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Abstract: This paper presents a new approach to solve the multi-criteria group decision making
(MCGDM) problem where criteria values take the form of 2-tuple linguistic information. Firstly, a
2-tuple hybrid ordered weighted geometric (THOWG) operator is proposed, which synthetically
considers the importance of both individual and the ordered position so as to overcome the defects of
existing operators. Secondly, combining the advantages of the cloud model and 2-tuple linguistic
variable, a new generating cloud method is proposed to transform 2-tuple linguistic variables into
clouds. Thirdly, we further define some new cloud algorithms, such as cloud possibility degree and
cloud support degree which can be respectively used to compare clouds and determine the criteria
weights. Furthermore, a new approach for 2-tuple linguistic group decision making is presented
on the basis of the THOWG operator, the improved generating cloud method as well as the new
cloud algorithms. Finally, an example of assessing the social effects of biomass power plants (BPPS)
is illustrated to verify the application and feasible of the developed approach, and a comparative
analysis is also conducted to validate the effectiveness of the proposed method.
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1. Introduction

Multi-criteria group decision-making (MCGDM) problems are wide-spread in real-life
decision-making situations, especially with the increasing complexity of the socio-economic
environment [1,2]. In reality, decision-making information is usually uncertain or fuzzy, due to the
complexity of things and in recognition of the limitations of decision makers. In order to thoroughly
describe fuzzy information, Herrera and Martinez [3] proposed the 2-tuple linguistic model, composed
of a linguistic term and a real number, to represent assessment information in a way that can effectively
avoid information loss. Consequently, 2-tuple linguistic MCGDM problems have captured the attention
of many researchers in recent years [4–6]. 2-tuple linguistic information can describe the fuzziness
of decision-making information, while it seems imperfect and inaccurate to deal with information in
terms of randomness. In fact, randomness and fuzziness are the most important and fundamental of
all kinds of uncertainty [7,8]. For instance, for a linguistic decision-making problem, decision maker A
may think that 75% fulfillment of a task is “good”, while decision maker B may hold that less than
80% fulfillment of the same task cannot be considered to be “good” with the same linguistic term scale.
So in such a way, when considering the degree of certainty of an element belonging to a qualitative
concept in a specific universe, it is more feasible to allow a stochastic disturbance of the membership
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degree encircling a determined central value than to allow a fixed number [9,10]. Fortunately, the
cloud model can easily overcome this weakness and make decision-making processes more realistic.
The cloud model, which is a quantitative and qualitative uncertainty conversion model proposed
by Professor Deyi Li based on traditional fuzzy set theory and probability statistics [11], has distinct
advantages in terms of dealing with vague and random decision-making information. It not only
easily characterizes the concept of uncertainty in the natural language, but also reflects the intrinsic
connection between randomness and fuzziness. Therefore, the cloud model can be used to depict the
randomness of 2-tuple linguistic information. To the best of the authors’ knowledge, however, research
on converting 2-tuple linguistic variables into clouds has not been reported in the existing literature.

One aim of this paper is to propose a 2-tuple hybrid ordered weighted geometric (THOWG)
operator which synthetically considers the importance of both individual and the ordered position to
overcome the defect of the existing operators. Another aim of this paper is to develop a new cloud
generation method to transform 2-tuple linguistic variables into clouds. The novelty of this paper is
as follows:

(i) We develop a new THOWG operator. Traditional 2-tuple linguistic operators either ignore
the importance of the individual or neglect the importance of ordered position. To overcome the
limitations of existing 2-linguistic power aggregation operators, we develop a new THOWG operator.
The THOWG operator combines the advantages of TWG operators and TOWG operators. In this way,
it can synthetically consider the importance of both individuals and the ordered position. Moreover,
both the TWG operator and the TOWG operator are proved to be special cases of the THOWG operator.

(ii) We present a new cloud generation method to transform 2-tuple linguistic variables into
clouds. In real life, fuzziness and randomness are used to describe the uncertainty of natural languages.
In addition, randomness and fuzziness are tightly related and inseparable. However, the 2-tuple
linguistic variable finds it hard to deal with information in terms of randomness, which will lead to the
loss of decision information. To deal with this limitation, we present a new cloud generating method to
transform 2-tuple linguistic variables into clouds. This method integrates the significant advantages of
the cloud model, so that it can deal with the randomness of natural languages, which will significantly
improve the decision quality.

(iii) We address some new cloud algorithms: cloud distance, cloud possibility degree and cloud
support degree. Based on the “3En rules” of cloud models, a cloud distance is defined. We further put
forward a cloud possibility degree according to this cloud distance, which can be used to compare
clouds, and define a cloud support degree which is a similarity index. That is, the greater the similarity
is, the closer the two clouds are, and consequently the more they support each other. The support
degree can be used to determine the weights of aggregation operators.

To verify the application of the developed approach, a case study of social effect evaluation for
BPPs in China is illustrated, and a comparative analysis of the existing approach and the proposed one
is carried out to prove the effectiveness of the new developed approach.

The rest of this paper is organized as follows. Section 2 reviews some recent studies regarding
2-tuple linguistic MCGDM problems and aggregating operators, as well as cloud models. Section 3
introduces the fundamental conceptions of 2-tuple linguistic variables and cloud models. Section 4
develops a new averaging operator, and discusses its properties. Section 5 introduces a method for
converting a 2-tuple linguistic into a corresponding normal cloud and defines some new algorithms
of the cloud model. Section 6 proposes a 2-tuple linguistic MCGDM approach based on the cloud
model. Section 7 presents a case study to verify the application of the proposed method and Section 8
draws conclusions.

2. Literature Review

The decision information in some practical MAGDM situations may be unquantifiable due to its
nature, or cannot be precisely assessed in a quantitative form, but may be assessed in a qualitative
one. Thus, it may take the form of linguistic variables [12], such as “poor”, “fair”, and “very good”.
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To utilize linguistic variables, a pre-defined linguistic assessment set is needed. Unfortunately, the
traditional linguistic assessment set is discrete. So in many cases, the decision information provided by
DMs may not match any of the original linguistic phrases in the linguistic assessment sets, resulting in
loss of information. To overcome these limitations, Herrera and Martinez [3] introduced the 2-tuple
linguistic representation model of which the significant advantage is to be continuous in its domain.
Therefore, it can express any counting of information in the universe of the discourse. Recently, the
2-tuple linguistic model has been widely studied. Dong, et al. [13] developed two different models
based on linguistic 2-tuples to address term sets that are not uniformly and symmetrically distributed.
Truck [14] stressed a comparison between the 2-tuple semantic model and the 2-tuple symbolic model,
and then proved that links can be made between them. Zhu et al. [15] utilized two 2-tuples in a
2-dimension linguistic lattice implication algebra to represent a 2-dimension linguistic label for more
precise computing and aggregating 2-dimension linguistic information. Xu et al. [16] proposed a
four-way procedure to estimate missing preference values when dealing with acceptable incomplete
2-tuple fuzzy linguistic preference relations in group decision-making. Gong et al. [17] established an
optimization model of group consensus of 2-tuple linguistic preferential relations. In addition, the
2-tuple linguistic variable has been applied to many practical MCGDM problems such as supplier
selection [18,19], material selection [20], site selection [21], emergency response capacity evaluation [22]
and in-flight service quality evaluation [23].

