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Abstract: The intensive construction of domain-specific knowledge bases (DSKB) has posed an urgent
demand for researches about domain-specific entity detection and linking (DSEDL). Joint models are
usually adopted in DSEDL tasks, but data imbalance and high computational complexity exist in
these models. Besides, traditional feature representation methods are insufficient for domain-specific
tasks, due to problems such as lack of labeled data, link sparseness in DSKBs, and so on. In this paper,
a two-stage joint (TSJ) model is proposed to solve the data imbalance problem by discriminatively
processing entity mentions with different degrees of ambiguity. In addition, three novel methods
are put forward to generate effective features by incorporating an unlabeled corpus. One crucial
feature involving entity detection is the mention type, extracted by a long short-term memory
(LSTM) model trained on automatically annotated data. The other two types of features mainly
involve entity linking, including the inner-document topical coherence, which is measured based on
entity co-occurring relationships in the corpus, and the cross-document entity coherence evaluated
using similar documents. An overall 74.26% F1 value is obtained on a dataset of real-world movie
comments, demonstrating the effectiveness of the proposed approach and indicating its potentiality
to be used in real-world domain-specific applications.
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1. Introduction

The prosperity of the web has greatly facilitated the dissemination of information. However,
most of the web contents are still in the form of unstructured free texts, which are less
machine-understandable than structured data, such as the data in knowledge bases (KB). To bridge this
gap, one critical task is entity detection and linking (EDL), which aims to recognize entity mentions
in free texts and determine their corresponding entities in the knowledge base. EDL is important for
many applications, such as text disambiguation, information retrieval, question answering (QA) and
information integration [1].

Many efforts on EDL [2–6] link entities to general KBs like Wikipedia and Freebase, while work
about domain-specific EDL (DSEDL) is relatively less. However, the DSEDL task is also important and
challenging. On the one hand, many domain-specific knowledge bases (DSKB) have been constructed
in real-world projects, such as IMDB (http://www.imdb.com/), MusicBrainz (http://musicbrainz.
org/) and Amazon (https://www.amazon.com/) products’ KB, and related domain-specific tasks
(e.g., customer service QA, in-context advertising) have put forward demands for effective DSEDL
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techniques. On the other hand, methods for the general EDL task may not be suitable for DSEDL,
because they cannot handle problems like the increase of fake named entities [7] in texts and the
sparsity of links in DSKBs [8]. In a word, DSEDL is a meaningful and challenging task that deserves
further research.

Traditional methods for EDL conduct entity detection and entity linking separately in sequence,
but the performance of entity detection tends to become the bottleneck in this pipeline architecture.
As a result, in some recent works [7,9,10], entity detection and entity linking are jointly modeled to
reinforce each other by leveraging their interdependency. A general idea of these joint models is
that, for every n-gram in the input text, if it is the anchor phrase for at least one target entity, it will
be selected as a candidate mention. This idea is designed to improve the recall rate of EDL, but it
also generates a large number of fake mentions, resulting in much more negative candidate samples
than positive ones in either the binary classification model [7] or the structure learning model [9].
Too many candidates means high computational complexity, while data imbalance also impairs the
final performance.

Besides, some existing feature representation methods are inefficient for the DSEDL task:

(1) The textual context is not well utilized. In the pipeline architecture, textual context is used in
entity detection models to determine mention boundaries and infer mention types. However,
the labeled data are often insufficient to train such entity detection models in specific domains,
so the bag of words representation, which neglects the syntax and word orders, is adopted in
some joint models [7,9,10].

(2) The existing evaluation methods of entity coherence are not applicable for DSEDL. In general
EDL tasks [11–14], semantic relatedness between entities is estimated relying on the massive
hyperlinks in Wikipedia. However, this does not perform well in DSEDL because associations
between entities are sparse in many DSKBs.

(3) Generally, only entity coherence within the input document is considered. Nevertheless,
co-occurring entities can be very few in short input texts, and in this case, the inner-document
coherence is not discriminative.

In summary, challenges still exist in DSEDL tasks, including the problems of unbalanced data and
high computational complexity in joint models, as well as some drawbacks of the feature representation
methods. Therefore, we propose a new joint model framework for DSEDL and explore more effective
representation of features leveraging an unlabeled corpus. The main contributions of this paper include
the following aspects:

(1) A two-stage joint (TSJ) model is proposed for the DSEDL task, shedding light on the problems of
data imbalance and computational complexity.

(2) Several critical features are generated effectively by leveraging the unlabeled domain corpus.
Specifically:

(a) An LSTM-based [15] model is proposed to infer types of mentions, by exploiting the
textual context. More importantly, a novel method is presented to automatically annotate
training data for this model.

(b) A corpus-based topical coherence measurement is given. To be specific, a pre-trained EDL
model is used to tag the unlabeled data, then topical coherence is evaluated based on
entity co-occurring relationships in the pseudo-labeled corpus.

(c) The cross-document entity coherence is explored to solve the entity sparsity problem
in short texts. Documents used here are selected from the pseudo-labeled corpus by
a retrieval-based method.
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The remainder of the paper is organized as follows. Section 2 reviews related work about EDL.
Section 3 demonstrates the details of the proposed approach. Experimental results are presented and
discussed in Section 4. Finally, we conclude the paper in Section 5.

2. Related Work

In this section, we briefly review some common methods for EDL, including the pipeline methods
and the joint models, and some critical features used in these methods are listed and analyzed.

2.1. Pipeline Architecture for Entity Detection and Linking

In pipeline methods, entity detection and entity linking are processed sequentially.
Entity detection: Named entity detection (NER) models such as the hidden Markov model

(HMM) [16], conditional random fields (CRF) [17], maximum entropy (ME) [18] and LSTM [19]
are adopted in entity detection, and some mature NER tools are available, including Stanford NLP
(http://nlp.stanford.edu/ner/), OpenNLP (http://opennlp.apache.org/) and LingPipe (http://alias-
i.com/lingpipe/) [1]. Traditional research about NER mainly focuses on the recognition of persons,
organizations, locations and numeric expressions [20], while efforts in specific domains are relatively
few. However, a significant difference exists between NER and domain-specific entity detection, in that
the former aims to recognize the entity names in common sense, while the latter detects domain
entity mentions.

