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Abstract: In this report, we studied the sampling synchronization of a discrete signal in the receiver
of a communication system and found that the frequency of the received signal usually exhibits some
unpredictable deviations. We observed many harmonics caused by the frequency deviations of the
discrete received signal. These findings indicate that signal sampling synchronization is an important
research technique when using discrete Fourier transforms (DFT) to analyze the harmonics of discrete
signals. We investigated the influence of these harmonics on the performance of signal sampling and
studied the frequency estimation of the received signal. Based on the frequency estimation of the
received signal, the sampling rate of the discrete signal was converted using a modified Farrow filter
to achieve sampling synchronization for the received signal. The algorithm discussed here can be
applied to sampling synchronization for monitoring and control systems. Finally, simulations and
experimental results are presented.
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1. Introduction

The sampling theorem is one of the most basic and fascinating topics in engineering sciences [1].
The best-known form uses a Fourier transform to analyze the uniform sampling rate, based on earlier
work by Nyquist [2] and Shannon [3]. In Shannon’s uniform-sampling theorem, the sampling rate
depends on the signal frequency; however, the frequency of the received signal usually exhibits some
deviations in the receiver for a communications system, which raises an important question about the
sampling of the received signal: how can we estimate the frequency deviation of the received signal
and also achieve a sampling rate conversion (SRC) for a discrete signal?

To answer this and related questions, we must first understand the frequency estimation of the
discrete signal in the receiver and its properties. Several fast and accurate frequency estimators have
been previously proposed [4–7]. Without loss of generality, these frequency estimation algorithms
mainly use discrete Fourier transform (DFT), maximum likelihood (ML), and phase estimation [4].
Each of these methods has an optimal characteristic. For example, Viterbi [8] proposed a frequency
estimation algorithm that was an approximation of the ML estimator. Additionally, there are several
methods for using autocorrelation theory to estimate the frequency of the received signal. For example,
Fitz et al. [9] calculated the autocorrelation function of a signal to estimate the signal frequency.
They proposed a new frequency estimator for a single complex sinusoid in complex white Gaussian
noise. To estimate the angle frequency, they estimated the angle difference primarily by using
the DFT, which can be applied to accurately estimate the change of the signal phase. Using the
signal phase variation, the received signal frequency can be obtained. In [10–12], they also used the

Information 2017, 8, 53; doi:10.3390/info8020053 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
http://www.mdpi.com/journal/information


Information 2017, 8, 53 2 of 15

autocorrelation function of signal to study the signal frequency estimation problem. They noted
that the signal frequency can be efficiently determined by the autocorrelation function. In particular,
the autocorrelation function can effectively suppress Gaussian white noise. Brown et al. [13] proposed
an algorithm for estimating the frequency of a complex sinusoid in noise. The estimator consists of
multiple applications of low-pass filtering and decimation, frequency estimation by linear prediction,
and digital heterodyning. Note that the autocorrelation function provides advantages that include
both high estimation precision and simple calculation. Gedalyahu et al. [14] proposed a multichannel
architecture for sampling pulse streams with arbitrary shape. Their approach was based on modulating
the input signal with a set of properly chosen waveforms, followed by a bank of integrators. They noted
that a stable pulse stream can be recovered from the proposed minimal-rate samples taken from the
spectral estimation using standard tools.

On the other hand, the SRC operation needs to be performed, after which the frequency of the
received signal can be estimated. Generally, we can use the Farrow filter [15] to perform the SRC
operation. The Farrow structure is a standard for implementing polynomial-based interpolation filters.
It provides a means for efficient, real-time implementation of a polynomial-based filter [16]. The classic
approach to SRC is presented in [17]. There are two basic types of SRC as follows: fractional-factor
SRC and integer-factor SRC. In this paper, we discuss fractional-factor SRC for the received signal of
the communication system. A few earlier works have attempted to study SRC [18–21]. For example,
Blok et al. [18] presented a sampling rate conversion with a continuously changing re-sampling ratio.
The proposed implementation was based on a variable fractional delay filter implemented using a
Farrow structure. Wang et al. [19] proposed a reconfigurable integer factor sampling rate converter
for software defined radio (SDR) receivers. A cascaded integrate comb (CIC) filter with a factor-16
down sampler was used to realize large-factor and multiplier-free decimation in the front stage,
while a multistage decimator is implemented together with the CIC filter to provide a finer integral
downsampling rate. Similarly, Horridge et al. [20] discussed the design of re-sampling algorithms
suitable for use in over-the-horizon radar (OTHR) (and because the techniques are general, in other
radar systems). Similarly, Blok et al. [21] proposed a novel classification of fractional delay filter design
methods, dividing them into the following three general categories: optimal fractional filter design,
offset window method and polyphase decomposition. The proposed classification was based on the
differences in the properties of the sample rate conversion algorithm based on fractional delay filters.
In [22], to improve the measurement accuracy for distorted signals, Andria et al. examined suitable
windows and interpolation algorithms to reduce undesirable effects when the sampling process is
not synchronized.

