) are evaluated by decision
makers, and then the evaluation values are represented by using DSVNMEs, which are given as the
following DSVNM decision matrix D(t):

D(t) =


〈(0.4, 0.5, 0.3), (0.1, 0.2, 0.3), (0.3, 0.2, 0.3)〉
〈(0.6, 0.4, 0.5), (0.1, 0.1, 0.2), (0.1, 0.2, 0.3)〉
〈(0.4, 0.2, 0.3), (0.2, 0.1, 0.2), (0.2, 0.3, 0.3)〉
〈(0.7, 0.6, 0.8), (0.1, 0.0, 0.0), (0.1, 0.1, 0.1)〉
〈(0.4, 0.5, 0.3), (0.1, 0.2, 0.2), (0.2, 0.3, 0.3)〉
〈(0.5, 0.6, 0.7), (0.1, 0.1, 0.1), (0.1, 0.2, 0.2)〉
〈(0.4, 0.5, 0.6), (0.1, 0.2, 0.2), (0.4, 0.2, 0.3)〉
〈(0.6, 0.5, 0.7), (0.1, 0.2, 0.1), (0.2, 0.3, 0.2)〉
〈(0.2, 0.3, 0.2), (0.2, 0.2, 0.2), (0.4, 0.3, 0.5)〉
〈(0.5, 0.6, 0.7), (0.2, 0.1, 0.2), (0.1, 0.2, 0.2)〉
〈(0.6, 0.5, 0.6), (0.3, 0.2, 0.3), (0.2, 0.2, 0.3)〉
〈(0.4, 0.5, 0.4), (0.3, 0.2, 0.2), (0.2, 0.1, 0.2)〉

.

Then, the developed approach is utilized to give the ranking order of the alternatives and the
best one(s).

By applying Equation (4), we can obtain the values of the weighted correlation coefficient between
each alternative and the ideal alternative as follows:

ρw(g1(t), g*(t)) = 0.6285, ρw(g2(t), g*(t)) = 0.9122, ρw(g3(t), g*(t)) = 0.7758 and ρw(g4(t), g*(t)) = 0.9025.
According to the above values of weighted correlation coefficients, we can give the ranking order

of the four alternatives: A2
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The bigger the value of ρw(gi(t), g*(t)), the better the alternative gi. Then, we rank the alternatives 
and select the best one(s) according to the values of weighted correlation coefficients. 

6. Practical Example 

A practical example about investment alternatives for a multiple attribute decision-making 
problem adapted from Ye [8] is used to demonstrate the applications of the proposed 
decision-making method under a DSVNM environment. There is an investment company, which 
wants to invest a sum of money in the best option. There is a panel with four possible alternatives 
to invest the money: (1) g1 is a car company; (2) g2 is a food company; (3) g3 is a computer company; 
(4) g4 is an arms company. The investment company must take a decision according to the three 
attributes: (1) x1 is the risk factor; (2) x2 is the growth factor; (3) x3 is the environmental factor. Let us 
consider the evaluations of the alternatives on the attributes given by decision makers or experts in 
the time sequence t = {t1, t2, t3}. Assume that the weighting vector of the attributes is given by w = 
(0.35, 0.25, 0.40)T and the weighting vector of times is given by ω(t) = (0.25, 0.35, 0.40)T. The four 
possible alternatives of gi (i = 1, 2, 3, 4) regarding the three attributes of xj (j = 1, 2, 3) are evaluated 
by decision makers, and then the evaluation values are represented by using DSVNMEs, which are 
given as the following DSVNM decision matrix D(t): 

(0.4,0.5,0.3), (0.1,0.2,0.3), (0.3,0.2,0.3)
(0.6,0.4,0.5), (0.1,0.1,0.2), (0.1,0.2,0.3)

( )
(0.4,0.2,0.3), (0.2,0.1,0.2), (0.2,0.3,0.3)
(0.7,0.6,0.8), (0.1,0.0,0.0), (0.1,0.1,0.1)

(0.4,0.5,0.3), (0.1,0.2,0

D t



=




.2), (0.2,0.3,0.3)
(0.5,0.6,0.7), (0.1,0.1,0.1), (0.1,0.2,0.2)
(0.4,0.5,0.6), (0.1,0.2,0.2), (0.4,0.2,0.3)
(0.6,0.5,0.7), (0.1,0.2,0.1), (0.2,0.3,0.2)

(0.2,0.3,0.2), (0.2,0.2,0.2), (0.4,0.3,0.5)
(0.5,0.6,0.7), (0.2,0.1,0.2), (0.1,0.2,0.2)

.
(0.6,0.5,0.6), (0.3,0.2,0.3), (0.2,0.2,0.3)
(0.4,0.5,0.4), (0.3,0.2,0.2), (0.2,0.1,0.2)








  

Then, the developed approach is utilized to give the ranking order of the alternatives and the 
best one(s). 