Entity linking: This is also known as entity disambiguation or entity normalization. Existing
efforts for entity linking are based on the assumption that entity mentions are already recognized
by the preceding entity detection module. Generally, crucial procedures of entity linking include
candidate entity generation, candidate ranking and unlinkable mention prediction [1]. Candidate
entities are usually generated using a name dictionary that is built offline [21], while candidate
ranking mainly exploits supervised learning methods, such as binary classification [6,22,23], learning
to rank [24–26], structure learning, graph-based methods [11,27–29] and probabilistic methods [3,30].
Among these methods, binary classification is a simple and natural choice, but it suffers from the data
imbalance problem.

The bottleneck of the pipeline method lies in the performance of NER, and this problem
is especially evident in specific domains due to lacking of labeled data. Besides, traditional
NER models trained on formal texts often perform poorly on noisy texts such as tweets [9] or
casually-written comments.

2.2. Joint Models for Entity Detection and Linking

Joint models are proposed to improve the overall performance by leveraging the mutual
dependency between both tasks. Guo et al. [9] simply take every n-gram of input tweets as a candidate
mention and then perform entity linking, and if the candidate mention cannot be linked to any entity
by the model, then the mention is rejected. A re-ranking-based model suitable for longer documents is
introduced in [10], in which joint EDL is preceded by a pipeline EDL model to generate high-quality
candidate mentions and entity links. Zhang et al. [7] propose a joint model for DSEDL, where features of
entity linking and NER models are updated iteratively until convergence, and an iterative graph-based
algorithm is further introduced in [31] to capture entity-entity and entity-mention dependency.

2.3. Feature Representation

To ensure effective operation of EDL models, various features are explored and extracted mainly
from the following aspects: Mention, candidate entity, textual similarity between the mention context
and entity description text, consistency between the type of mentions and candidate entities, as well as
topical coherence between mapping entities. Extraction methods for the first three types of features are
similar in different papers, while methods for the other two kinds vary greatly, as is explained below.

http://nlp.stanford.edu/ner/
http://opennlp.apache.org/
http://alias-i.com/lingpipe/
http://alias-i.com/lingpipe/
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In pipeline methods, entity types are provided by the entity detection model, while in joint
models, these features are implicit, as there is no independent entity detection module. Li et al. [32]
mines additional contextual words for each concerned entity type, but the context is limited to words
before and after the mention. A CRF model is utilized to infer the entity type in [33]; but training data
is insufficient for the complex model, and feature engineering is inevitable.

In EDL tasks for general KBs, topical coherence between mapping entities is measured based
on the hyperlinks in articles of encyclopedias. However, links in some DSKBs are very sparse.
The works in [7,33] incorporate the link structure of encyclopedias by mapping entities in the DSKB
to encyclopedias. Li et al. [8] mines word-level disambiguation evidence from the entity description
text in the KB. These efforts focus on topical coherence between entities within the input text, while
coherence across documents is explored in [14,26,34], which perform entity linking in short texts
like tweets.

3. Method

In this section, the formal definition of the DSEDL task is first given. Then, we illustrate the
framework and details of the TSJ model in Section 3.1. Finally, all critical features used in the model
are fully discussed in Section 3.2.

Task definition: Suppose KD is a domain-specific knowledge base and d is an unstructured
document. Then, the objective of DSEDL is to recognize all of the textual entity mentions M from
d and determine the corresponding entity set EL = {ei |ei ∈ KD

∧
m→ ei} for each mention m ∈ M,

where m→ ei means ei is a mapping entity of m and ei ∈ KD means that ei is an entity recorded in
KD.

Note that a mention m can be linked to more than one entity. For example, the mention
Coen Brothers should be linked to Joel Coen and Ethan Coen. Mentions whose target entity sets are empty
will be regarded as fake mentions on the assumption that interested entities are all included in KD.

3.1. Two Stage Joint Model

3.1.1. Framework

The data imbalance and high computational complexity in traditional joint EDL models are
mainly caused by the mentions with high ambiguity. According to observation, highly ambiguous
mentions often appear in two scenarios: (1) the ambiguous mentions of a certain entity are preceded by
unambiguous ones; (2) the ambiguous mentions are used when their target entity appears frequently
in the current topic.

The main idea of the proposed TSJ model is inspired by the above observation. The first stage
aims to process the less ambiguous mentions in the input text. Then, the second stage mainly focuses
on finding and linking the highly ambiguous mentions, by restricting candidate entities to those
that are either mentioned unambiguously in the input text or frequently referred to under the topic
(i.e., topic of the input text). Specifically, these candidate entities are collected by merging both the
target entities recognized in Stage 1 and frequent entities in the topic-similar documents. This solution
greatly reduces the number of false candidates, so TSJ can tackle the aforementioned two problems to
some extent.

Figure 1 shows the overall framework of TSJ. In general, TSJ is the cascade of two similar,
but differentiated modules (i.e., stages). Each module consists of three main parts, including the name
dictionary, the candidate generation block and the binary classification block. The roles of these three
parts are listed as follows.
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dictionary built offline is used in the first stage, while the local name dictionary that works in the 
second stage is built online for every input document. Details about the global and local name 
dictionaries will be presented in Section 3.1.2. 

Candidate generation: Given an input document and all of its n-grams, this step aims to select 
valid <n-gram, entity> candidate pairs and filter out impossible or highly ambiguous ones as much 
as possible. The method is described in Section 3.1.3. 

Binary classification: The binary classifier serves to decide whether the input candidate pair  
<n-gram, entity> is positive or negative based on features extracted for this pair. The output of the 
first classifier is utilized in the construction of the local name dictionary, while the output of the 
second one presents the final results. Details are illustrated in Section 3.1.4. 