In light of the fact that information aggregation always plays an important role in decision-making
processes, many 2-tuple aggregation operators have been proposed to aggregate information. The
ordered weighted averaging (OWA) operator is one of the most common aggregation methods [24–27].
It provides a parameterized family of aggregation operators that include as special cases the maximum,
the minimum and the average [28]. Motivated by the idea of the OWA operator, Xu and Wang [29]
developed the 2-tuple linguistic power ordered weighted averaging (2TLPOWA) operator, which can
take all the decision arguments and their relationships into account. Jiang and Fan [30] proposed
the 2-tuple ordered weighted geometric (TOWG) operator on the basis of the 2-tuple OWA operator.
Li et al. [28] developed the 2-tuple linguistic induced generalized ordered weighted averaging distance
(2LIGOWAD) operator. Zeng et al. [31] developed the 2-tuple linguistic generalized ordered weighted
averaging distance (2LGOWAD) operator, which is an extension of the OWA operator that utilizes
generalized means, distance measures and uncertain information represented as 2-tuple linguistic
variables. Wang and Hao [32] introduced the quantifier-guided OWA aggregation operator and
anchoring value-based OWA aggregation operator for 2-tuples. However, it needs to point out that
these above operators only take into account the importance degrees of relative position and fail
to consider the individual importance. On the other hand, some operators just consider individual
significance, but neglect the importance of ordered position. For instance, Liu et al. [33] developed a
dependent interval 2-tuple weighted averaging (DITWA) operator and a dependent interval 2-tuple
weighted geometric (DITWG) operator.

Randomness and fuzziness are the most important and fundamental of all kinds of
uncertainties [8]. Here, fuzziness mainly refers to uncertainty regarding the range of extension of
concept, and randomness implies that any concept is related to the external world in various ways [10].
However, it is necesssary to point out that the 2-tuple linguistic variable can describe the fuzziness of
decision making information, whereas it seems imperfect and inaccurate in dealing with information
in terms of randomness. Cloud models, proposed by Professor Deyi Li, has distinct advantages in
terms of dealing with vague and random decision-making information. The cloud model depicts
the fuzziness and randomness of a qualitative concept with three numerical characteristics perfectly,
in such a way that objective and interchangeable transformation between qualitative concepts and
quantitative values becomes possible [11]. Therefore, the cloud model makes it possible to improve the
accuracy of decisions. With the rapid development of the cloud model theory, successful applications
were carried out in various fields, such as intelligent control [34], network security [35], and algorithm
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improvement [36]. In particular, since Wang and Feng [37] introduced the conversion between linguistic
variables and clouds, the cloud model has also been applied to the field of decision-making [9,38–40].

From what has been discussed above, it is necessary to develop a new 2-tuple linguistic variable
aggregation operator which considers the importance degrees of relative position and individual
importance simultaneously. In addition, regarding the significant advantages of 2-tuple linguistic
variable and cloud model, it is meaningful to combine them together to deal with MCGDM problems.
On the basis of the aforementioned improvements, the decision results will be more reasonable
than before.

3. Preliminaries

In this section, we briefly review the fundamental concepts and properties of 2-tuple linguistic
and cloud model.

3.1. 2-Tuple Linguistic Variable

Herrera and Martinez [3] developed the 2-tuple fuzzy linguistic representation model based on
the concept of symbolic translation. It is used for representing the linguistic assessment information by
means of a 2-tuple (si, ai), where si is a linguistic label from predefined linguistic term set S and ai is
the value of symbolic translation, and ai ∈ [−0.5, 0.5).

Definition 1 [3]. Let S = {s0, s1, s2, · · · , st} be a finite and totally ordered discrete linguistic term set with
odd cardinality, where si represents a possible value for a linguistic variable. β ∈ [0, t] is a number value
representing the aggregation result of linguistic symbolic. Then the function ∆ used to obtain the 2-tuple
linguistic information is defined as:

∆ : [0, Q]→ S× [−0.5, 0.5), β→ ∆(β) = (si, α) (1)

where i = round(β), α = β− i, α ∈ [−0.5, 0.5), round(·) is the usual round operation, si has the closest
index label to β and α is the value of the symbolic translation.

Definition 2 [3]. Let S = {s0, s1, s2, · · · , st} be a linguistic term set and (si, α) a linguistic 2-tuple. There
is always a function ∆−1, such that, from a 2-tuple it returns its equivalent numerical value, β ∈ [0, t] ⊂ R,
which is

∆−1 : S× [−0.5, 0.5)→ [0, t], ∆−1(si, α) = i + α = β (2)

From Definitions 1 and 2, we can conclude that the conversion of a linguistic term into a linguistic 2-tuple
consists of adding a value 0 as symbolic translation:

∆(si) = (si, 0) (3)

Definition 3 [41]. Let (sk, αk) and (sl , αl) be two 2-tuples, they should have the following properties.

(1) If k < l then (sk, αk) is smaller than (sl , αl), denoted by (sk, αk) < (sl , αl);
(2) If k > l then (sk, αk) is bigger than (sl , αl), denoted by (sk, αk) > (sl , αl);
(3) If k = l then

(a) If αk = αl , then (sk, αk) = (sl , αl) representing the same information;
(b) If αk < αl , then (sk, αk) < (sl , αl);
(c) If αk > αl , then (sk, αk) > (sl , αl).
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3.2. Cloud Model

The cloud theory is a model that contains the procedure for transferring uncertainty between
quality concepts and quantity data representation by using natural language [7], which was proposed
by Professor Deyi Li based on the traditional fuzzy set theory and probability statistics.

Definition 4 [7]. Suppose U is a quantitative domain expressed by precise values, and C is a qualitative concept
on the domain. If the quantitative value x ∈ U, and x is a random realization to the qualitative concept C, whose
membership µ(x) ∈ [0, 1] for C is a random number with stable tendency:

µ : U → [0, 1], ∀x ∈ U, x → µ(x)

then, the distribution of x on the domain is called as cloud, and each x is called as droplet.