Based on the above analysis, estimating the actual signal frequency and consequently interpolating
in order to limit harmonic distortion are well-known in literature. However, the sampling rate
conversion of a discrete signal with an arbitrary ratio between the original discrete signal and
the converted sampling rate signal is a challenging problem, although estimating the actual signal
frequency has been solved. This is because the frequency deviation of a received signal is random and
unpredictable, and sampling rate deviation occurs in order to cause harmonic disturbance. Currently,
existing techniques for the sampling rate conversion have studied the methods in the specific factors
as [19–21]. Note that the SRC algorithm must compute the values of signal samples at new time instants
located between the original samples [23,24]. This means that we can treat each output sample of the
SRC algorithm as an input sample delayed or advanced by a fraction of the input sampling period.

In this paper, we use the angular frequency to estimate the frequency of the received signal.
We present a new method using fine frequency resolution (FFR) to estimate the frequency of the
received signal. The FFR is presented in [25], where it is applied to the phase difference between
two nearby segments of the discrete signal to calculate the frequency deviation. Based on the
frequency estimation of the received signal, the discrete signal sampling rate is converted using
the modified Farrow filter to achieve the received signal sampling synchronization. The algorithm can
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be applied to a variety of power distribution system devices during front-end processing of signals by
synchronous sampling.

The sampling rate conversion of discrete signal is studied in detail. Our analysis reveals that
harmonics become more complicated as the frequency deviation of the signal becomes larger. Given this
characterization, the frequency estimation of the received signal can be derived. We extend the results
by assuming the received signal is bandlimited as follows: we introduce a filter on the SRC of the
signal. These theoretical results are verified through simulation experiments. Beyond the fundamental
interest of precisely characterizing the SRC of the signal, the results are useful in obtaining the best
sampling rate synchronization for the received signal. Our framework builds upon [19–21] and extends
it in several aspects, such as sampling rate conversion for arbitrary ratio.

Our proposed scheme provides three contributions to the sampling rate conversion of the
discrete signal:

• The modified Farrow filter is simple to use for sampling rate conversion of a discrete signal
in an arbitrary ratio between the original discrete signal and the converted sampling rate
signal. In the conversion algorithm, because the modified Farrow structure depends only on the
conversion ratio, a minimal amount of calculation information is needed. Thus, the modified
Farrow filter can greatly simplify the calculation complexity of sampling rate conversion theory.

• For a specific order number of the modified Farrow structure, its sampling points must be
increased to improve the sampling rate accuracy. To the existing theory, our approach is a
simplification of a complex signal to the modified Farrow filter.

• Our proposed method is more accurate than the existing methods in the literature. For a complex
signal, such as an existing harmonic distortion, the determined sampling rate accuracy is higher
when using the FFR to perform the sampling rate problem of a discrete signal.

The remainder of this paper is organized as follows. A modified frequency estimation method
is presented in Section 2. In Section 3, an SRC algorithm is presented. The theory presented in this
paper is then verified using simulations and real measurements in Section 4. Conclusions are drawn in
Section 5.

2. Frequency Deviation Estimation

2.1. Problem Statement

We begin by briefly reviewing the problem. In a communication system, due to different clock
rates between the transmitter and receiver, the signal frequency in the receiver will deviate from the
signal frequency in the transmitter [19,26]. Additionally, because of superimposed noise, non-linear
static characteristics and slow response [22], the frequency deviation of the received signal is increased,
as shown in Figure 1. Let the frequency of the signal x (t) be fx in the transmitter. Furthermore,
the frequency of the signal y (t) is fy in the receiver, where fy = fx + ∆ f . Without loss of generality,
assume ∆ f is unknown. The sampling rate of the received signal y (t) is usually given by fs = fx · N,
where N is the number of samples in a periodic signal, as shown in Figure 2. The received signal y (t)
can be defined as

y(t) =
K

∑
i=1

Ai cos(2π fit + ϕi), (1)

where K is the number of harmonics and is related to the interference for the channel, fi is the frequency
of the ith harmonic, Ai is the amplitude and ϕi is the phase.