Suppose the input document is: I watched I am legend the film majored by Will Smith my favorite 
actor. Although the film is somewhat disappointing, it wins in the charm of WS…LOVE Smith. The whole 
procedure of the TSJ model is illustrated in Figure 2. Note that WS and Smith are excluded from the 
global name dictionary because they have too many candidate entities and are quite ambiguous. 
However, they are added into the local name dictionary, with only one candidate entity that is 
confirmed by the first classifier. Finally, all four possible mentions are linked correctly to their target 
entities in the DSKB. 

 

Figure 2. The illustration of the processing procedure of TSJ. 

Figure 1. Overall framework of the two-stage joint (TSJ) model.

Name dictionary: This is a mapping dictionary, of which the keys are mentions, and the values
are the candidate entity sets of these mentions. Formally, given a mention m and its candidate
entity set EC =

{
e1, e2, . . . , eNC

}
, where NC is the number of its possible target entities, then we can

get D[m] = EC from the name dictionary D if m is recorded in D. The name dictionary is used to
guide the candidate generation step, so it directly affects the performance of TSJ. Specifically, a global
name dictionary built offline is used in the first stage, while the local name dictionary that works in
the second stage is built online for every input document. Details about the global and local name
dictionaries will be presented in Section 3.1.2.

Candidate generation: Given an input document and all of its n-grams, this step aims to select
valid <n-gram, entity> candidate pairs and filter out impossible or highly ambiguous ones as much as
possible. The method is described in Section 3.1.3.

Binary classification: The binary classifier serves to decide whether the input candidate pair
<n-gram, entity> is positive or negative based on features extracted for this pair. The output of the first
classifier is utilized in the construction of the local name dictionary, while the output of the second one
presents the final results. Details are illustrated in Section 3.1.4.

Suppose the input document is: I watched I am legend the film majored by Will Smith my favorite
actor. Although the film is somewhat disappointing, it wins in the charm of WS . . . LOVE Smith. The whole
procedure of the TSJ model is illustrated in Figure 2. Note that WS and Smith are excluded from
the global name dictionary because they have too many candidate entities and are quite ambiguous.
However, they are added into the local name dictionary, with only one candidate entity that is
confirmed by the first classifier. Finally, all four possible mentions are linked correctly to their target
entities in the DSKB.
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It can be seen that the combination of the two stages introduces more flexibility in performing
the EDL task. On the one hand, the separation of the two name dictionaries yields a more effective
generation of candidates. On the other hand, the cascaded structure of TSJ allows the second stage to
run on the results of the first stage, thus boosting the overall performance.

3.1.2. Name Dictionary Construction

A name dictionary records the mappings between name strings (mentions) and their candidate
entities. Since name dictionaries are used to determine the <n-gram, entity> pairs in the candidate
generation step, so they directly influence the model’s computational complexity and the balance of
data. Construction methods of the global and local name dictionaries are described in the following.

The global name dictionary is built offline, using names and the alias of entities recorded in
the DSKB. Some transformations are made to the names of entities to cover the common name
variants. However, in order to exclude the highly ambiguous mentions, only simple transformations
are conducted, and meanwhile, variants that have too many candidate entities are not added to the
dictionary. For example, partial names of Leonardo DiCaprio, i.e. Leonardo and DiCaprio, are recorded in
the dictionary as variants, but for the mention Will Smith, the variant Smith is not considered because it
is too frequently used to be easily disambiguated, and neither is the abbreviation WS. The respectively
simple transformation of entity names, as well as the removal of ambiguous names, can prevent the
generation of massive negative candidates in the global candidate generation procedure.

The local name dictionary, however, is built online for every input document based on the local
entity set, the entities in which are selected in the following two ways:

(1) Entities that are linked to in the first stage. That is, if an <n-gram, entity> candidate pair is
labeled as positive by the first binary classifier, then this entity is added into the local entity set.
The entities Will Smith and I am legend in Figure 2 are examples.

(2) Entities that frequently appear in the extension document set. Here, the extension document set
is a collection of documents that are selected from the pseudo-labeled corpus and have similar
topics as the input text (see Section 3.2.4 for details). For an entity e, if its document frequency
exceeds the threshold θF, then it is included in the local entity set.

After determining the local entity set, corresponding mentions are generated by performing
string transformations for the original surface name of each entity. For example, Smith and WS are
abbreviations of Will Smith, so entries {Smith: Will Smith} and {WS: Will Smith} are included in the local
name dictionary.

In summary, by covering the highly ambiguous mentions in the local name dictionary, the size
of fake mentions and negative candidate pairs can be reduced greatly without decreasing the recall,
thus shedding light on the settlement of data imbalance and high complexity problems.

3.1.3. Candidate Generation

The objective of candidate generation is to find out possible mentions from n-grams of the input
text and then output the candidate <mention, entity> pairs. Specifically, the input text is traversed to
match the mentions recorded in the name dictionary, and the detailed algorithm is presented below.

Formally, given an input text d = w1w2 · · ·wNd with Nd words wi(1 ≤ i ≤ Nd) (or Nd characters
for Chinese) and a name dictionary D, let s = wi · · ·wj, 1 ≤ i ≤ j ≤ Nd denote a substring of the
input text. If s satisfies the following conditions, then it is selected as a possible mention.

s ∈ D

wk · · ·wl /∈ D, ∀ k, l, 1 ≤ k < i < l ≤ |d| ∨ k = i ≤ j < l ≤ |d|

where s ∈ D means that this substring is one of the keys in D. The second formula ensures there is no
overlapping boundaries for any two mentions.
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Since the input text needs to be traversed to find all mentions, a prefix dictionary Dp is built
to reduce the search space. For every mention w1 · · ·wNm in the name dictionary, its prefixes
w1, w1w2, ···, w1 · · ·wNm are added to Dp. The pseudo code of the candidate generation step is
given in Algorithm 1.

Algorithm 1. Candidate generation algorithm.