A cloud is made up of many cloud droplets, and a single cloud droplet is a specific realization of
the qualitative value in number. Its abscissa value represents the quantitative value corresponding to
qualitative concept, and the ordinate value expresses the membership degree of the quantitative value
on behalf of the qualitative concepts. The three number features of cloud are expectation Ex, entropy
En and hyper entropy He.

• Ex: Expectation best representatives the value of the qualitative concept, and it is usually the
x value corresponding to the gravity of the cloud, reflecting the center value of corresponded
qualitative concepts.

• En: Entropy represents the measure of the fuzzy degree of the qualitative concept, the size of
which directly determines the number of elements that can be accepted by the qualitative concept
on the domain, and also reflects the margin of qualitative value based on both this and that.

• He: Hyper entropy expresses the uncertainty measurement of entropy; that is, the entropy of
entropy. The size of hyper entropy indirectly reflects the cloud’s thickness.

The 3En rules for clouds refer to the fact that the total contribution of all elements on the domain
U to the qualitative concept C is 1. That is, 99.7% of the cloud droplets will fall into the range
(Ex− 3En, Ex + 3En). Thus, cloud droplets falling outside of this scope are small probability events
for a qualitative linguistic values concept, and can be ignored. A normal cloud is used most commonly
to express the linguistic values. Figure 1 shows the cloud (50, 3.93, 0.01).
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Figure 1. Cloud (50, 3.93, 0.01). 
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4. A New 2-Tuple Aggregation Operator

The use of the fuzzy linguistic approach provides a direct way to manage the uncertainty and
model the linguistic assessments by means of linguistic variables. In order to effectively avoid the loss
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and distortion of information in linguistic information processing processes, Herrera and Martinez [3]
proposed a 2-tuple linguistic model, composed of a linguistic term and a real number, to represent the
assessment information.

Definition 5 [30]. Let {(s1, a1), (s2, a2), · · · , (sn, an)} be a set of 2-tuple and ω = (ω1, ω2, · · · , ωn)
T be the

weighting vector of 2-tuple
(
sj, aj

)
(j = 1, 2, . . . , n) and ωj ∈ [0, 1],

n
∑

j=1
ωj = 1, the 2-tuple weighted geometric

(TWG) operator (ϕ) is

(s̃, α̃) = ϕ((s1, α1), (s2, α2), · · · , (sn, αn)) = ∆

(
n

∏
j=1

(
∆−1(sj, αj

))ωj

)
, s̃ ∈ S, α̃ ∈ [−0.5, 0.5). (4)

Definition 6 [30]. Let {(s1, a1), (s2, a2), · · · , (sn, an)} be a set of 2-tuple, a 2-tuple ordered weighted
geometric operator (φ) of dimension n is a mapping TOWG : Rn → R that has an associated vector

ω = (ω1, ω2, · · · , ωn)
T such that wj > 0 and

n
∑

j=1
ωj = 1. Furthermore,

(s, α) = φ((s1, α1), (s2, α2), · · · , (sn, αn)) (5)

Where (π(1), π(2), · · · , π(n)) is a permutation of (1, 2, · · · , n) such that
(

sπ(j−1), απ(j−1)

)
≥(

sπ(j), απ(j)

)
for all j = 2, · · · , n.

It is obvious that the two operators have their own defect by Definitions 5 and 6. That is to say, the
fundamental aspect of the TWG operator just considers individual significance, but the importance of
ordered position is neglected. On the contrary, the TOWG operator only takes the importance degrees
of relative position into account and ignores the individual importance.

Therefore, in this section, we propose a new 2-tuple aggregation operator by combining with the
advantages of two kinds of operators.

Definition 7. Let {(s1, a1), (s2, a2), · · · , (sn, an)} be a set of 2-tuple, A 2-tuple hybrid ordered weighted
geometric operator (ψ) of dimension n is a mapping THOWG : Rn → R that has an associated vector

ω = (ω1, ω2, · · · , ωn)
T such that ωj > 0 an d

n
∑

j=1
ωj = 1. Furthermore,

(ŝ, α̂) = ψ((s1, α1), (s2, α2), · · · , (sn, αn)) = ∆

(
n
∏
j=1

(
∆−1

(
_
s π(j),

_
α π(j)

))ωj

)
, ŝ ∈ S, α̂ ∈ [−0.5.0.5). (6)

where (π(1), π(2), · · · , π(n)) is a permutation of (1, 2, · · · , n), such that
(
_
s π(j−1),

_
α π(j−1)

)
≥(

_
s π(j),

_
α π(j)

)
= ∆

(
∆−1(sj, αj

)
/nwj

)
for all j = 2, · · · , n, in which w = (w1, w2, · · · , wn)

T is the

weighting vector of 2-tuple
(
sj, aj

)
and wj ∈ [0, 1],

n
∑

j=1
wj = 1. n is the balance factor. The advantage of

taking the expression ∆
(

∆−1(sj, αj
)
/nwj

)
is that it ranks 2-tuple variables by taking the difference and balance

into account.

Proposition 1. If w = (1/n, 1/n, · · · , 1/n)T , then THOWG operator can degenerate into TOWG operator.

Proof. If w = (1/n, 1/n, · · · , 1/n)T , then ∆
(

∆−1(sj, αj
)
/nwj

)
=
(
sj, αj

)
.

Thus, ψ((s1, α1), (s2, α2), · · · , (sn, αn)) = φ((s1, α1), (s2, α2), · · · , (sn, αn)). �
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Proposition 2. If w = (1/n, 1/n, · · · , 1/n)T and
(
sj−1, αj−1

)
≥
(
sj, αj

)
, then THOWG operator can

degenerate into TWG operator.

Proof. If w = (1/n, 1/n, · · · , 1/n)T , then THOWG operator can degenerate into TOWG operator by
Proposition 1.

Moreover,
(
sj−1, αj−1

)
≥
(
sj, αj

)
. That is to say, the corresponding weight of

(
sj, αj

)
is ωj.

Thus ψ((s1, α1), (s2, α2), · · · , (sn, αn)) = ϕ((s1, α1), (s2, α2), · · · , (sn, αn)). �

Proposition 3. If (sj, αj) = (s, α) for all j = 1, 2, · · · , n, then ψ((s1, α1), (s2, α2), · · · , (sn, αn)) = (s, α).

