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Abstract: The objective of this study was to develop information mining methodology for drought
modeling and predictions using historical records of climate, satellite, environmental, and oceanic
data. The classification and regression tree (CART) approach was used for extracting drought episodes
at different time-lag prediction intervals. Using the CART approach, a number of successful model
trees were constructed, which can easily be interpreted and used by decision makers in their drought
management decisions. The regression rules produced by CART were found to have correlation
coefficients from 0.71–0.95 in rules-alone modeling. The accuracies of the models were found to be
higher in the instance and rules model (0.77–0.96) compared to the rules-alone model. From the
experimental analysis, it was concluded that different combinations of the nearest neighbor and
committee models significantly increase the performances of CART drought models. For more robust
results from the developed methodology, it is recommended that future research focus on selecting
relevant attributes for slow-onset drought episode identification and prediction.
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1. Introduction

Information mining is a sub-discipline of the information systems field that supports business
intelligence tools to transform information into knowledge [1,2], with a focus on searching for
interesting patterns and important regularities in large bodies of information [3]. Here, knowledge is
a justified true belief, and is created and organized by the flow of information. Knowledge for solving
human challenges can be produced from the collection of useful information, through interactions
among people sharing their experiences and other information sources [4]. In this process, information
is a flow of messages, while knowledge is created and organized by the flow of information, anchored
on the commitment and beliefs of its holder [5].

The present work is concerned with explicit knowledge [6], specifically patterns observed in data
that can be easily understood by humans and validated by test data with some degree of certainty [7].
The practice of finding useful patterns in data known by a variety of names, including data mining [7],
knowledge extraction [8], information discovery [9], information harvesting [8,10], data archaeology [9],
and data pattern processing [8,10,11]. In this research, information mining is defined as the mining of
meaningful patterns from heterogeneous data sources for drought modeling and prediction.
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Drought is defined as “the naturally occurring phenomenon that exists when precipitation
has been significantly below normal recorded levels, causing serious hydrological imbalances that
adversely affect land resource production systems” [12,13]. Drought is also defined as a prolonged
abnormally dry period when there is insufficient water for users’ normal needs, resulting in extensive
damage to crops and loss of yields [14].

Drought is one of the major natural hazard challenges to human beings. It is a recurrent climatic
phenomenon across the world and affects humanity in a number of ways, such as causing loss of life,
crop failures, food shortages that may lead to famine in many regions, malnutrition, health issues and
mass migration [15]. Drought also causes considerable damage to the natural environment and is
regarded as a major cause of land degradation, aridity, and desertification [16].

Different modeling methods are used for drought modeling and prediction, such as regression
analysis [17,18], time series analysis [19–23], probability models [24–30], artificial neural network
models [31,32], hybrid models [33–35], long-lead drought forecasting [36–38], and data mining [39–42].
These different drought modeling approaches have their own advantages and disadvantages for
slow-onset drought modeling [43], which needs multiple variables for the modeling experiments.
Specifically, in managing heterogeneous data sources for modeling and predicting drought from these
existing methods, Mishira et al. [43] recommended data mining for its robustness in data integration
and pattern extractions. Data mining is also considered to be a powerful technology that helps with
extracting predictive information from large databases [44,45].

Despite different modeling drought efforts [17–42], there is no clear methodology that can be
used for practically and reliably identifying, modeling, and predicting drought under climatic change
scenarios with uncertainty [46–50], where the modeling products can give actionable information to the
decision makers. The goal of this work was to develop an effective methodology (specifically, a practical
data and information mining approach) for drought modeling and predictions using historical records
of climate, satellite, environmental, and oceanic data. This requires (1) identifying the appropriate
regression tree information mining parameters for retrieving actionable information for improved
accuracy and ease of use of the model outputs; (2) developing interpretable regression tree information
mining techniques for predicting drought at monthly temporal resolution; and (3) evaluating the
performance of the developed regression tree drought models. Materials and methods are presented
in detail in Section 2. Section 3 discusses the major findings, and Section 4 presents the conclusions.

2. Materials and Methods

2.1. Experimental Data Sources

The experimental data used for this study were obtained for Ethiopia, located in East Africa.
Ethiopia was selected as an experimental study area because drought was frequently reported in the
past [51], and also because the information mining concepts can easily be exercised in this real world
problem-solving scenario. Ethiopia occupies the interior of the Greater Horn of Africa, stretching
between 3◦ and 14◦ N latitude and 33◦ and 48◦ E longitude, with a total area of 1.13 million km2 [52].