By using the sampling rate fs = fx ·N to sample the signal y (t), its components can be represented
as follows:

yi(nTs) = Ai cos[2π finTs + ϕi], (2)

where n = 0, 1, 2, ...N − 1 and Ts = 1/ fs. Then, the relationship between fs and the frequency of the
received signal y (t) is not an integer multiple. The reason for this can be understood by considering
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that there are some harmonics for the received signal that are caused by the interference of the signal
for yi(nTs). More precisely, as depicted in Figure 2, the sampling period of the received signal is Ty.
However, if the received signal is sampled using Ts, the spectral leakage from the signal will occur
due to the sampling period deviation, i.e., ∆T =

∣∣Ty − Ts
∣∣ shown in Figure 2, where ∆T = 1

/
∆ f

and Ty = 1
/

fy. Therefore, we must first estimate ∆ f . Subsequently, we must convert the sampling rate
of the discrete received signal yi(nTs) to eliminate the harmonic disturbances caused by sampling rate
deviation. To address this problem, we analyze the frequency deviation using the method proposed in
the next sections.

Figure 1. Transmission of a signal with frequency deviation.

Figure 2. Diagram of the frequency deviation for a periodic signal.

2.2. FFR Estimation

In this sub-section, we analyze how the frequency deviation is estimated. Assuming that
the received signal is sampled at the sampling rate fs = fx · N, we select two segments of the
discrete received signal, each with length Ns. Additionally, to eliminate the leakage of the analyzed
signal segment, Ns (i.e., the length of the analyzed signal segment (DFT size)) must be equal to
an integer multiple of the signal’s period. The two segments are represented as xm(n) and xm+1(n),
where n = 0, 1, 2, ..., Ns − 1. The DFT of the discrete received signal for one section is

X(k) =
Ns−1

∑
n=0

x(n)WNs
nk, k = 0, 1, 2, ..., Ns − 1, (3)

where WNs = e−j 2π
Ns . The DFTs of xm(n) and xm+1(n) are Xm(k) and Xm+1(k), respectively,

where k = 0, 1, 2, ..., Ns − 1.
The FFR of the received signal can be determined using the relationship between the signal phases.

More precisely, the highest frequency consists of some pieces of signal from Xm(k) at time m, where k
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is the frequency component of the input signal. The initial phase θm(k) of the received signal can be
calculated using the DFT of the received signal as follows:

θm(k) = tan−1
{

Im[Xm(k)]
Re[Xm(k)]

}
, (4)

where Im is the imaginary part of Xm (k), and Re is the real component of Xm (k).
Generally, the frequency deviation of the signal is very small, so we can assume that the length of

the component Xm+1(k) of the signal is 1.0 ms in a short period of time. The interval time is from m to
m + 1. This length is equivalent to its maximum phase component. Then, the initial phase angle of
a received signal at time m + 1 can be calculated as

θm+1(k) = tan−1
{

Im[Xm+1(k)]
Re[Xm+1(k)]

}
. (5)

Using the two phase angles, θm(k) and θm+1(k), the fine frequency can be calculated as

f∆ =
θm+1(k)− θm(k)

2πNs
. (6)

The fine frequency calculated by Equation (6) can be used to obtain highly accurate results
for the frequency deviation. To ensure that the frequency is not changed, the phase difference
∆θ = θm+1(k)− θm(k) must be smaller than 2π. Furthermore, when the phase difference is 2π, the
bandwidth of the non-fuzzy portion is 1/Ns, where Ns is the delay time between two groups of
continuous signal [15].

2.3. Signal Frequency Correction

If the frequency of the transmitted signal is f , then the frequency of the corrected received signal
can be written as

fnew = f + f∆. (7)

From (7), we can obtain a frequency of the received signal that is closer to the frequency of the
transmitted signal. Therefore, the new sampling rate of the received signal is

∧
fs = fnew · Ns. (8)

Finally, we can process the two pieces of the received signal again to obtain high precision in the

frequency estimation. The received signal is sampled using the new sampling rate,
∧
fs. Using (6)–(8),

the sampling rate
∧
fs can be updated. The above expressions provide a method of re-estimating for a

different sampling rate
∧
fs. It should be observed that the sampling rate of the received signal can be

approximated by the sampling rate of the transmitted signal to achieve high sampling synchronization.