Proposition 4. Let (s1, α1), (s2, α2), · · · , (sn, αn) and
(
s′1, α′1

)
, (s′2, α′2), · · · , (s′n, α′n) be two set of 2-tuple,

if
(
sj, αj

)
≤
(
s′ j, α′ j

)
for all j = 1, 2, · · · , n and the rest of the conditions are not changed, then

ψ((s1, α1), (s2, α2), · · · , (sn, αn)) ≤ ψ
((

s′1, α′1
)
, (s′2, α′2), · · · , (s′n, α′n)

)
.

Proof. According to Equation (6), ψ((s1, α1), (s2, α2), · · · , (sn, αn)) = ∆

(
n
∏
j=1

(
∆−1

(
_
s j,

_
α j

))ωj

)
,

ψ
((

s′1, α′1
)
, (s′2, α′2), · · · , (s′n, α′n)

)
= ∆

(
n
∏
j=1

(
∆−1

(
_
s j
′
,
_
α j
′))ωj

)
.

If
(
sj, αj

)
≤

(
s′ j, α′ j

)
, then ∆−1(sj, αj

)
/nwj ≤ ∆−1(sj

′, αj
′)/nwj. so

(
_
s j,

_
α j

)
=

∆
(

∆−1(sj, αj
)
/nwj

)
≤ ∆

(
∆−1(sj

′, αj
′)/nwj

)
=
(
_
s j
′
,
_
α j
′)

, ∆−1
(
_
s j,

_
α j

)
≤ ∆−1

(
_
s j
′
,
_
α j
′)

.

Therefore, ∆

(
n
∏
j=1

(
∆−1

(
_
s j,

_
α j

))ωj

)
≤ ∆

(
n
∏
j=1

(
∆−1

(
_
s j
′
,
_
α j
′))ωj

)
.

Thus, ψ((s1, α1), (s2, α2), · · · , (sn, αn)) ≤ ψ
((

s′1, α′1
)
, (s′2, α′2), · · · , (s′n, α′n)

)
. �

Remark 1. Definition 7 shows that the new 2-tuple aggregation operator not only considers individual
significance, but also considers the importance of ordered position.

5. An Improved Cloud Generating Method and Cloud Algorithms

5.1. An Improved Cloud Generating Method

This section introduces a cloud generating method in which a 2-tuple linguistic variable is
converted into a corresponding normal cloud.

Let decision-makers’ linguistic evaluation scale be n. If U = [Xmin, Xmax] is the effective universe
given by experts, then a normal cloud is generated by the given 2-tuple linguistic variable (sj, αj). The
intermediate normal cloud is expressed as C0(Ex0, En0, He0), so the respective representations of the
adjacent normal cloud are:

C−1(Ex−1 , En−1 , He−1) , C+1(Ex+1 , En+1 , He+1) , · · · , C− n−1
2
(Ex− n−1

2
, En− n−1

2
, He− n−1

2
) , C+ n−1

2
(Ex+ n−1

2
, En+ n−1

2
, He+ n−1

2
)

Based on golden section method, we present a model that the 2-tuple linguistic variable can
be converted into the corresponding normal cloud. In order to be convenient, let ξ = ∆−1(sj, αj

)
/j,

η = 1−ξ
1+ξ . To generate the five normal cloud, for example, the transformation process of three numerical

characters of normal cloud is as follows:
Step 1. Compute Ex

Ex0 =
Xmin + Xmax

2
· ξ, Ex(n−1)/2 = Xmax · ξ, Ex−(n−1)/2 = Xmin · ξ;

Exi = Ex0 + 0.382 · i · ( Xmax − Xmin

2
)/

(n− 3)
2

· ξ,
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Ex−i = Ex0 − 0.382 · i · (Xmax − Xmin

2
)/

(n− 3)
2

· ξ, (1 ≤ i ≤ n− 3
2

)

Step 2. Compute En

En−1 = En+1 = (1 + η) · 0.382 · (Xmax − Xmin)/6, En0 = 0.618(1 + η) · En+1;

En−i = En+i = (1 + η) · Eni−1/0.618; (2 ≤ i ≤ n− 1
2

).

Step 3. Calculate He
He−i = He+i = Hei−1/0.618, 1 ≤ i ≤ (n− 1)/2, here He0 is given beforehand.
If αj = 0, that is to say, the 2-tuple linguistic variable can degenerate into natural language.

In this case, the cloud generating model, in which the 2-tuple linguistic variable is converted into the
corresponding normal cloud, can degenerate into the corresponding model.

The following Theorem proves that our method can overcome the weaknesses of method given
by [37].

Theorem 1. The expectations of clouds are different from each other and all fall into the range of the universe.

Proof. (1) First, we prove that the expectations of clouds are different from each other.
Without loss of generality, we assume i > j, then

Exi − Exj = Ex0 + 0.382 · i · ( Xmax − Xmin

2
)/

(n− 3)
2

· ξi − Ex0 − 0.382 · j · ( Xmax − Xmin

2
)/

(n− 3)
2

· ξ j

= 0.382 · ( Xmax − Xmin

2
)/

(n− 3)
2

·
[
(1− m

k
) · (k + αk)− (1− m

l
) · (l + αl)

]
= 0.382 · ( Xmax − Xmin

2
)/

(n− 3)
2

·
[
(kl −ml) · (k + αk)− (kl −mk) · (l + αl)

kl

]
> 0.382 · ( Xmax − Xmin

2
)/

(n− 3)
2

·
[
(kl −ml) · (l + αl)− (kl −mk) · (l + αl)

kl

]
= 0.382 · ( Xmax − Xmin

2
)/

(n− 3)
2

·
[

mk−ml
kl

]
> 0

m, k, l are constant, and i = k−m, j = l −m.
Therefore, Exi > Exj, this is to say,Exi 6= Exj.
(2) Second, we prove that all the expectations of clouds fall into the range of the universe.
From Step 1 of the procedure for transforming linguistic variables into clouds, we see that

Ex1 = min{Exi}, Ex(n−1)/2 = max{Exi}, (1 ≤ i ≤ (n− 1)/2).

Since Ex1 = Xmax − (0.5− 0.382
n−3 )× lU , it can be concluded that

Xmin < Ex1 < Xmax. (7)

Similarly, note that Ex(n−1)/2 = Xmax − 0.309× lU , we then have

Xmin < Ex (n−1)
2

< Xmax. (8)

Therefore, the expectations of clouds Yi

(
1 ≤ i ≤ n−1

2

)
fall into the range of the universe. �

By the same token, it is easy to verify that the expectations of clouds Y−i

(
1 ≤ i ≤ n−1

2

)
fall into

the range of the universe. Based on the above analysis, we can conclude that all the expectations of
clouds fall into the range of the universe.
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Remark 2. Theorem 1 shows that the improved cloud generating method can guarantee that all the expectations
fall into the range of the universe, and meanwhile this method can effectively distinguish the linguistic evaluation
scale over the symmetrical interval and transform linguistic term sets of any odd labels into a cloud rather than
only five labels.