For the experimental analysis, 11 attributes were used for modeling drought (Table 1). In Table 1,
SDNDVI is Standardized Deviation of Normalized Difference Vegetation Index (unitless) [53,54];
DEM is digital elevation model (meter) [55]; WHC is soil water-holding capacity (unitless) [55]; ER is
ecological region (ecosystems of Ethiopia), (which is a categorical data type with a value representation
of 1 = desert and semi-desert scrubland, 2 = Acacia-Commiphora woodland and bush land proper,
3 = acacia wooded grassland of the rift valley, 4 = wooded grassland of the Western Gambela
region, 5 = Combretum/Terminalia woodland and wooded grassland, 6 = dry evergreen Afromontane
forest and grassland complex, 7 = moist evergreen Afromontane forest, 8 = transitional rain forest,
9 = ericaceous belt, 10 = afro-alpine vegetation, 12 = freshwater lakes and open water vegetation,
13 = freshwater marshes and swamps, floodplains and lake shore vegetation, 14 = salt lake open water
vegetation, 15 = salt pans, saline/brackish and intermittent wetlands and salt-lake shore vegetation [56];
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LC is land use and land cover (which is a categorical data type with a value representation of
14 = rainfed croplands, 20 = mosaic cropland, 30 = mosaic vegetation (grassland/shrubland/forest),
40 = closed to open broadleaved evergreen or semi-deciduous forest, 60 = open broadleaved deciduous
forest/woodland, 110 = mosaic forest or shrubland grassland, 120 = mosaic grassland/forest or
shrubland, 130 = closed to open (broadleaved or needle-leaved, evergreen or deciduous) shrubland,
140 = closed to open herbaceous vegetation (grassland, savannas or lichens/mosses), 150 = sparse
vegetation, 180 = closed to open grassland or woody vegetation on regularly flooded or waterlogged
soil with fresh, brackish or saline water, 190 = artificial surfaces and associated areas, 200 = bare
areas, and 210 = water bodies) [57,58]; SPI_3month is the three-month Standard Precipitation Index
(unitless); PDO is Pacific Decadal Oscillation (unitless) [59]; AMO is Atlantic Multidecadal Oscillation
Index (unitless) [59,60]; NAO is North Atlantic Oscillation (unitless) [59,61,62]; PNA is Pacific North
American Index (unitless) [59]; and MEI is Multivariate ENSO Index (unitless) [59,63]. Detailed
domain explanations for these attributes are available in the references listed. Twenty-four years of
data (1983–2006) were extracted from each attribute and used for developing the time lag prediction
models and performance evaluations.

Table 1. An excerpt from the list of attributes and data used for modeling drought.

DEM SDNDVI LC AWC ER SPI PDO AMO NAO PNA MEI

598 −0.40 200 97.5 2 0.21 0.68 0.243 −0.07 −0.53 0.068
700 −0.40 110 56.42857 2 0.72 −1.47 −0.11 −0.82 −0.92 1.005

2850 0.00 14 123.5 6 0.48 0.68 0.243 −0.07 −0.53 0.068
524 0.00 30 175 2 0.86 2.36 −0.027 0.99 2.10 1.700
258 −0.10 30 157.7778 1 1.28 1.10 −0.10 0.56 −1.18 −0.221

1697 0.30 14 159.5 6 1.07 1.10 −0.10 0.56 −1.18 −0.221
572 −0.40 110 127.7778 2 0.33 0.18 −0.299 −0.42 −0.36 −0.152

1876 −0.70 30 158.3334 6 −1.39 0.89 −0.226 1.22 0.39 0.394
1106 −0.20 110 33.33334 2 −1.32 −0.44 0.015 −0.03 −1.19 −0.219
1213 0.00 130 91.5 2 1.38 0.46 −0.194 1.52 −1.36 0.807
1567 0.20 110 197.5 5 0.17 1.10 −0.100 0.56 −1.18 −0.221
422 −0.20 30 157.7778 2 −2.54 −1.3 0.222 1.12 0.43 −0.500