2.4. Performance Analysis of the Frequency Deviation Estimation

Without loss of generality, the frequency deviation estimation is considered as a frequency
estimation of the signal. This problem has been studied using many methods, such as the
autocorrelation function and maximum likelihood estimation [9–13]. For our method, the frequency
deviation can be estimated using (6). Firstly, the frequency deviation can be accurately estimated
using the phase of the signal spectrum. Secondly, we intercept an integer multiple of the signal to
perform the frequency estimation, so that the frequency of the signal can be tracked at any moment in
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time. The concept of Cramer–Rao bound (CRB) can evaluate the performance of frequency estimation.
The CRB of the frequency estimate, given by [27] is

σ2
f =

6 f 2
s

(2π)2ρN (N2 − 1)
, (9)

where ρ is the signal-to-noise ratio (SNR). Based on (6) and (8), the CRB of the frequency estimate
obtained by our proposed method can be modified as

σ2
f =

6 f̂ 2
s

(2π)2ρNs

(
Ns

2 − 1
) . (10)

Note the difference between (9) and (10) with respect to the sampling rate fs. In (9), the sampling
rate is not converted, and the sampling rate has been converted in (10). Therefore, we try to use (10) to
analyze the performance of the frequency estimation.

3. Sampling Rate Conversion Algorithm

The above discussion should provide a reasonably clear idea of what a re-estimation of sampling
rate is. After obtaining a new sampling rate for the discrete signal, the original sampling rate of the
discrete signal from the received signal must be converted to obtain the SRC. Here, a modified Farrow
filter is used to perform the SRC of the signal. This procedure is described below.

3.1. The Modified Farrow Filter

The Farrow filter, as proposed by Farrow [16], is a multi-rate filter structure that offers the option
of a continuously adjustable re-sampling ratio [15]. Here, we use the Farrow filter and modify its
coefficient selection method to optimize the performance and computational complexity of re-sampling.
More precisely, the coefficients of the filter are saved to a text file. Then, we use the stored coefficients
to perform the re-sampling, thus reducing the computational complexity. Without loss of generality,
in the transmitter, assume the signal is represented as x(nTs), where Ts is the sampling interval.
The sampling rate for the transmitted signal is fs = 1/Ts. In the receiver, if the signal correction

frequency is fy = fx + ∆ f , then the sampling rate for the received signal is
∧
fs. Therefore, the sampling

rate of the discrete received signal must be converted to the sampling rate,
∧
fs, when its original

sampling rate is fs. The expression for the SRC can be written as

y(mTy) =
∞

∑
n=−∞

x(nTs)h(mTy − nTs). (11)

For an arbitrary scaling factor of sampling rate conversion, we assume that mTy = (km + ∆)Ts,
0 ≤ ∆ < 1, where km is an integer. (11) can be re-written as

y
(
mTy

)
=

∞

∑
n=−∞

x (nTs) h ((km + ∆− n) Ts). (12)

Furthermore, (12) can be simplified to

y(m) =
∞

∑
n=−∞

x(n)h(km + ∆− n). (13)



Information 2017, 8, 53 7 of 15

If k = km − n, (13) can be written as follows:

y (m) =
∞

∑
n=−∞

x (km − n) h (k + ∆). (14)

We can see that the SRC operation mainly depends on the sampling interval ∆ and the
filter coefficient h (·). In this paper, h (·) is a modified Farrow filter [15]. It is described in the
following subsection.

3.2. The Interpolation Arithmetic of the Modified Farrow Filter

In this sub-section, we use a P order polynomial such as the Taylor expansion or Lagrange
polynomial to approximate h(k + ∆). The order of the modified Farrow filter is determined by the
sampling rate conversion ratio. The expression for h(k + ∆) can be approximatively given by

h(k + ∆) ≈
P

∑
l=0

cl(k)∆l , (15)

where cl (k) is the expanded form of the Taylor expansion or Lagrange polynomial.
Generally, the P order polynomial of h(·) (i.e., the prototype impulse response of the Farrow filter)

can be represented by Kc coefficients. In addition, allow Kc > P + 1. The DFT of these Kc coefficients is