5.2. New Algorithms of the Cloud Model

This subsection firstly defines the cloud distance, based on it, cloud possibility degree and
cloud support degree are also defined, which will be used for cloud comparison and weight
determination, respectively.

Based on the “3En rules” of normal cloud models, the distance of clouds is defined as follows.

Definition 8. Let Y1 = Y1(Ex1 , En1 , He1) and Y2 = Y2(Ex2 , En2 , He2) be two normal clouds in universe
U. Then, the distance d(Y1, Y2) of two normal clouds Y1 and Y2 is given by:

d(Y1, Y2) =
1
2

(
d(Y1, Y2) + d(Y1, Y2)

)
, (9)

where d(Y1, Y2) =
∣∣∣(1− 3

√
En2

1 + He2
1/Ex1)Ex1 − (1− 3

√
En2

2 + He2
2/Ex2)Ex2

∣∣∣, and d(Y1, Y2) =∣∣∣(1 + 3
√

En2
1 + He2

1/Ex1)Ex1− (1 + 3
√

En2
2 + He2

2/Ex2)Ex2

∣∣∣.
Proposition 5. The cloud distance satisfies the following properties:

(i) d(Y1, Y2) ≥ 0;
(ii) d(Y1, Y2) = d(Y2, Y1);
(iii) For ∀Y3 ∈ F, d(Y1, Y3) ≤ d(Y1, Y2) + d(Y2, Y3).

Proof. See Appendix A. �

Remark 3. If En1 = He1 = En2 = He2 = 0, then the normal cloud will degenerate into a real number, in this
case, d(Y1, Y2) = |Ex1 − Ex2|.

Based on the cloud distance, a cloud possibility degree can be defined as follows.

Definition 9. Let Y1 = Y1(Ex1 , En1 , He1) and Y2 = Y2(Ex2 , En2 , He2) be two normal clouds in universe
U, and Y∗ = Y(max Exi, min Eni, min Hei) (i = 1, 2) be the positive ideal cloud, then the cloud possibility
degree is defined as

p(Y1 ≥ Y2) =
d(Y∗, Y2)

d(Y∗, Y1) + d(Y∗, Y2)
(10)

where d(Y∗, Y1) and d(Y∗, Y2) are the distances between Y∗ and Y1, Y2, respectively.

Definition 9 shows that the cloud possibility degree p(Y1 ≥ Y2) is described by the distance
d(Y∗, Y1) and d(Y∗, Y2). The larger the distance between Y2 and Y∗ is, the larger the cloud possibility
degree p(Y1 ≥ Y2) is. The cloud possibility degree can be used for cloud comparison.

From Definition 9, we can easily obtain the following properties of cloud possibility degree.

Proposition 6. Let Y1 = Y1(Ex1 , En1 , He1), Y2 = Y2(Ex2 , En2 , He2) and Y3 = Y3(Ex3 , En3 , He3) be
three cloud variables. Then, the cloud possibility degree satisfies the following properties:

(i) 0 ≤ p(Y1 ≥ Y2) ≤ 1;
(ii) p(Y1 ≥ Y2) = 1⇔ Y∗ = Y1 ;
(iii) p(Y1 ≥ Y2) = 0⇔ Y∗ = Y2 ;
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(iv) p(Y1 ≥ Y2) + p(Y1 < Y2) = 1, particularly, p(Y1 ≥ Y1) = 0.5;
(v) if p(Y1 ≥ Y2) ≥ 1 and p(Y2 ≥ Y3) ≥ 1, then p(Y1 ≥ Y3) ≥ 1;
(vi) if p(Y1 ≥ Y2) = 1, then p(Y1 ≥ Y3) ≥ p(Y2 ≥ Y3).

To rank clouds Yi(i = 1, 2, · · · , m), following Wan and Dong [42] who ranked interval-valued
intuitionistic fuzzy numbers via possibility degree, we can construct a fuzzy complementary matrix of
cloud possibility degree as follows:

P =


p11 p12 · · · p1m
p21 p22 · · · p2m

...
pm1 pm2 · · · pmm

 (11)

where Y∗ = Y(maxExi, minEni, minHei), pij ≥ 0, pij + pji = 1 and pii = 0.5. It is noteworthy that it
is possible for there to be different sets of Y1 and Y2 results in the same value p12. In other words, if
Y1
′ 6= Y1

′, Y2
′ 6= Y2

′, Y3
′ 6= Y3

′, then it could be p12
′ = p12. However, these cases have no effect on the

final ranking. The aim of the introduction of possibility degree is to make a rank.
Then, the ranking vector V = (v1, v2, · · · , vm)

T is determined by

vi =
1

m(m− 1)

(
m

∑
j=1

pij +
m
2
− 1

)
(i = 1, 2, · · · , m), (12)

and consequently, the clouds Yi(i = 1, 2, · · · , m) can be ranked in descending order via values of
vi (i = 1, 2, · · · , m). That is, the smaller the value of vi is, the larger the corresponding order of Yi
(i = 1, 2, · · · , m) is.

The advantage of utilizing the vector V = (v1, v2, · · · , vm)
T for ranking clouds lies in the fact that

it fully uses the decision making information and makes the calculation simple.

Proposition 7. Suppose that Y1(Ex1 , En1 , He1) and Y2(Ex2 , En2 , He2) are two normal clouds in universe, if
Ex1 ≥ Ex2, En1 ≤ En2, He1 ≤ He2, then Y1 ≥ Y2.

Proof. See Appendix A. �

Note that the positive ideal cloud Y∗ = Y(7.58, 0.663, 0.09) and according to Equation (9), we have
that d(Y∗, Y1) = 3.78, d(Y∗, Y2) = 3.28, d(Y∗, Y3) = 1.96 and d(Y∗, Y4) = 2.82.

Consequently, based on Equation (10), the possibility degree matrix can be derived as follows:

P =


0.500 0.465 0.344 0.427
0.535 0.500 0.377 0.462
0.656 0.623 0.500 0.587
0.573 0.538 0.413 0.500

.

According to Equation (12), we further derive the ranking vector V = (0.228, 0.240, 0.280, 0.252)T .
So the ranking of the normal clouds is: Y3 > Y4 > Y2 > Y1.