By applying Equation (4), we can obtain the values of the weighted correlation coefficient 
between each alternative and the ideal alternative as follows:  

ρw(g1(t), g*(t)) = 0.6285, ρw(g2(t), g*(t)) = 0.9122, ρw(g3(t), g*(t)) = 0.7758 and ρw(g4(t), g*(t)) = 0.9025. 
According to the above values of weighted correlation coefficients, we can give the ranking 

order of the four alternatives: A2  A4  A3  A1, which is in accordance with the one of [8]. 
Therefore, the alternative A2 is the best choice.  

The example clearly indicates that the proposed decision-making method is simple and 
effective under the DSVNM environment, based on the weighted correlation coefficient of 
DSVNMs for dealing with multiple attribute decision-making problems with DSVNM information, 
since such a decision-making method can represent and handle the dynamic evaluation data given 
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The bigger the value of ρw(gi(t), g*(t)), the better the alternative gi. Then, we rank the alternatives 
and select the best one(s) according to the values of weighted correlation coefficients. 

6. Practical Example 

A practical example about investment alternatives for a multiple attribute decision-making 
problem adapted from Ye [8] is used to demonstrate the applications of the proposed 
decision-making method under a DSVNM environment. There is an investment company, which 
wants to invest a sum of money in the best option. There is a panel with four possible alternatives 
to invest the money: (1) g1 is a car company; (2) g2 is a food company; (3) g3 is a computer company; 
(4) g4 is an arms company. The investment company must take a decision according to the three 
attributes: (1) x1 is the risk factor; (2) x2 is the growth factor; (3) x3 is the environmental factor. Let us 
consider the evaluations of the alternatives on the attributes given by decision makers or experts in 
the time sequence t = {t1, t2, t3}. Assume that the weighting vector of the attributes is given by w = 
(0.35, 0.25, 0.40)T and the weighting vector of times is given by ω(t) = (0.25, 0.35, 0.40)T. The four 
possible alternatives of gi (i = 1, 2, 3, 4) regarding the three attributes of xj (j = 1, 2, 3) are evaluated 
by decision makers, and then the evaluation values are represented by using DSVNMEs, which are 
given as the following DSVNM decision matrix D(t): 

(0.4,0.5,0.3), (0.1,0.2,0.3), (0.3,0.2,0.3)
(0.6,0.4,0.5), (0.1,0.1,0.2), (0.1,0.2,0.3)

( )
(0.4,0.2,0.3), (0.2,0.1,0.2), (0.2,0.3,0.3)
(0.7,0.6,0.8), (0.1,0.0,0.0), (0.1,0.1,0.1)

(0.4,0.5,0.3), (0.1,0.2,0

D t



=




.2), (0.2,0.3,0.3)
(0.5,0.6,0.7), (0.1,0.1,0.1), (0.1,0.2,0.2)
(0.4,0.5,0.6), (0.1,0.2,0.2), (0.4,0.2,0.3)
(0.6,0.5,0.7), (0.1,0.2,0.1), (0.2,0.3,0.2)

(0.2,0.3,0.2), (0.2,0.2,0.2), (0.4,0.3,0.5)
(0.5,0.6,0.7), (0.2,0.1,0.2), (0.1,0.2,0.2)

.
(0.6,0.5,0.6), (0.3,0.2,0.3), (0.2,0.2,0.3)
(0.4,0.5,0.4), (0.3,0.2,0.2), (0.2,0.1,0.2)








  

Then, the developed approach is utilized to give the ranking order of the alternatives and the 
best one(s). 

By applying Equation (4), we can obtain the values of the weighted correlation coefficient 
between each alternative and the ideal alternative as follows:  

ρw(g1(t), g*(t)) = 0.6285, ρw(g2(t), g*(t)) = 0.9122, ρw(g3(t), g*(t)) = 0.7758 and ρw(g4(t), g*(t)) = 0.9025. 
According to the above values of weighted correlation coefficients, we can give the ranking 

order of the four alternatives: A2  A4  A3  A1, which is in accordance with the one of [8]. 
Therefore, the alternative A2 is the best choice.  

The example clearly indicates that the proposed decision-making method is simple and 
effective under the DSVNM environment, based on the weighted correlation coefficient of 
DSVNMs for dealing with multiple attribute decision-making problems with DSVNM information, 
since such a decision-making method can represent and handle the dynamic evaluation data given 
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The bigger the value of ρw(gi(t), g*(t)), the better the alternative gi. Then, we rank the alternatives 
and select the best one(s) according to the values of weighted correlation coefficients. 