1182 0.10 110 159.5 2 −0.59 0.74 0.197 0.88 1.31 −1.187
1612 0.20 20 175 6 −0.17 0.18 −0.299 −0.42 −0.36 −0.152
1589 −0.60 20 91.5 5 −0.03 0.46 −0.194 1.52 −1.36 0.807
3159 0.50 110 170 9 1.32 1.10 −0.100 0.56 −1.18 −0.221
2835 0.10 20 65.55556 6 −0.41 1.26 −0.125 0.2 1.36 0.952
1385 0.20 20 144.5 5 −0.57 1.27 0.396 0.13 0.90 0.177
908 0.20 200 88 2 1.82 1.10 −0.100 0.56 −1.18 −0.221

2.2. Classification and Regression Tree Modeling

In modeling drought, one of the major challenges is integrating the types of different parameters
and subsequent data reduction. There are several approaches for data reduction and pattern extraction,
such as principal component analysis and partial least squares [64], Bayesian method [65], neural
networks and support vector machines [66], multiple adaptive regression splines [67], random
forest [68], and classification and regression tree (CART) [69]. Past studies [70–73] used the CART
model for identifying drought episodes at different time-lag prediction intervals. The CART model has
also been found to be an effective method in studies in a variety of applications, such as soil properties
analysis [74] and medical tablet formulation analysis [75] because of its high performance and ease of
use of understanding by the domain experts.

The CART modeling approach is implemented in RuleQuest [69]. Here, the term Rulequest is
produced from two different terms: (1) rule is from the pieces of rules produced from the CART model,
and (2) quest is an acronym for Quick, Unbiased, Efficient, Statistical Tree [76].

The CART in RuleQuest has the options to produce a model with rules alone, instance and rules
(composite model), and let cubist decide selections (Figure 1a). The final model of RuleQuest [69]
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in Cubist is a set of comprehensible rules, where each rule has an associated multivariate linear
model. Figure 1b demonstrates the concept with a sample model tree for drought outlook predictions.
Whenever a situation matches a rule’s conditions (i.e., an individual rule set), the associated model
is used to calculate the predicted value. This is in effect transforming regression into a classification
problem. The model consists of a set of rules, and each rule consists of a linear model (see Figure 1b
for linear model [LM] and Figure 2 for pieces of regression functions). Regression rules are analogous
to piecewise linear functions [69]. Details on the algorithm of RuleQuest Cubist can be found in
Quinlan [77]. In addition to rules, RuleQuest also has an instance-based modeling option (Figure 1a).
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Figure 1. Graphical user interface for RuleQuest Cubist (a), and a structure of a model tree with a
hypothetical tree and drought tree splits for the Standardized Deviation of Normalized Difference
Vegetation Index (SDNDVI) (b).
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Figure 2. Conceptual demonstration of how a regression tree produces split rules fitting local models
for final classification assignments. The red lines are produced for the clustered dots, and the green lines
are classifying the different fits into different classes (the if conditions in RuleQuest [69] regression tree).

Instance modeling is based on the concept of an instance or a case as a basis for knowledge
representation and reasoning [78]. Hullermeier [78] noted that a case or observation can be thought of
as a single experience, such as a pattern (along with its classification) in a problem along with a solution
in case-based reasoning. In instance-based modeling, an instance-based learning (IBL) algorithm learns
by simply storing some of the observed examples [79]. As opposed to model-based machine learning
methods, which induce a general model from the data and use that model for further reasoning, IBL
algorithms store the data itself, and the algorithm processes the data until a prediction is actually
requested [78–80]. In RuleQuest Cubist, it is possible to combine instances and rules (Figure 1a).
In addition to these, there is also an option to use let cubist decide (Figure 1a).

In the let cubist decide option, Cubist derives from the training data a heuristic estimate of the
accuracy of each type of model, and chooses the form that appears more accurate. In the experimental
analysis, it was observed that the derivation of these estimates required considerable computation.

In addition to the instance model, Cubist CART has a committee modeling option (Figure 1a).
The committee modeling option is based on the principle that each member of the committee should
be as competent as possible (similar to establishing a committee of people), but the members should be
complementary to one another. If the members are not complementary (i.e., if they always agree), then
the committee is unnecessary and any one member is sufficient. If the members are complementary,
then when one or a few members make an error, the probability is high that the remaining members
can correct this error [69].