Following [43] we can define the cloud support degree.

Definition 10. Let F be the set of all normal clouds and support (hereafter, Sup) a mapping from F× F to R.
For any Yα and Yβ, if the term Sup satisfies:

(i) Sup(Ya, Yβ) ∈ [0, 1];
(ii) Sup(Ya, Yβ) = Sup(Yβ, Ya);
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(iii) Sup(Ya, Yβ) ≥ Sup(Yi, Yj) if d(Yα, Yβ) < d(Yi, Yj), where d is a distance measure for clouds.

Then, Sup(Ya, Yβ) is called the support degree for Yα from Yβ.
Note that Sup measure is essentially a similarity index, meaning that the greater the similarity is, the

closer the two clouds are, and consequently the more they support each other. The support degree will be used to
determine the weights of aggregation operator.

6. 2-Tuple Linguistic Multi-Criteria Group Decision Making Approach

This section presents an approach to dealing with the 2-tuple linguistic MCGDM problems.

6.1. Solution Procedure

For a 2-tuple linguistic MCGDM problem, Let A = {A1, · · · , Ai, · · · , Am} be a discrete set
of alternatives, C =

{
C1, · · · , Cj, · · · , Cn

}
a finite set of criteria, and w = (w1, · · · , wj, · · ·wn)

T be

the weight vector of criteria, where
n
∑

j=1
wj = 1, wj ≥ 0, j = 1, 2, · · · , n. Let D = {D1, · · · , Dl , · · ·Dt}

be a finite set of decision-makers, whose weight vector is λ = (λ1, λ2, · · · , λt)
T , with

t
∑

l=1
λl = 1, λl ≥ 0, l = 1, 2, · · · , t.

Figure 2 illustrates the solution procedure about solving the above 2-tuple linguistic
MCDM problem.
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From Figure 2, we notice that the solution procedure can be decomposed into six sub-procedures.
First, a 2-tuple linguistic decision matrix is constructed according to decision-makers’ preferences.
Second, the 2-tuple linguistic decision matrices are aggregated into a collective decision matrix by
the THOWG operator. Third, based on generating cloud method, the collective decision matrix is
converted into the corresponding cloud decision matrix. Fourth, a cloud support degree is defined
to determine the criteria weights. Fifth, the integrated value of each alternative is calculated by
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aggregating the cloud prospect values. Last, the ranking of alternatives is determined by comparing
the integrated cloud values based on the cloud possible degree.

6.2. Decision Making Approach

Based on the THOWG operator, we propose the decision-making approach which is shown
as follows.

Step 1. Construct the 2-tuple linguistic decision matrix R̃l =
(

rijk
(l), 0

)
m×n

.

Step 2. Utilize the decision information given in matrix R̃l , and the THOWG operator which has
the associated weighting vector ω = (ω1, · · · , ωl , · · ·ωt)

T

xijk =
(

rijk, αijk

)
= ψ

((
r(1)ijk , 0

)
, · · ·

(
r(l)ijk , 0

)
, · · · ,

(
r(t)ijk , 0

))
= ∆

(
t

∏
l=1

(
∆−1

(
r̂(l)ijk , α̂

(l)
ijk

))ωl
)

, r(l)ijk ∈ S, α
(l)
ijk ∈ [−0.5.0.5), k = 1, 2, · · · s. (13)

to aggregate all the decision matrices R̃l(l = 1, 2, · · · , t) into a collective decision matrix
R̃ =

(
rijk, αijk

)
m×n

, where
(

r̂(l)ijk , α̂
(l)
ijk

)
is jth element of

{
∆
(

∆−1
(

r(1)ijk , 0
)

/tλ1

)
, ∆
(

∆−1
(

r(2)ijk , 0
)

/tλ2

)
, · · · ,

∆
(

∆−1
(

r(t)ijk , 0
)

/tλt

)}
based on descending order, and λ = (λ1, λ2, · · · , λt)

T the weighting vector of
decision makers.

Step 3. Based on the generating cloud method, the collective decision matrix R̃ is converted into
the corresponding normal cloud decision matrix R.

Step 4. Determine the criteria weights.
Calculate the cloud support degrees:

Sup
(

r̂k
sj, r̂k

qj

)
= 1−

2d
(

r̂k
sj, r̂k

qj

)
n
∑

q = 1
q 6= s

d
(

r̂k
sj, r̂k

qj

)
+

n
∑

s = 1
s 6= q

d
(

r̂k
qj, r̂k

sj

) , q = 1, 2, · · · , n , (14)

which satisfy the support conditions (i)–(iii) in Definition 10. Here, the cloud distance measure is
expressed by Equation (9), and Sup

(
r̂k

sj, r̂k
qj

)
denotes the similarity between the sth largest cloud

preference value r̂k
sj and the qth largest cloud preference value r̂k

qj. We further calculate the weights of
criteria by means of Equation (14).

Step 5. Aggregate the criteria values of each alternative into a collective value.
Utilize Equation (14) to aggregate all cloud decision matrices R̂k =

(
r̂(k)ij

)
m×n

(k = 1, 2, · · · , t) into

a collective cloud decision matrix R =
(
rij
)

m×t.
Step 6. Rank the alternatives and choose the best one(s).
According to the cloud possibility degree and the ranking vector, we can rank the collective

overall preference values ri(i = 1, 2, · · · , m) in descending order and consequently select the best one
in the light of the collective overall preference values ri(i = 1, 2, · · · , m).

7. A Case Study

7.1. Social Effect Evaluation of BPPs in China

Fossil fuels are the main cause of many of the environmental impacts that limit human beings [44].
Biomass, as an important kind of renewable energy, is a promising energy source alternative to
traditional fossil fuel [45]. In China, a lot of BBPs are beginning to emerge with the support of national
policies. According to this country’s “The 12th Five Year Plan for Renewable Energy Development”,
electricity generated by biomass will have reached a total installed capacity of 13 GW by 2015.
This value will have been doubled by 2020, and is supposed to account for 4% of the total energy
consumption [46,47].
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Recently, a thermal power corporation in Beijing, China, intends to enter into the field of biomass
energy. Given the advantages of electricity market share in South China and energy information,
the decision-makers consider southern Fujian and Guangdong are suitable for establishing a BPP.
Many proposals have been put forward for this project. The local government and people share the
concern of social problems for establishing a BPP. Thus, it is strongly recommended that the social
effects of the BPP proposals must be assessed before any BPP proposal is chosen for development.
An expert committee, which consists of three expert groups whose academic backgrounds are in the
energy, social, and mathematical fields, is organized temporarily for the social effects assessment
of BPP proposals. The major tasks of the three expert groups are as follows: (1) expert group I is
responsible for the selection of prospective BPP proposals and the identification of the most significant
criteria involved in assessing social effects of BPPs; (2) expert group II is responsible for expressing
their preference on the prospective BPP proposals with respect to every criterion; (3) the task of expert
group III is to calculate the ranking results by the proposed method.