Input: text d = w1w2 · · ·wNd , name dictionary D
Output: set of candidate pairs Cp

Initialize Dp, Cp = {} , i = 0;
while i < Nd:

temp = NULL, j = i + 1:
while j < Nd:

s = wi, . . . , wj;
if s ∈ Dp:

if s ∈ D:
temp = {〈s, e〉 for each e ∈ D[s]};

else:
if temp 6= NULL:

Cp = Cp ∪ temp;
i = j;

else:
i = i + 1;
break;

end
end
return Cp;

3.1.4. Binary Classification

The binary classifier takes in all candidate pairs generated by the previous step and determines
whether each pair is positive or negative. For the first binary classifier, if a pair is tagged positive,
then the entity in this pair will be added to the local entity set in Stage 2. While in the second binary
classification, a positive pair means that a link can be established between the corresponding mention
and entity, and this entity is added into the target entity set of this mention. A simple example about
the binary classification is given in Figure 3.
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Besides the model structure and the quality of input data, the features are also crucial for a classifier.
Due to the importance, the details of feature generation and representation are specially discussed in
the next section.
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3.2. Feature Representation Leveraging an Unlabeled Corpora

Features used in the binary classifiers of TSJ are presented in this section. A brief overview of all
features is given in Section 3.2.1, and detailed explanations about three kinds of crucial features are
given in the remaining sub-sections.

3.2.1. Features’ Overview

Features used in TSJ can be divided into two types: Context independent features and
context-dependent ones [1]. Context independent features reflect the static characteristics of mentions
and entities, while context-dependent features are extracted from the context of mentions. Table 1
gives an overview of all of the features. Among these features, we specially study the representation
methods for three groups of context independent features, including the mention type, corpus-based
inner-document entity coherence and topical coherence across documents, and the details are
introduced in the following three sub-sections. The rest of the features compose the basic feature set;
the corresponding details are explained in the Appendix due to the limit of space.

Table 1. An overview of all of the features used in the TSJ model. DSKB, domain-specific
knowledge base.

Features Descriptions

Context independent
Mention string Textual and statistical characteristics of the

mention string

Entity Entity popularity and entity type

Context-dependent

Textual context similarity Textual similarity between context of mentions
and descriptions of entities

Mention type (Section 3.2.2) The probability of the mention
being a certain type of entity

DSKB-based entity coherence
Topical coherence between entities
within the input document based
on the link structures of the DSKB

Corpus-based inner-document
entity coherence (Section 3.2.3)

Topical coherence between entities
within the input document based
on the pseudo-labeled corpus

Topical coherence across
documents (Section 3.2.4)

Entity coherence across similar
documents

Other Length of the input document

3.2.2. Mention Type

An LSTM-based model is proposed to infer the type information, namely the probability of
a mention belonging to a certain type. Besides, an automatic data labeling method is introduced to
generate training data for the model from unlabeled corpora.

The LSTM-Based Mention Type Classification Model

The model aims to infer the type of a mention from its textual context. To be specific, given
a mention and the sentence it appears in, the model generates the probability of the mention belonging
to each type t ∈ T, where T is the pre-defined entity type set. Note that for consistency, the fake mention
type is also included, because a mention may not belong to any of the meaningful pre-defined types,
and in this case, this mention is likely to be a fake mention.

The structure of the model is shown in Figure 4. The model consists of three layers: Word
representation layer, sentence representation layer and output layer. The word representation layer
transforms words in the sentence into the corresponding vectors. In the sentence representation layer,
the word vectors are feeding to LSTM sequentially to get vector representation of the sentence. Finally,
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a soft-max layer (the output layer) is used to generate the classification result. The dimension of the
output is N + 1, where N denotes the number of meaningful pre-defined types, and the additional
dimension is corresponding to the fake mention type.Information 2017, 8, 59 9 of 21 
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(1) Word representation layer:

For a given mention and its sentence, this layer learns the vector representation for each word
in the sentence. The word representation consists of two components: The word itself and its
relative position to the mention; both are represented with the corresponding vectors. Suppose
wi ∈ Rne1×1 is the word embedding of the i-th word in the sentence and pi ∈ Rne2×1 is the position
embedding, then the word feature and position feature of the sentence are WF = [w0, w1, . . . , wn−1]

and PF = [p0, p, . . . , pn], where ne1 and ne2 are hyper parameters denoting the dimensions of the
embedding, and n is the length of the sentence. Combining WF and PF, the matrix

[
WFT , PFT]T ∈

R(ne1+ne2)×n represents all of the words in the sentence. Word embeddings are initialized with weights
pre-trained on the unlabeled corpus, while position embeddings are randomly initialized.

Note that the given mention is removed from the sequence, in order to force the model to capture
the information of textual context, rather than remember the limited mentions that are used to generate
training data (see Section Automatic Generation of Training Data for details).

(2) Sentence representation layer:

By representing the word in a low-dimensional vector space, the word representation layer can
capture the similarity between words, so the model is more robust to the variability of linguistic
expression at the lexical level compared with models based on the bag of words representation.
For example, the model can capture the similarity between words ‘watch’ and ‘see’ by representing
them with adjacent low-dimensional vectors.

LSTM is a recurrent neural network (RNN) model [35] with a long-short term memory unit,
which can handle the gradient explosion and vanishing problems of the traditional RNN model.
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The LSTM model is adopted in a variety of tasks, such as the language model, the neural translation
model and speech recognition and outperforms traditional methods that rely on feature engineering.
Since LSTM has the potential to capture the long-term dependence in sequence, it is employed to
extract context features that are crucial for mention type identification from the input word sequence.
Feature representation is automatically extracted without feature engineering, so the proposed method
can be feasibly adopted in different domains.

(3) Output layer:

Vectors from the matrix
[
WFT , PFT]T are fed to LSTM sequentially. The LSTM layer then outputs

the feature vector f ∈ Rns×1, where ns is the dimension of the sentence feature. The sentence-level
feature vector f is first processed by a linear transformation:

o = Wf (1)

where W ∈ R(N+1)×ns is the transformation matrix and o ∈ R(N+1)×1 whose i-th component oi
denotes the score of the i-th pre-defined mention type (the last dimension is the score of the fake
mention type). Finally, a soft-max operation is applied, to convert the scores into the probabilistic form:

pi =
eoi

∑N+1
k=1 eok

(2)

Additionally, these probabilities will be fed to the binary classifiers of the TSJ model as the mention
type features.