In the graphical user interface (GUI) (Figure 1a) implementations of the Cubist CART modeling
tool, different modeling parameters can be selected for modeling drought: rules alone, instances and
rules, let cubist decide, or a combination of these options with the use nearest instances; and use of
committee members (Figure 1a). Since there are multiple options, there is a challenge to determine
which combinations of the modeling parameters perform best. Therefore, in this research we used
the original RuleQuest C code, which was produced under the GNU General Public License [69],
to retrieve the pattern from the large dataset extracted from the 11 attributes. We also combined
the different modeling parameters for selecting the best performing parameter combinations. This
experimental analysis helped us compare the “rules alone”, “instance and rules” (composite model),
and let cubist decide modeling options from RuleQuest with the different parameter combinations to
determine the best performances among the various drought models.
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2.3. Accuracy Assessment

In data mining modeling, there are four approaches for estimating the accuracies of the models:
holdout, random sub-sampling, k-fold cross validation, and bootstrap [7]. For our current drought
data modeling experiment, we used the holdout approach, where the data split for training and testing
were also experimented for 50/50%, 60/40%, 70/30%, 80/20%, 90/10%, and 99/1%. Mean average
difference (MAD), relative error (RE), and correlation coefficient (CC) [69,81] were used for the
comparisons of the performances of the models.

The MAD (Equation (1)) [69,82] and RE (Equation (2)) [69,82] were calculated as:

MAD =

d
∑

i=1
|yi − y′|

d
(1)

RE =

d
∑

i=1
|yi − y′|

d
∑

i=1

∣∣∣yi −
−
y
∣∣∣ (2)

where d is number of observation, yi is model predicted values, y′ is observed values, and
−
y is

mean value.
Lower MAD indicates that the predicted values are closer to the observed value. In the case of

relative error (RE), if there is little improvement on the mean, the environmental variables have little
predictive capacity and the relative error is close to 1. Generally, the smaller the relative error, the more
useful the model [83].

CC (Equation (3)) [69,81] measures the agreement between measured and predicted samples,
or how close the model predictions fall along a 45-degree line from the origin with the measured data
(or a slope of exactly 1).

CC =
2sxy

s2
x + s2

y + (
−
x − −y)

2 (3)

where s2
x = 1

n

n
∑

i=1

(
xi −

−
x
)2

, s2
y = 1

n

n
∑

i=1

(
yi −

−
y
)2

, sxy = 1
n

n
∑

i=1

(
xi −

−
x
)(

yi −
−
y
)

,
−
x and

−
y are sample

means for populations X (measured) and Y (predicted), xi and yi are paired with values from
populations X and Y. The value of the index is scaled between −1 and 1, with a value of 1 representing
complete agreement between all paired values.

In our current analysis, the performances of our models were also assessed in terms of a number of
key indicators, such as root mean square error (RMSE) and coefficient of determination (r2). The RMSE
gives an estimate of the standard deviation of the errors. A lower RMSE is associated with greater
predictive ability. Henderson et al. [83] indicated that RMSE values cannot be compared between
different properties because they depend critically on the scale used. Therefore, care was taken in our
experimental drought model assessment to prevent such mismatching.

The RMSE was calculated using Equation (4) [84].

RMSE =

√√√√ 1
N

N

∑
i=1

( fi − oi)
2 (4)

where N = number of prediction/observation pairs, f is forecast, and o is observation.
In order to validate the predictability of trained models, the coefficient of determination (r2) [85]

was computed against the validation dataset. Higher r2 values represent a higher predictive accuracy
of the trained model.
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3. Results and Discussions

3.1. CART Model Trees for Drought Predictions

Using the CART approach, a number of successful model trees were constructed, which can be
easily interpretable and used by decision makers in their drought management decisions. Conceptually,
the model trees were produced as upside down trees (Figure 1b) and have branches that lead
to the actual leaves of the tree. When there are no more splits for the branches and/or leaves,
there are linear models representing the node in the form of rules, which have if-conditions and
linear-regression equations.