6. Practical Example 

A practical example about investment alternatives for a multiple attribute decision-making 
problem adapted from Ye [8] is used to demonstrate the applications of the proposed 
decision-making method under a DSVNM environment. There is an investment company, which 
wants to invest a sum of money in the best option. There is a panel with four possible alternatives 
to invest the money: (1) g1 is a car company; (2) g2 is a food company; (3) g3 is a computer company; 
(4) g4 is an arms company. The investment company must take a decision according to the three 
attributes: (1) x1 is the risk factor; (2) x2 is the growth factor; (3) x3 is the environmental factor. Let us 
consider the evaluations of the alternatives on the attributes given by decision makers or experts in 
the time sequence t = {t1, t2, t3}. Assume that the weighting vector of the attributes is given by w = 
(0.35, 0.25, 0.40)T and the weighting vector of times is given by ω(t) = (0.25, 0.35, 0.40)T. The four 
possible alternatives of gi (i = 1, 2, 3, 4) regarding the three attributes of xj (j = 1, 2, 3) are evaluated 
by decision makers, and then the evaluation values are represented by using DSVNMEs, which are 
given as the following DSVNM decision matrix D(t): 

(0.4,0.5,0.3), (0.1,0.2,0.3), (0.3,0.2,0.3)
(0.6,0.4,0.5), (0.1,0.1,0.2), (0.1,0.2,0.3)

( )
(0.4,0.2,0.3), (0.2,0.1,0.2), (0.2,0.3,0.3)
(0.7,0.6,0.8), (0.1,0.0,0.0), (0.1,0.1,0.1)

(0.4,0.5,0.3), (0.1,0.2,0

D t



=




.2), (0.2,0.3,0.3)
(0.5,0.6,0.7), (0.1,0.1,0.1), (0.1,0.2,0.2)
(0.4,0.5,0.6), (0.1,0.2,0.2), (0.4,0.2,0.3)
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(0.2,0.3,0.2), (0.2,0.2,0.2), (0.4,0.3,0.5)
(0.5,0.6,0.7), (0.2,0.1,0.2), (0.1,0.2,0.2)

.
(0.6,0.5,0.6), (0.3,0.2,0.3), (0.2,0.2,0.3)
(0.4,0.5,0.4), (0.3,0.2,0.2), (0.2,0.1,0.2)








  

Then, the developed approach is utilized to give the ranking order of the alternatives and the 
best one(s). 

By applying Equation (4), we can obtain the values of the weighted correlation coefficient 
between each alternative and the ideal alternative as follows:  

ρw(g1(t), g*(t)) = 0.6285, ρw(g2(t), g*(t)) = 0.9122, ρw(g3(t), g*(t)) = 0.7758 and ρw(g4(t), g*(t)) = 0.9025. 
According to the above values of weighted correlation coefficients, we can give the ranking 

order of the four alternatives: A2  A4  A3  A1, which is in accordance with the one of [8]. 
Therefore, the alternative A2 is the best choice.  

The example clearly indicates that the proposed decision-making method is simple and 
effective under the DSVNM environment, based on the weighted correlation coefficient of 
DSVNMs for dealing with multiple attribute decision-making problems with DSVNM information, 
since such a decision-making method can represent and handle the dynamic evaluation data given 

A1, which is in accordance with the one of [8]. Therefore,
the alternative A2 is the best choice.

The example clearly indicates that the proposed decision-making method is simple and effective
under the DSVNM environment, based on the weighted correlation coefficient of DSVNMs for
dealing with multiple attribute decision-making problems with DSVNM information, since such
a decision-making method can represent and handle the dynamic evaluation data given by experts
or decision makers at different time intervals, while existing various neutrosophic decision-making
methods cannot do this.

7. Conclusions

Based on dynamic information collected from different time intervals in some real situations,
this paper proposed a DSVNM to express dynamic information and the operational relations of
DSVNMs. The DSVNM is a dynamic set encompassing a time sequence, where its truth-membership
degrees, indeterminacy-membership degrees, and falsity-membership degrees are represented by time
sequences. Therefore, DSVNM has desirable characteristics and advantages of its own for handling
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dynamic problems according to a time sequence in real applications, whereas existing neutrosophic
sets cannot deal with them.

Then, we proposed the correlation coefficient of DSVNMs and weighted correlation coefficient of
DSVNMs and investigated their properties. Based on the weighted correlation coefficient of DSVNMs,
the multiple attribute decision-making method was proposed under a DSVNM environment, in which
the evaluated values of alternatives regarding attributes take the form of DSVNMEs. Through the
weighted correlation coefficient between each alternative and the ideal alternative, one can rank
alternatives and choose the best one(s). Finally, a practical example about investment alternatives
was given to demonstrate the practicality and effectiveness of the developed approach. The proposed
method is simple and effective under the DSVNM decision-making environment.

In the future, we shall extend DSVNMs to interval/bipolar neutrosophic sets and develop
dynamic interval/bipolar neutrosophic decision-making and medical diagnosis methods in different
time intervals.
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