Automatic Generation of Training Data

Generally, some unambiguous mentions can be found in the specific domain. One can distinguish
the types of these mentions with certainty. For example, The Twilight Saga: Breaking Daw—Part 1 can be
linked to a movie entity, and Barack Hussein Obama is no doubt a person. Therefore, each time these
mentions appear in a sentence, this sentence can be tagged as a positive example of the corresponding
type. By contrast, if a word is randomly chosen from the text, there is little chance that this word is
an entity mention, so the sentence it appears in is labeled as negative.

Based on the above idea, the training data can be generated automatically as follows. For every
entity type, a set of unambiguous mentions is selected, by rules (e.g., very long names) or by
experience (e.g., the formal names of well-known entities in the current domain). Then, the unlabeled
domain-specific corpus is traversed to find sentences containing these mentions as positive samples,
while the negative samples are generated by sampling all sentences of the corpus and avoiding the
possible positions of unambiguous mentions.

Using this method, one only needs to collect a small number of unambiguous mentions for each
entity type, and then, massive weakly supervised training data can be generated for the representation
learning-based model, which relies heavily on labeled data, so the data annotation is quite efficient.

3.2.3. Corpus-Based Inner-Document Entity Coherence

Generally, entities co-occurring in one document are about the same or related topics. This topical
coherence is widely considered in many existing entity linking systems [11–14]. In the general
EDL tasks, topical coherence is usually estimated based on the hyperlinks between entity pages in
Wikipedia, using measures like the Wikipedia link-based measure (WLM) [36,37], Jaccard distance [9]
and point-wise mutual information (PMI-like) [3]; while in DSEDL tasks, relationships between entities
in the DSKB are utilized, by assuming that two entities directly linking to each other tend to share
similar topics. This DSKB-based coherence is also adopted in our method, and details are given in the
Appendix. However, this measurement suffers from the relationship sparsity of some DSKBs, so the
novel corpus-based metrics are proposed in this sub-section to solve this problem.
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The proposed metrics measure the topical similarity based on the distribution of entities in the
corpus. Here, the corpus is composed of massive unlabeled documents accumulated in domain-specific
applications, such as product comments in Amazon or movie reviews in IMDB. A preprocessing step
is to label all documents in the corpus with a TSJ model pre-trained on the training dataset, using
only the aforementioned features. After this step, we get a pseudo-labeled corpus. Though the model is
imperfect, its annotation result can still reflect the distribution of topic-coherent entities, so semantic
similarity can be measured on the pseudo-labeled corpus. Specifically, given two entities ei and ej,
their corpus-based topical coherence can be computed by:

Cohee
(
ei, ej

)
=


|Di∩Dj|
|Di∪Dj| ei 6= ej

0 ei = ej

(3)

where Di and Dj are the sets of documents in the pseudo-labeled corpus that contain ei and ej,
respectively. If regarding every word as a latent entity, the coherence between an entity and a contextual
word is defined as:

Cohew
(
ei, wj

)
=

∣∣∣Di ∩ D′j
∣∣∣∣∣∣Di ∪ D′j
∣∣∣ (4)

where D′j is the set of documents containing the word wj.
Note that the pseudo-labeled documents can be accumulated by online DSEDL systems in

real-world applications, and the above values can be updated incrementally in real time.
Based on the above two metrics, three features are incorporated to measure the confidence of

a mention m being linked to its candidate entity ei. Suppose M is the set of mentions in the input
document and W is the set of words, then the definitions of these features are as follows.

(1) Coherence between the candidate entity and all of the contextual words:

Coh1(m, ei) = ∑
wj∈W

Cohew
(
ei, wj

)
(5)

(2) Coherence between candidate entities:

Coh2(m, ei) = ∑
mk∈M

∑
ej∈ECk

Cohee
(
ei, ej

)
Cb
(
mk, ej

)
(6)

Here, ECk is the candidate entity set of mk, and Cb
(
mk, ej

)
is the classification result of a binary classifier

using features that are introduced in the above sections. That is, Cb
(
mk, ej

)
= 1 if mk is predicted to be

linked to ej by the classifier; otherwise, it is zero.

(3) Distance-weighted coherence between entities:

Coh3(m, ei) = ∑
mk∈M

∑
ej∈ECk

Cohee
(
ei, ej

)
Cb
(
mk, ej

) 1
1 + dk

(7)

where dk is the distance between m and mk in the text. The distance factor is introduced based on the
idea that topical relatedness between entities usually decreases with the increase of their distance.

3.2.4. Topical Coherence between Entities across Documents

The previous sub-section proposes metrics for topical coherence between entities based on the
pseudo-labeled corpora, so as to solve the link sparsity problem in DSKB. Those features focus on
semantic cohesiveness between the candidate entity and contextual components within the input
text, so they are less discriminative for the documents with few entities (i.e., the short texts). Thus,
the topical coherence across documents is further explored.
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Preprocessing is needed, as well. A new pseudo-labeled corpus is generated, using a pre-trained
TSJ model based on features introduced in the above sections. Then, for each input document
d, all documents that have similar topics with d are retrieved from this corpus using the vector
space model [38], and these documents are named extension documents of d. Based on the collection
of extension documents, topical coherence across documents can be measured from the following
three aspects.

(1) Mention-entity linking rate:

This feature is extracted based on the observation that the same mentions in topic-similar
documents tend to refer to the same entity. Given a mention m and its candidate entity ei, the mention
linking rate evaluates the rate that m is linked to ei in the extension documents:

MLR(m, ei) =
Γ(m, ei)

∑ej∈ED
Γ
(
m, ej

) (8)

where Γ(m, ei) is the number of m being linked to ei in the extension documents and ED denotes the
collection of entities that are recognized in the extension documents.

(2) Entity linked frequency:

Heuristically, if a candidate entity is frequently mentioned in the extension documents, there is
high prior probability that this entity is referred to in the input document. The frequency of ei being
linked to in the extension documents is used as the prior confidence:

ELF(ei) = ∑
md∈MD

Γ(md, ei) (9)

Here, MD is the set of mentions appearing in the extension documents.