Firstly, by using GIS and satellite images, expert group I preliminarily screens out four prospective
proposals, which are denoted A1, A2, A3 and A4. In fact, A1 and A2 lie in Fujian province, A3

and A4 in Guangdong province. Then, the most significant criteria for the assessment of social
effects of BPPs are also identified: effect on local economic development (C1), effect on local
employment boost (C2), and effect on local cultural development (C3). Secondly, three experts
in expert group II express their preference on the four BPP proposals with respect to the three
criteria by using 2-tuple linguistic information. The information is collected and shown in Table 1.
In addition, the weight vector of the three experts is λ = (0.3, 0.4, 0.3)T and the used linguistic
term set is S = {ES = extremely small, S = small, M = medium, G = great , EG = extremely great}.
Thirdly, expert group III calculates the ranking results. The process is as follows: (i) Based on the
THOWG operator, expert group III calculates the collective overall 2-tuple linguistic decision matrix
R̃ =

(
rijk, αijk

)
4×3

, k = 1, 2, 3 given in Table 2, where ω = (0.3, 0.3, 0.4)T is the associated weight vector

with THOWG operator; (ii) According to the cloud generating method, the collective overall 2-tuple
linguistic decision matrix is converted into the corresponding normal cloud decision matrix, as shown
in Table 3; (iii) Based on the cloud support degree, the criteria weights are derived. Then, the criteria
values of each alternative are aggregated into a collective value, as shown in Table 4; (iv) Equation (14) is
utilized to compute the collective overall preference value of the alternatives:A1 : Y(72.56, 7.760, 0.19),
A2 : Y(65.42, 7.797, 0.19), A3 : Y(63.98, 7.613, 0.18) and A4 : Y(78.05, 9.538, 0.23); (v) The positive ideal
cloud is Y∗ = Y(78.05, 7.613, 0.18). The ranking vector, then, is derived by Equations (11) and (12):
V = (0.1965, 0.1572, 0.1522, 0.1941)T ; (vi) The ranking order in light of the overall collective preference
values ri(i = 1, 2, 3, 4) is A1 > A4 > A2 > A3.

Table 1. 2-Tuple linguistic decision matrix R̃l .

A1 A2 A3 A4

D1

C1 (EG, 0) (M, 0) (M, 0) (G, 0)
C2 (G, 0) (EG, 0) (G, 0) (EG, 0)
C3 (EG, 0) (G, 0) (EG, 0) (EG, 0)

D3

C1 (G, 0) (S, 0) (G, 0) (G, 0)
C2 (G, 0) (G, 0) (M, 0) (G, 0)
C3 (EG, 0) (EG, 0) (G, 0) (EG, 0)

D3

C1 (S, 0) (M, 0) (M, 0) (G, 0)
C2 (G, 0) (EG, 0) (G, 0) (EG, 0)
C3 (EG, 0) (G, 0) (EG, 0) (EG, 0)
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Table 2. Collective decision matrix R.

Y1 Y2 Y3 Y4

C1 (G,−0.17) (M,−0.5) (M, 0.3) (G,−0.03)
C2 (G,−0.03) (EG,−0.47) (G,−0.47) (EG,−0.47)
C3 (EG,−0.04) (G, 0.33) (EG,−0.47) (EG,−0.04)

Table 3. Cloud decision matrix Y.

A1 A2 A3 A4

C1 Y+1(65.18, 6.56, 0.16) Y0(37.50, 4.50, 0.10) Y0(57.50, 3.66, 0.10) Y+1(68.41, 6.40, 0.16)
C2 Y+1(68.41, 6.40, 0.16) Y+2(77.84, 10.95, 0.26) Y+1(58.27, 6.91, 0.16) Y+2(77.84, 10.95, 0.26)
C3 Y+2(87.32, 10.35, 0.26) Y+1(76.70, 6.03, 0.16) Y+1(77.84, 10.95, 0.26) Y+2(87.32, 10.35, 0.26)

Table 4. Weights of criteria.

A1 A2 A3 A4

C1 0.355 0.298 0.344 0.313
C2 0.366 0.350 0.351 0.354
C3 0.280 0.352 0.305 0.333

The ranking results show that the social effects of BPP proposal A1 is the greatest. It implies that
the local government and people highly encourage the corporation to establish a BPP. So, the proposal
A1 should be the primary choice for establishing a BPP.

7.2. Comparative Analysis

To validate the effectiveness of the proposed method, a comparative study is conducted by
applying the 2-tuple weighted averaging (2TWA) operator. And the dependent 2-tuple ordered
weighted averaging (D2TOWA) operator of Wei [48]. This comparative analysis is based on the same
illustrative example given in Section 7.2. The weights of criteria are taken from Table 4 to make it easy
to compare these results with our method.

Table 5 shows the individual overall preference value by utilizing 2TWA operator and Table 6
presents the overall preference values of the alternatives. It is easily seen from Table 7 that the ranking
results obtained by the 2TWA and D2TOWA operator of Wei and the method of this paper are slightly
different. Disparities are manifested in the ranking order of A1 and A4. The best alternative by the
former is A4, while the best alternative by the latter is A1. However, it is difficult to judge which one is
close to the original expert judgments since multiple experts are involved. So we judge it indirectly
from the comparison of two methods. Compared with the two operators of Wei, the main advantages
of our method mainly lie in the following:

Table 5. Individual overall preference value by utilizing 2TWA operator.

E1 E2 E3

Z1 (EG,−0.36) (G, 0.28) (G,−0.43)
Z2 (G, 0.05) (G,−0.22) (G, 0.05)
Z3 (G,−0.04) (G,−0.35) (G,−0.05)
Z4 (EG,−0.31) (G, 0.33) (EG,−0.31)

Table 6. Overall preference values of the alternatives.

Z1 Z2 Z3 Z4

2TWA and D2TOWA (G, 0.21) (G,−0.02) (G,−0.12) (EG,−0.4)
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Table 7. Ordering of the alternative.

Sources Operators Ordering

This paper THOWG A1 > A4 > A2 > A3.
Wei’s paper 2TWA and D2TOWA A4 > A1 > A2 > A3.