H(k) = DFT[h(n)] =
Kc−1

∑
n=0

h(n)WKc
kn, (16)

where k = 0, 1, 2, ..., Kc − 1 and WKc = e−j 2π
Kc . To obtain an arbitrary sampling rate for the discrete signal,

H(k) is approximated by interpolation of the continuous signal. The DFT operation is described as

h(n) =
1

Kc

Kc−1

∑
k=0

H(k)WKc
−kn. (17)

Here, n could be arbitrary. Then, (15) is deployed as

h(n) = 1
Kc

Kc−1
∑

k=0
H(k)WKc

−kn = 1
Kc
{H(0)

+H(1)ej 2π
Kc n + H(2)ej 2π

Kc n·2 + · · ·+ H(Kc − 1)ej 2π
Kc n·(Kc−1).

(18)

To improve the sampling precision for the sampling rate conversion of a discrete signal,
the number of sampling points of the Farrow filter h(n) must be increased. Based on (18), the number
of sampling points of the Farrow filter h(n) can be increased by the interpolation of h(n) and can be
denoted N1, N2, · · ·. After the interpolation operation, we must analyze the interpolation error of h(n).
The expression for the interpolation error is

herror(n) = hN1(n)− hN2(n), (19)

where N1 represents the similar continuous signal for the needed SRC signal, and N2 is the minimum
interpolation for the corresponding discrete signal. Here, the number of interpolation points of
the interpolation operation of H(k) ranges from 500 to 10,000. We find that when the number of
interpolation points is 2000, the conversion from discrete signal to continuous signal produces the
required effect. As shown in Figure 3, the errors in the interpolation for numbers of interpolation points
between 2000 and 10,000 are very small. Therefore, using 2000 points to perform the interpolation
operation of H(k) can achieve an optimal signal conversion. In this report, the 2000 point parameters
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of H(k) are saved in a file, so the interpolation reconstruction for signal conversion can be performed
by a look-up table.
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Figure 3. Subtraction results of h(n) interpolation between 2000 points and 10,000 points.

3.3. SRC of Discrete Signal

After the interpolation coefficients of h(n) are obtained, the sampling rate of the discrete sampling
signals x(n) is converted by the following expression:

xnew(n) = x(n) ∗ h(n), (20)

where ∗ represents the convolution operation.
Using (20), the sampling rate of xnew (n) is different from that of x (n). Therefore, sampling rate

conversion is performed.

4. Experimental Results

Now, experimental results are presented for sampling rate conversion with arbitrary re-sampling
ratio of a discrete signal. These results are then compared with results obtained by other methods.

4.1. Results of the Frequency Estimation

To evaluate the effectiveness of our proposed method using a discrete signal sequence,
the sampling rate of the discrete signal is normalized to fs = 1. The number of sampling points
is N = 128, the sampling point interval is Ts = 1/ fs, the normalization factor is M = 128 × 50,
the fundamental frequency is f0 = 50/M Hz, and its maximum variation range is 0.2 Hz. Therefore,
the signal frequency for simulation is f1 = 50.2/M. The experiments include the following three cases
for the frequency estimation of the signal.

• a signal without harmonic components and noise
• a signal consisting of three times, five times, and seven times harmonics
• a signal consisting of a harmonic and 20 dB of Gaussian white noise. The results obtained using

the FFR estimation method are shown in Table 1.

One can observe in Table 1 that the magnitude of the frequency estimation accuracy reaches
0.001 in the first case, when the discrete signal does not contain harmonics or noise. The frequency of
the discrete signal is estimated three times for the iteration estimation, and the frequency completely
converges to 50.2 Hz. When the discrete signal consists of harmonics and noise, the frequency also
converges after three iterative estimations, as shown in Table 1. In Table 1, note that the frequency
estimation improves significantly after the third iteration, but subsequent improvements become
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less significant with additional iterations. From the above analysis, it is clear that the influence of
harmonics and noise on frequency estimation is very small when using our proposed method.

Table 1. Simulation results of fine frequency. (Units: Hz.)