(3) Coherence between entities across documents:

Similarly, entities in extension documents also have semantic relatedness with entities in the input
text. According to this idea, a cross-document coherence measurement is given:

Coh4(m, ei) = ∑
ej∈ED

rel1
(
ei, ej

)
(10)

where rel1 is the entity relatedness based on relationships in the DSKB,

rel1
(
ei, ej

)
=

{
1 i f i 6= j and there are reltionships between ei and ej in DSKB

0 otherwise
(11)

Furthermore, note that the pseudo-labeled documents can be accumulated in real-world
applications, so our method has the potential to capture the time-varying topical transformation
by giving priority to the latest documents in the document retrieval step.

4. Experiments

In this section, a series of experiments are conducted to validate the effectiveness of the proposed
TSJ model and the features extracted utilizing the unlabeled corpus.

4.1. Dataset Preparation

A benchmark dataset is needed to verify the performance of our method. Besides, a domain-specific
unlabeled corpus is crucial throughout the experiments. Details about these two datasets are
demonstrated below.



Information 2017, 8, 59 13 of 22

(1) The benchmark dataset:

The dataset provided in the DSEDL evaluation task at China Conference on Knowledge Graph
and Semantic Computing (CCKS2016) is used as the benchmark. A movie knowledge base (MKB) and
a collection of labeled documents in the movie domain are provided. Entities recorded in MKB mainly
belong to two categories: artists such as actors, directors, screenwriters and hosts, as well as films and
television works, such as movies, television series, TV shows, etc. The labeled documents’ collection
includes unstructured texts like movie reviews, short reviews, comments of movie reviews, group
topics and synthetic reviews obtained from Douban (https://www.douban.com/), a website focusing
on publishing movie-related information. Statistics of this document collection are given in Table 2.
As can be seen from the table, movie reviews and synthetic reviews are generally long texts while the
other three kinds of documents are relatively short.

Table 2. Statistics about the labeled documents in the benchmark dataset.

Document Category |Documents| Train/Test Text length |Mentions| |Mentions|
Movie review 225 150/75 2781 4085 18.16
Short review 480 320/160 72 814 1.70

Comments of movie review 299 200/99 129 478 1.60
Group topic 298 199/99 429 1801 6.04

Synthetic review 7 5/2 5460 713 101.86
Total 1309 874/435 661 7891 6.03

(2) The unlabeled corpus:

As Douban contains rich textual data about millions of movies, it is capable of providing high
quality corpora for the EDL task in the movie field. About 1.09 million movie reviews are crawled
from Douban during October 2016, with the help of Amazon Web Service (AWS), composing the raw
unlabeled corpus, which is used intensively to produce effective features.

4.2. Evaluation Metrics

Measurements used in the CCKS2016 EDL evaluation task are adopted to assess the performance
of our method from all of the following three aspects.

(1) Entity detection evaluation:

The precision, recall and F1-measure are used as the assessment measures for entity detection,
defined as:

PED =
|{correctly recognized entity mentions}|

|{recognized entity mentions by the method}|

RED =
|{correctly recognized entity mentions}|

|{all entity mentions tagged in the labeled document collection}|

F1ED =
2 · PED · RED
PED + RED

(2) Entity linking accuracy:

The result of entity linking is evaluated based on mentions that are correctly detected, so we have:

AEL = PEL = REL = F1EL =
|{correctly linked entity mentions}|
|{correctly recognized entity mentions}|

where AEL is the accuracy of entity linking.

https://www.douban.com/
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(3) Overall evaluation:

Similarly, the precision, recall and F1 value are used, denoted by PEDL, REDL and F1EDL,
respectively. Additionally, we have PEDL = PED · AEL and REDL = RED · AEL.

4.3. Experimental Setup

Some tools used in the experiments, as well as the values of hyper parameters and some details in
the models are introduced in this sub-section.

(1) The threshold in the local name dictionary:

The threshold θF used in the local name dictionary construction is set by conducting experiments
on a randomly-selected validation set (10%) from the training set. The best performance of the model
is obtained when θF = 5, so this is chosen as the best threshold.

(2) The binary classification model of TSJ:

As for the binary classification block, the GBDT (gradient boosting decision tree) model
implemented in eXtreme Gradient Boosting package (XGBoost) (https://github.com/dmlc/xgboost)
is exploited as the classifier. The reason to choose this model is that, GBDT outperforms many other
classifiers in its efficiency and classification accuracy, and meanwhile, it is less likely to over-fit;
and features can be sent to the model without much pre-processing.

(3) The LSTM-based model:

The LSTM-based model proposed in Section The LSTM-Based Mention Type Classification
Model is implemented utilizing Keras (https://github.com/fchollet/keras) with Tensorflow (https:
//www.tensorflow.org/) as the backend.

The hyper parameters in this model are set according to the performance on validation data
(10%), and their values are listed in Table 3. Since it is sufficient to consider two types of entities,
the artist and the movie, so we have two meaningful pre-defined types, and N = 2 is used in the
output layer. Besides, the initial weights of word embeddings are trained on the climbed Douban
movie reviews (i.e., the unlabeled corpus), using the word2vec toolkit provided by Gensim (http:
//radimrehurek.com/gensim/), a python package for natural language processing, while weights of
the position embeddings are initialized randomly.

Table 3. Hyper parameters used in the experiment.

Hyper Parameter Word Embedding
Dim.

Position Embedding
Dim.

Sentence Feature
Dim.

Meaningful
Pre-defined Types

Value ne1 = 50 ne2 = 10 ns = 60 N = 2

Note: “dim.” means dimension.

The training data for this model are obtained using the approach introduced in Section Automatic
Generation of Training Data, We select 716 and 665 unambiguous mentions from artists and film and
TV programs, respectively, and the statistics of the generated training samples are given in Table 4.
Using a small number of unambiguous mentions and the unlabeled corpus, massive labeled data can
be automatically generated, so the approach is quite applicable.

Table 4. Statistics about the automatically-generated training data for mention type recognition.