At each node, the model trees were expressed as collections of rules, where each rule has an
associated multivariate linear equation. Whenever a situation matches a rule’s conditions, the associated
equation is used to calculate the predicted value of drought outlooks. A sample rule (Rule 1 of June model)
for predicting July drought conditions in June (June one-month outlook) is presented in Figure 3. In this
case, July drought values range from −3.90 to 1.40 with an average value of −0.96. Here, the drought
values are in the units of standard deviation values. The regression tree model finds that the target
value of these or other cases satisfying the conditions can be modeled by the following formula:

SDNDVIJuly = −123 + 4.14 AMO − 0.85 PDO + 1.16 SDNDVIJune + 0.45 NAO + 0.3 PNA − 0.09 SPI_3month + 0.009 DEM
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Figure 3. An excerpt rule produced in a June one-month outlook model for predicting July drought.
In rule 1, the land cover and ecological region (ER) are categorical values. For the land cover, 20 = Mosaic
cropland (50%–70%)/vegetation (grassland/shrubland/forest) (20%–50%); 130 = Closed to open (>15%)
(broad-leaved or needle-leaved, evergreen or deciduous) shrubland (<5 m); 140 = Closed to open (>15%)
herbaceous vegetation (grassland, savannas, or lichens/mosses); 180 = Closed to open (>15%) grassland
or woody vegetation on regularly flooded or waterlogged (fresh, brackish or saline water); 200 = Bare
areas. For the ER, 1 = Desert and semi-desert scrubland (DSS); 2 = Acacia-Commiphora woodland
and bush land proper (ACB); 12 = Freshwater marshes and swamps, floodplains, and lake shore
vegetation (FLV/MFS); 15 = Salt pans, saline/brackish and intermittent wetlands, and salt-lake shore
vegetation (SLV/SSS).

During this modeling, the estimated error is 0.414. For a case covered by this rule, AMO has
the greatest effect on the drought estimate and DEM has the least effect on determining this drought
outlook value. Each rule generated during the modeling was interpreted this way, and whenever
a case satisfied all the conditions, the linear model was used for predicting the value of the target
attribute. If two or more rules applied to a case, then the calculated values from the respective multiple
linear regression models were averaged to arrive at the final prediction of drought conditions.

There are two components of the models produced that include: the if-condition and the actual
multiple linear regression model. The 11 attributes used were assessed in the model construction
(Table 2). The last column indicated the rank of each attribute, which was determined by summing
the attribute usage in the if-conditions and the regression model and dividing it by 2. In our drought
modeling experiment, the PDO was the most important attribute for modeling July drought, followed
by AMO and SDNDVI, respectively. This means that these three attributes have strong relationships
with drought status in the study area. The model performances and selection of the parameters are
explored in subsequent sections.
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Table 2. Attribute usage assessment for drought prediction experiment.

Attribute Attribute Usage in the If-Conditions Attribute Usage in the Regression Model Rank

AMO 83% 54% 2
MEI 81% 23% 7
ER 72% 36% 6

DEM 61% 52% 4
PDO 51% 87% 1
SPI 50% 61% 5

AWC 40% 39% 8
LC 35% 35% 9

SDNDVI 32% 100% 3
PNA 13% 12% 10
NAO 0% 24% 11

3.2. Model Performance Evaluations

A 24-year historical record of data (1983–2006) was used for developing the time lag prediction
models and performance evaluations metrics. In cross-validating the drought models in the regression
tree, the data were randomly split into training and testing sets. The learned parameters from the
data in the training set were subjected to the parameters of the test dataset, and the quality of the
predictions on the test set was evaluated. This approach usually gives an idea of how well the models
generalize the unseen data points, with better generalized and more robust models having a higher
predictive accuracy [69] of future drought conditions.

Table 3 presents the performance of the “rules alone” model on test data. The MAD, which
measures the deviation of the predicted value from the actual known value, ranged from 0.22 to 1.9 for
the 10 models assessed. These error values are in terms of standard deviations. The highest error values
were observed for the July three-month prediction followed by the August two-month prediction.
All of the October month predictions (June four-month outlook, July three-month outlook, August
two-month outlook, and September one-month outlook) were found to have about two standard
deviation values. The possible explanation for this high value is that October is dry and at the end of
the growing season [45,86–89] compared to the predictor months, and this high variability is expected
for the study area.

The ratio of the average error magnitude to the error magnitude that would result from always
predicting the mean value (RE) ranged from 0.29 to 0.67. The lowest RE was recorded for the August
one-month outlook and the highest was for the June-three month outlook. In all 10 models, the RE is <1,
which indicates that the average error magnitude is lower in the overall observations. RuleQuest [69]
also indicated that for useful models the relative errors should be less than one.