Loop Number Frequency Estimation Containing Harmonic Containing Harmonic and Noise

1 50.200796 50.205414 50.329538
2 50.20000 50.200000 50.200333
3 50.20000 50.200000 50.200000
4 50.20000 50.200000 50.200000
5 50.20000 50.200000 50.200000

4.2. Design of the Modified Farrow Filter

The above example should provide a reasonably clear idea of what frequency estimation is
and how it can be performed by the FFR estimation. The effectiveness of our proposed method
can be verified. After estimating the frequency of the discrete signal, we can use the correction
frequency to correct the sampling rate of the discrete signal. Then, we use a modified Farrow filter to
perform the SRC. The design of this modified Farrow filter is an important factor. Here, we design a
modified Farrow filter h(n) using the Fdatool in MATLAB R2010a which is presented by MathWorks
of America (Natick, MA, USA). We show an example where the cut-off frequency is Fc = 6400 Hz,
the sampling rate of h(n) is Fs = 6400× 4 Hz, and the number of orders is seven. In addition, we
use the Bartlett–Hanning window to perform this operation. To improve the effectiveness of SRC
using the look-up table, the coefficient of h(n) is extended by (18) to 7× 300 coefficients. According
to the symmetry of DFT, let P = 3.5. The original h(n) is shown in Figure 4b, and the interpolation
coefficients of h(n) are shown in Figure 4a.

Figure 4. Diagram of 7× 300 points. The top (a) graph illustrates the interpolation coefficients of h (n),
while the bottom (b) illustrates the original coefficients of h (n).

After that, the interpolation coefficients of h(n) are applied to perform the sampling rate
conversion from the discrete signal to the continuous signal. Figure 5a shows the original discrete
signal, and Figure 5b shows the resampled signal after its sampling rate has been converted. To evaluate
the conversion performance, the spectra of the original discrete signal and the converted signal are
presented in Figure 6. It can be observed that the spectral leakage is reduced for the converted signal,
compared to the original discrete signal. Therefore, the sampling of the signal has been synchronized
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because the sampling rate is an integer multiple of the frequency of the signal. This result demonstrates
that the modified Farrow filter can be applied to convert the sampling rate of a discrete signal.

Figure 5. Diagram of the re-sampling signal. The top (a) graph illustrates the original discrete signal,
while the bottom (b) graph illustrates the sampling rate of the converted discrete signal.

0 20 40 60 80 100
0

20

40

60
The spectrum of the original discrete signal. 

0 20 40 60 80 100
0

20

40

60
The spectrum of the converted discrete signal. 

Figure 6. The spectra of the original discrete signal and the converted discrete signal for the
corresponding signal in Figure 5.

4.3. Simulation Results for SRC

In this subsection, we present the SRC of a simulated signal. In general, the received signal
consists of the transmitted signal plus some harmonic waves. Without loss of generality, the expression
of the received signal can be given as

x(t) = sin(2π f1t) + 1
3 sin(3× 2π f1t)+

1
5 sin(5× 2π f1t) + 1

7 sin(7× 2π f1t).
(21)
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Here, let f1 = 350 Hz. The signal is sampled using the sampling rate, fs = 128 × 50 Hz.
The sampling results are shown in Figure 7a. The figure shows only the result from 0 to 500 points.
To clearly show the harmonic of the signal and signal synchronization, we select the cycle length of the
discrete signal in (21) to perform its FFT. Note that there are 128 points per cycle length of the discrete
signal according to the sampling rate fs. The FFT results are shown in Figure 7b. It can be observed
that there are many harmonics in the spectrum of the original signal; however, after the SRC operation,
no harmonics remain in the spectrum of the re-sampling signal. This demonstrates that our proposed
method can be used to perform the SRC, improving its effectiveness.

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1
Diagram of sampling rate conversion before.

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1
 Diagram of sampling rate conversion after.

(a)

0 20 40 60 80 100 120 140
0

20

40

60
The spectrum of sampling rate conversion before. 

0 20 40 60 80 100 120 140
0

20

40

60

80
The spectrum of sampling rate conversion after.

(b)

Figure 7. (a) illustrates the difference between the original signal and the resampled signal for sampling
rate synchronization; (b) illustrates the fast Fourier transform (FFT) of the resampled signal for
comparison to the original signal.

The signal x(t) is sampled using the sampling rate fs
′. Note that fs

′ is an integer multiple of f1.
For the frequency estimation, because spectral leak occurs in the re-sampling process, the frequency
estimate converges to 50.20066477092068 Hz, when the iterative estimation is run five times. Table 2
shows the results of the FFT for x(n). It is corrected by the SRC before and after each cycle of x(n).

Table 2. Fast Fourier transform (FFT) comparison of the signals with the theoretical integer sampling
rate and the synchronous sampling rate.