Positive Samples for Movie Type Positive Samples for Artist Type Negative Samples

1,839,893 1,359,595 5,172,380

https://github.com/dmlc/xgboost
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://www.tensorflow.org/
http://radimrehurek.com/gensim/
http://radimrehurek.com/gensim/
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4.4. Experimental Results

We illustrate the effectiveness of our TSJ model and analyze the effects of the three kinds of
features. A comparison with other methods is also presented to prove the advantages of our approach.

4.4.1. Performance of the Proposed Method

Five groups of experiments with different settings are carried out to validate the effectiveness
of the proposed TSJ model and features extracted leveraging the corpus. Details of the experimental
settings are explained as follows.

– Baseline (Base 1): only one joint model based on the binary classification, using the basic feature
set. Partial names and abbreviation names are included in the name dictionary to cover the
ambiguous mentions.

– The first stage of the TSJ model (FTSJ): The difference between Base 1 and FTSJ lies in that
abbreviated names and ambiguous partial names that have more than 15 candidate entities are
excluded from the name dictionary.

– The basic TSJ model (TSJ): the proposed two-stage architecture utilizing the basic feature set.
– + Mention type (+ MT): using the TSJ model and adding mention type features generated by the

LSTM-based model to the feature set.
– + Extra inner-document topical coherence (+ EIC): on the basis of +MT, adding the corpus-based

topical coherence features, namely Coh1(m, ei), Coh2(m, ei) and Coh3(m, ei) introduced in
Section 3.2.3.

– + Cross-document coherence (+ CC): on the basis of +EIC, incorporating topical coherence across
extension documents, namely MLR(m, ei), ELF(ei) and Coh4(m, ei), introduced in Section 3.2.4.

The experimental results of different configurations are listed in Table 5, and more illustrations
and discussions about the effect of each elements are given subsequently.

Table 5. Performance comparison of different settings. FTSJ, first TSJ; MT, mention type; EIC, extra
inner-document topical coherence; CC, cross-document coherence.

Configuration
Entity Detection Entity Linking Overall EDL

PED RED F1ED AEL PEDL REDL F1EDL

Base 77.01 64.94 70.46 88.67 68.29 57.58 62.48
FTSJ 80.57 65.29 72.13 89.96 72.48 58.64 64.89
TSJ 83.64 68.74 75.46 91.03 76.13 62.57 68.69

+ MT 85.64 72.87 78.74 89.48 76.63 65.21 70.46
+ EIC 85.74 72.80 78.74 90.63 77.71 65.98 71.36
+ CC 87.05 73.37 79.63 93.26 81.18 68.43 74.26

Note: The percent signs (%) behind the numbers are omitted.

(1) The TSJ model:

Compared with the baseline method, the proposed two-stage joint model reports a 5%, 2.46% and
6.41% increase on F1ED, AEL and F1EDL, respectively. Statistics of the candidate pairs generated at
the two stages are listed in Table 6. Massive negative samples are generated to cover the ambiguous
mentions such as partial names and abbreviated names. Though more positive samples are recalled
in the candidates, the overall result is poor because of the data imbalance problem. Compared with
the baseline, the candidate pairs are more balanced in the first stage of TSJ, and samples at the second
stage are well balanced, indicating the effectiveness of the TSJ architecture. Besides, the number of
candidates decreases notably, thus reducing the computational complexity.
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Table 6. Statistics of candidate pairs generated by the baseline method and TSJ.

Method & Stage Positive Negative Total Positive/Negative

Baseline 7666 789,378 797,044 1/102
FTSJ 6848 95,988 102,834 1/25
TSJ 5833 1938 7771 3/1

(2) The mention type features:

The model reports a 3.28% and 1.77% increase on F1ED. and F1EDL by adding the mention type
features. The improvement shows the effectiveness of the LSTM-based mention type extraction model
and the automatically generated training data. The representation learning approach contributes to the
above improvement, and the independence of feature engineering, as well as automatic generation of
training data also indicate the generality of this method. As for the slight decrease on AEL, the reasons
lie in the following two aspects. First, more true mentions are recalled after considering the type
information, so the denominator of AEL grows; second, as for a true mention, if its candidate entity set
contains false entities, namely EC − EL 6= ∅, and it happens that some of these false entities have the
same type as the target entities. In this case, the high confidence on type consistency results in false
positives, so the current mention is not correctly linked. However, in general, the features from textual
context captured by the LSTM-based model bring improvement to the overall performance, proving
its importance in the DSEDL task.

(3) Corpus-based inner-document entity coherence:

This group of features bring a 1.15% increase on AEL and a 0.9% increase on F1EDL. The overall
EDL F1-measure on different kinds of documents is illustrated in Figure 5. As the figure shows,
the most significant increase appears in the movie reviews, because longer documents often contain
more entities and, thus, benefit more from the topical coherence feature. However, there is little
improvement on synthetic reviews. It is discovered that the synthetic reviews are more formally
written and the original AEL already reaches 94.5%, so it is hard to obtain noticeable improvement
on this category. For short documents, AEL decreases because of the sparseness of entities, and this
problem can be solved by exploiting the following cross-document coherence features. Generally,
by considering the corpus-based inner-document semantic relatedness, the TSJ model performs better,
especially for DSEDL on long texts.
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(4) Cross-document coherence:

Significant improvements are observed by incorporating the cross-document cohesiveness
extracted from the extension documents. F1ED, AEL and F1EDL increase 0.89%, 2.63% and 2.9%,
respectively. Similarly, we examine the impacts of this feature group on different documents, and the
result is given in the (a–c) sub-plots of Figure 6. As is expected, almost all performances involving
the short documents are improved, and meanwhile, remarkable gains are also observed for long texts,
providing powerful evidence that our method has great advantages to capture the semantic correlation
that implicitly exists in the unlabeled, but topic-similar documents.

Besides, we investigate the influence of the number of the extension documents on the final
performance, and the result is given in Figure 6d. As the figure shows, with the increase of the number,
the curve of overall F1EDL rises steeply at first and then flattens after a certain point (in the figure,
when the number reaches 30). If the number keeps growing, F1EDL will decrease slightly, because the
topics of the extension documents become less cohesive. In our experiment, the number is set to be 50.