The CC ranged from 0.71 to 0.95. The highest CC was found for the August one-month prediction,
which is predicting September drought conditions using August data. This is in agreement with our
expectation in that both of these months are vigorous plant-growing months [45,86–89] and there is a
similarity in their vegetation conditions over this period of time. The lowest correlation value was
for the June three-month prediction. This is in line with our expectation that the predictive accuracy
would likely be lower during June, which is early in the growing season when vegetation conditions
(e.g., amount and vigor) are more variable because of several early season factors (e.g., moisture and
air temperature affecting the initial plant growth rates, resulting in vegetation condition variations
produced by several environmental factors beyond drought). In comparison, the August period with
higher predictive accuracy is a vigorous growing month [45,86–89] with considerable accumulated
plant biomass, leading to more consistent conditions from year to year with major deviations more
likely be related to drought stress during the early to mid-growing season.
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Table 3. Performances of the drought models using the “rules alone” modeling option on the test dataset.

Model MAD RE CC

June one-month outlook 0.3750 0.49 0.85
June two-month outlook 0.46488 0.61 0.77

June three-month outlook 0.51748 0.67 0.71
June four-month outlook 1.79753 0.57 0.77
July one-month outlook 0.27255 0.36 0.92
July two-month outlook 0.39691 0.51 0.84

July three-month outlook 1.89925 0.59 0.75
August one-month outlook 0.22184 0.29 0.95
August two-month outlook 1.86404 0.58 0.75

September one-month
outlook 1.80224 0.57 0.77

Figure 4 presents the performance of the 10 “rules alone” models, and “instances and rules”
CART Cubist models. In the 10 assessed models, the MAD in the “instance and rules” model was
found to have significantly lower value than the rules-alone model (Figure 4i). The reason for these
performance improvements in all of the models for the “instance and rules” model approach is that
the latter modeling approach uses bagging (bootstrap aggregating, which is designed to improve
the accuracy of the regression tree model) [90,91]. Witten et al. [82] supported this result that the
predictive accuracy of a rule-based model can be improved by combining it with nearest neighbor or
an instance-based model, which is achieved through the use of bagging in machine learning.

Information 2017, 8, 79 9 of 18 

 

Table 3. Performances of the drought models using the “rules alone” modeling option on the test dataset. 

Model MAD RE CC 

June one-month outlook 0.3750 0.49 0.85 

June two-month outlook 0.46488 0.61 0.77 

June three-month outlook 0.51748 0.67 0.71 

June four-month outlook 1.79753 0.57 0.77 

July one-month outlook 0.27255 0.36 0.92 

July two-month outlook 0.39691 0.51 0.84 

July three-month outlook 1.89925 0.59 0.75 

August one-month outlook 0.22184 0.29 0.95 

August two-month outlook 1.86404 0.58 0.75 

September one-month outlook 1.80224 0.57 0.77 

Figure 4 presents the performance of the 10 “rules alone” models, and “instances and rules” 

CART Cubist models. In the 10 assessed models, the MAD in the “instance and rules” model was 

found to have significantly lower value than the rules-alone model (Figure 4i). The reason for these 

performance improvements in all of the models for the “instance and rules” model approach is that 

the latter modeling approach uses bagging (bootstrap aggregating, which is designed to improve the 

accuracy of the regression tree model) [90,91]. Witten et al. [82] supported this result that the 

predictive accuracy of a rule-based model can be improved by combining it with nearest neighbor or 

an instance-based model, which is achieved through the use of bagging in machine learning. 

  
(i) (ii) 

 
(iii) 

Figure 4. Model performance evaluation: (i) MAD; (ii) relative error; (iii) correlation coefficient for 

the 10 monthly models; (A) June one-month outlook, (B) June two-month outlook, (C) June three-

month outlook, (D) June four-month outlook, (E) July one-month outlook, (F) July two-month 

outlook, (G) July three-month outlook, (H) August one-month outlook, (I) August two-month 

outlook, and (J) September one-month outlook. 

Fortmann-Roe [92] indicated that bagging and other resampling techniques can be used to 

reduce the variance in model predictions, where numerous replicates of the original dataset are 

created using a random selection with replacement method. Each derivative dataset is then used to 

Figure 4. Model performance evaluation: (i) MAD; (ii) relative error; (iii) correlation coefficient for the
10 monthly models; (A) June one-month outlook, (B) June two-month outlook, (C) June three-month
outlook, (D) June four-month outlook, (E) July one-month outlook, (F) July two-month outlook, (G) July
three-month outlook, (H) August one-month outlook, (I) August two-month outlook, and (J) September
one-month outlook.