The Results of the Sampling Signal for
before the Sampling Rate Conversion (SRC) The Results for after the SRC

0 0.00485602103592
0 0.00473329018826

0.00000000000001 0.00435523550826
0.00000000000001 0.00377333106918
0.00000000000001 0.00243896125486
0.00000000000001 0.00038573119211
0.00000000000001 0.00019852719739

0 0.00013465731865
62.82496056620225 62.56533184922048
20.86262463928692 20.77828756114954
12.42215235579411 12.37393682470713
8.76973611504727 8.73749834116767

0 0.00070606042704
0.00000000000001 0.00026219741259

0 0.00016016198162
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Table 2 shows the extent of the signal spectrum before and after SRC. Before the SRC, many of
the sampled values are zero because fs is an f integer number. It should be obvious that the signal
spectrum still contains a small amount of leakage. This behavior is understandable because the process
of sampling rate conversion inevitably has some frequency spectrum leakages. Furthermore, the
sampling rate is not strictly equal to the integer time frequency of the signal. However, the base and the
maximum amplitude of the harmonic wave amplitude ratio is only 7.761520465715398× e−5, showing
that frequency spectrum leakage is very small. This level of accuracy could completely satisfy the face
harmonic analysis of a signal and could accurately identify harmonics.

4.4. Comparison Results

4.4.1. Frequency Deviation Estimation

To enable the comparison of the accuracy of this method with the accuracies of alternative
solutions, the method of iterative frequency estimation by interpolation on Fourier coefficients
(IIFC) [28] is applied to perform the experimental evaluation. The authors proposed and analyzed two
new frequency estimators that interpolate on the Fourier coefficients of the received signal samples.
The estimators were shown to achieve identical asymptotic performances. The frequency of the signal
was derived as

fnew =
m̂N + δN

N
fs, (22)

where m̂N is the index of the bin with the largest magnitude, and δN is a residual in the
interval [−0.5, 0.5].
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Figure 8. Diagram of the channel request block (CRB) results obtained by our frequency estimation
method and by the interpolation on Fourier coefficients (IIFC).

In this experiment, the signal’s amplitude is 1, and the length of the signal is 256. After using
(7) and (22) to estimate the signal frequency, the estimated performances of the two methods are
evaluated using the concept of channel request block (CRB). We further use the proposed method and
the IIFC to perform the frequency estimation, and then the CRBs of the two methods are analyzed
for different signal noise ratios (SNR). For each method, the frequency estimation of the signal is
performed 1000 times. We present experimental results on the CRB shown in Figure 8. It can be
observed that the CRB decreases as the SNR increases for the two frequency evaluated methods.
Obviously, the CRB obtained by our method is better than that obtained by the IIFC. This is because
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our method intercepts the signal to estimate the signal phase deviation that reflects the variation of
the signal frequency. Based on the above analysis, the results of this experiment also indicate that the
proposed method outperforms the IIFC for frequency deviation estimation.

4.4.2. Sampling Rate Conversion

To enable accuract comparisons for our proposed method, we applied the batch Farrow filter
resampling (BFFR) method [20] to perform the experimental evaluation. In [20], the authors presented
a design for an arbitrary sample-rate resampling method using the OTHR for radar applications.
The signal presented in (19) was selected to perform the SRC using our proposed method and BFFR.

The results obtained by our proposed method are depicted in Figure 7, while Figure 9 depicts the
corresponding converted results obtained using BFFR. Figure 9b shows that serious harmonic wave
distortion exists, but, due to the sampling rate, there is no synchronization with the frequency of the
signal. However, Figure 7b shows no harmonic wave. From the above analysis, it is clear that our
proposed method can be applied to perform the SRC, with better performance than BFFR.
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Figure 9. (a) illustrates the sampling rate conversion after using batch Farrow filter resampling (BFFR);
(b) illustrates the spectrum of sampling rate conversion after using BFFR.

5. Conclusions

In this paper, we propose a simple but effective signal frequency correction and sampling rate
conversion method based on DFT. We have demonstrated the performance of the proposed method
experimentally using a discrete signal with a frequency of f1 = 50 Hz. Our method can be easily
adapted to any other discrete signal for different frequencies. Sampling rate synchronization is critical
for the resampling of any discrete signal for any application due to serious distortions of the discrete
signal. The FFR estimation and the modified Farrow filter of our proposed method can effectively
solve the sampling rate conversion for any discrete signal.
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