(i) Our method sufficiently takes the importance degrees of different experts into consideration.
The 2TWA and D2TOWA operators are based on the ET-WG and ETOWG operators, which don’t
consider the importance degrees of different experts at all. In fact, different experts act in different roles
in the decision process. Some experts may assign unduly high or unduly low uncertain preference
values to their preferred or non-preferred objects. To reduce the influence of these unfair arguments
on the decision results and reflect the importance degrees of all the experts, the proposed method
calculates the collective overall 2-tuple linguistic decision matrix by using the weighting vector
of decision makers and the weighting vector of ordered position based on the THOWG operator.
Therefore, the THOWG operator can make the decision results more reasonable through assigning low
weights to those “false” or “biased” arguments. These advantages cannot be reflected in the former.

(ii) Our method utilizes the cloud model which can easily overcome this weakness and make
decision processes more realistic. The 2TWA and D2TOWA operators cannot deal with information in
terms of fuzziness and randomness. However, randomness and fuzziness are the most important and
fundamental in all kinds of uncertainty. It will produce a consequent loss of information and then result
in a lack of precision if randomness or fuzziness are ignored. Our method transforms the collective
2-tuple linguistic decision matrix into the corresponding normal cloud decision matrix by applying
generating cloud method. Thus, our method could better depict the fuzziness and randomness of the
2-tuple linguistic variables. It demonstrates that our method is of flexibility and accuracy.

In conclusion, we hold that the ordering result from the proposed methodology is superior to the
Wei’s methodology.

8. Conclusions

This paper has investigated MCGDM problems where the criteria values of the alternatives are
2-tuple linguistic information and the information of criteria weights is partially known. A new
2-tuple aggregation operator is developed so as to aggregate the evaluation value into the group’s
comprehensive evaluation information. In addition, taking the fuzziness and randomness of linguistic
information into account, a cloud generating method is proposed in which a 2-tuple linguistic is
converted into a corresponding normal cloud. Based on this method, we developed some new cloud
algorithms such as the cloud possibility degree and cloud support degree, which can be used for
cloud comparison and the weight determination, respectively. In particular, based on the new cloud
generating method and THOWG operator, an approach for the 2-tuple linguistic MCGDM problems is
developed. Finally, to show the effectiveness and the good performance of our approach in practice,
we provide an example and make a comparative analysis.

In further research about the 2-tuple linguistic MCGDM problems, it would be very interesting
to extend our analysis to the case of more sophisticated situations, such as dynamic group decisions,
etc. Nevertheless, we leave that point to future research, since our methodology cannot be applied to
that extended framework, which will result in more sophisticated calculations and which we cannot
tackle here.
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Nomenclature

(si, ai) is a 2-tuple linguistic variable
S = {s0, s1, s2, · · · , st} is a predefined linguistic term set
si is the linguistic label from S
ai is the value of symbolic translation

β
is a number value representing the aggregation result
of linguistic symbolic

U is a quantitative domain expressed by precise values
C is a qualitative concept on the domain
x is a random realization to the qualitative concept C
µ(x) is the membership of x
Ex is the expectation of a cloud
En is the entropy of a cloud
He is the hyper entropy of a cloud
ω = (ω1, ω2, · · · , ωn)

T is the weighting vector of (si, ai)

ωj is the element in ω

ϕ is the 2-tuple weighted geometric operator

ψ
is the 2-tuple hybrid ordered weighted geometric
operator

ξ represents the formula ∆−1(sj, αj)/j for brevity
η represents the formula (1− ξ)/(1 + ξ) for brevity
d(Y1, Y2) is the distance of two normal clouds
Y∗ is the positive ideal cloud
p is the cloud possibility degree
P is the fuzzy complementary matrix of p
V = (v1, v2, · · · , vn)

T is the ranking vector
vi is the element in V
Sup is the cloud support degree
A = {A1, · · · , Ai, · · · , Am} is a discrete set of alternatives

C =
{

C1, · · · , Cj, · · · , Cn

}
is a finite set of criteria

w =
{

w1, · · · , wj, · · · , wn

}
is the weight vector of criteria

D = {D1, · · · , Dl , · · · , Dt} is a finite set of decision makers
λ = {λ1, · · · , λl , · · · , λt} is the weight vector of decision makers
R̃l is the 2-tuple linguistic decision matrix
Y = (Ex, En, He) is a normal cloud

Appendix A

Proof of Proposition 5. From Definition 8, it is easy to verify that conclusions (i) and (ii) hold.
(iii) From Definition 8, we have

d(Y1, Y3) =

∣∣∣∣∣∣(1−
3
√

En2
1 + He2

1

Ex1
)Ex1 − (1−

3
√

En2
3 + He2

3

Ex3
)Ex3

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1−
3
√

En2
1 + He2

1

Ex1
)Ex1 − (1−

3
√

En2
2 + He2

2

Ex2
)Ex2 + (1−

3
√

En2
2 + He2

2

Ex2
)Ex2 − (1−

3
√

En2
3 + He2

3

Ex3
)Ex3

∣∣∣∣∣∣
≤

∣∣∣∣∣∣(1−
3
√

En2
1 + He2

1

Ex1
)Ex1 − (1−

3
√

En2
2 + He2

2

Ex2
)Ex2

∣∣∣∣∣∣+
∣∣∣∣∣∣(1−

3
√

En2
2 + He2

2

Ex2
)Ex2 − (1−

3
√

En2
3 + He2

3

Ex3
)Ex3

∣∣∣∣∣∣
= d(Y1, Y2) + d(Y2, Y3).
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Similarly, we can obtain that
d(Y1, Y3) ≤ d(Y1, Y2) + d(Y2, Y3).

Therefore,

d(Y1, Y3) =
1
2

{
d(Y1, Y3) + d(Y1, Y3 )

}
≤ 1

2

{
d(Y1, Y2) + d(Y2, Y3) + d(Y1, Y2) + d(Y2, Y3)

}
=

1
2

{
d(Y1, Y2) + d(Y2, Y3)

}
+

1
2

{
d(Y2, Y3) + d(Y2, Y3)

}
= d(Y1, Y2) + d(Y2, Y3).

�

Proof of Proposition 7. Notice that if Ex1 ≥ Ex2, En1 ≤ En2 and He1 ≤ He2, then the positive ideal cloud
will become Y∗ = Y(Ex1, En1, He1). According to Definition 8, we derive d(Y∗, Y1) = 0. And then, based on
Equation (10), the possibility degree matrix can be obtained as follows:[

0.5 1.0
0.0 0.5

]
.

According to Equation (12), we can get the ranking vector v = (0.75, 0.25)T . Thus, we have Y1 ≥ Y2. �
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