In summary, both the TSJ model and the proposed features contribute to improve the performance
from different aspects. The TSJ model contributes to balance the candidate pairs, and the three
types of features incorporate evidence that is mined from the textual context or unlabeled corpora,
and especially, the cross-document features bring the most noteworthy promotion, for both long
and short texts, because the coherence and prior knowledge hidden in the topic-similar unlabeled
documents are well utilized.Information 2017, 8, 59 17 of 21 
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4.4.2. Comparison with Other Methods

We compare our approach with three other methods. (1) The joint EDL model proposed in [7]:
This method is implemented in [33] with 56 features for entity detection and 17 features for entity
linking; (2) The ensemble joint EDL model introduced in [33]: They introduce ensemble classifiers
into the joint architecture proposed in [7]; (3) The pipeline architecture used in [39]: A CRF model and
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learning to rank method is adopted in entity detection and entity linking respectively. The last two
methods are the top two systems in the DSEDL evaluation task of CCKS2016. The performances of the
four methods are listed in Table 7.

Table 7. Performance comparison with other methods.

Method
Entity Detection Entity Linking Overall EDL

PED RED F1ED AEL PEDL REDL F1EDL

Ensemble joint EDL model 79.33 81.30 80.30 93.45 74.13 75.98 75.43
TSJ model 87.05 73.37 79.63 93.26 81.18 68.43 74.26

Joint EDL model 76.85 79.21 78.01 92.41 71.02 73.18 72.08
Pipeline model 82.10 73.98 77.83 86.53 71.04 64.01 67.35

Note: The percent signs (%) behind the numbers are omitted.

The results in Table 7 indicate that, by incorporating the interdependency between entity detection
and entity linking, joint models, including our proposed TSJ model, outperform the traditional pipeline
architecture. Besides, our method generates a competitive result based on a relatively simple model
architecture, while the iterative architecture and ensemble method in the other two joint models both
involve higher complexity.

5. Conclusions

In this paper, a two-stage joint model is proposed to address the high computational complexity
and data imbalance problems in the traditional joint models, by covering highly ambiguous mentions
in the second stage. In addition, the unlabeled corpus is incorporated to promote feature representation
methods from three aspects. First, the mention type features are extracted from the context, using
an LSTM-based model trained on the automatic labeled data. Second, topical coherence between
entities is evaluated on the pseudo-labeled corpus to overcome the link sparsity in DSKB. Finally,
cross-document entity coherence is explored to improve EDL performance on both long and short texts.
Experiment results prove the advantages of the TSJ model and the novelty of feature representation
methods in the DSEDL task, and our method achieves competitive results using a relatively simple
model structure.

In future work, we will study the extraction of the alias and incorporate the misspelling corrector,
as the proposed method cannot recall the alias of entities that are not recorded in the DSKBs.
Besides, the multi-view semi-supervised learning algorithm will be explored to further learn from the
unlabeled corpus.
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Appendix

The details of the basic features used in our method are explained in this part.

1. Features about the mention:

(1) Mention length: The number of characters in the mention string.
(2) Is title: Whether the first letter of the mention string is capitalized.
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(3) All capital: Whether all letters of the mention string are capitalized.
(4) Term frequency: Frequency of the mention string in the text.
(5) Document frequency: Document frequency of the mention string in the corpora.
(6) NC: The number of the candidate entities.

2. Features about the candidate entity:

(1) Entity type: The type of the entity, for example, The Twilight Saga: Breaking Dawn–Part 1
is a movie, and Barack Hussein Obama is a person. The type information is represented
by the one-hot encoding.

(2) Entity popularity: Entity popularity provides a prior possibility of the current entity.
Traditionally, entity popularity is evaluated by hyperlinks and statistics, such as page
views of the entity page within Wikipedia. The representation of entity popularity in
a specific domain depends on the available data. For example, in the movie domain,
the popularity of movies can be measured by the number of rating on Douban or IMDB,
and the popularity of artists can be evaluated by the number of fans, while in the
e-commerce domain, the popularity of products can be estimated by their sales and
page views.

3. Textual context similarity:

Textual context similarity measures the textual similarity between the description of the candidate
entity and the context of the mention. Textual information of the mention and the entity is
converted to vectors based on the bag of words model, and the dot-product of these two vectors
is used to calculate the similarity [1]. Text associated with the entity can be extracted from the
description page and textual attributes of the entity.

4. DSKB-based entity coherence:

Entities mentioned within a passage are usually about the same or related topics. In DSEDL tasks,
coherence between entities is evaluated based on the relationships recorded in the DSKB, and this
DSKB-based coherence is also used in our method.

Before giving the coherence measures, we first introduce the one-hop relationship rel1 and two-hop
relationship rel2 based on the link structure of DSKBs

rel1
(
ei, ej

)
=

{
1 i f i 6= j and there is reltionship recorded between ei and ej in the DSKB

0 otherwise

rel2
(
ei, ej

)
=

{
1 i f i 6= j and ∃ek ∈ DSKB, rel1(ei, ek) = 1

∧
rel1
(
ek, ej

)
= 1

0 otherwise

Based on the above definitions, four DSKB-based features about entity coherence are given
as follows.

(1) Topic coherence between mapping entities:

Given a mention m and its candidate entity ei and M is the set of mentions in the input document,
then we have:

Coh5(m, ei) = ∑
mk∈M

∑
ej∈ECk

rel1
(
ei, ej

)
(A1)

where ECk is the candidate entity set of mk.

(2) Coherence between mapping entities after a basic binary classification:
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Coh6(m, ei) = ∑
mk∈M

∑
ej∈ECk

rel1
(
ei, ej

)
Cb
(
mk, ej

)
(A2)

Coh7(m, ei) = ∑
mk∈M

∑
ej∈ECk

rel1
(
ei, ej

)
Cp
(
mk, ej

)
(A3)

The definition of Cb
(
mk, ej

)
can be found in Section 3.2.3, and Cp

(
mk, ej

)
is the original

probabilistic result of the binary classifier.

(3) Topic coherence between mapping entities based on two-jump relationships:

Coh8(m, ei) = ∑
mk∈M

∑
ej∈ECk

rel2
(
ei, ej

)
(A4)
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