Fortmann-Roe [92] indicated that bagging and other resampling techniques can be used to reduce
the variance in model predictions, where numerous replicates of the original dataset are created using
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a random selection with replacement method. Each derivative dataset is then used to construct a new
model and the models are gathered together into an ensemble. To make a prediction, all of the models
in the ensemble are polled and their results are averaged. Using this intelligence, the MAD can be
reduced and the overall modeling performance can be improved.

Moreover, the MAD consistently increased as the prediction period lengths increased (Figure 4i).
It was also observed that the June four-month outlook, July three-month outlook, August two-month
outlook, and September one-month outlook had the highest MAD both for the instance and rules,
and rules-alone models (Figure 4i). The highest MAD values were found during the October month
(the to-be predicted month), which is out of the growing season [45,86–89] and these much large errors
are expected for this period of the growing season, as reported earlier. The relative error comparison
between the “instance and rules” model and the rules-alone model was found to have a pattern similar
to the MAD pattern (Figure 4ii).

The CC for the 10 monthly outlook models showed that the “instance and rules” model had
consistently higher correlations than the “rules alone” models (Figure 4iii). Our assessment also
showed that for all 10 models, the “instance and rules” model version were found to have higher
accuracy than the “rules alone” model (Figure 4iii). The comparison of average CC between the
“instance and rules” model and the “rules alone” model showed the “instance and rules” model CC to
be significantly higher than the “rules alone” model (p < 0.05).

In addition to the instance and rules options, there is let Cubist decide in the Cubist regression tree
modeling option [69]. For the 10 models assessed, the let Cubist decide option was found to have the
same accuracy (in terms of MAD, RE, and CC values) as composite models (which combine instances
and rules), showing equivalent performances of the two modeling options in the Cubist modeling tool.
Similar results were also found by Ruefenacht et al. [93] in that the let cubist decide model has the same
accuracy as the composite models. The challenge using the let cubist decide option was the increased
time required to build the model, as the optimal decision was determined by Cubist.

In addition to the composite rule-based nearest-neighbor models, RuleQuest [69] can also generate
committee models made up of several rule-based models. Each member of the committee predicts the
target value for a case and the members’ predictions are averaged to give a final prediction.

The first member of a committee model is always exactly the same as the model generated without
the committee option. The second member is a rule-based model designed to correct the predictions of
the first member; if the first member’s prediction is too low for a case, the second member will attempt
to compensate by predicting a higher value. The third member tries to correct the predictions of the
second member, and so on. The default number of members is five, a value that balances the benefits
of the committee approach against the cost of generating extra models [69].

Before combining the committee and neighbor models, the performances of these approaches
were separately analyzed (Figure 5). For deciding the actual threshold values for the number of
committees and neighbors to be used in Cubist drought modeling, the r-squared values and RMSE
were assessed.

Figure 5 presents the r-squared values and RMSE for the different committees and number of
neighbors to be used. In the committee models, it can be observed that the highest average r-squared
value was obtained for 30 committees, and there was no performance improvement gained with the
addition of more committees. The RMSE decreased as the number of committees increased from
1 to 30, but remained the same as further committees were added. Therefore, in using the committee
models, it is imperative to use 30 committee models in future drought modeling experiments.



Information 2017, 8, 79 11 of 18

Information 2017, 8, 79 10 of 18 

 

construct a new model and the models are gathered together into an ensemble. To make a prediction, 

all of the models in the ensemble are polled and their results are averaged. Using this intelligence, 

the MAD can be reduced and the overall modeling performance can be improved. 

Moreover, the MAD consistently increased as the prediction period lengths increased (Figure 4i). 

It was also observed that the June four-month outlook, July three-month outlook, August two-month 

outlook, and September one-month outlook had the highest MAD both for the instance and rules, 

and rules-alone models (Figure 4i). The highest MAD values were found during the October month 

(the to-be predicted month), which is out of the growing season [45,86–89] and these much large 

errors are expected for this period of the growing season, as reported earlier. The relative error 

comparison between the “instance and rules” model and the rules-alone model was found to have a 

pattern similar to the MAD pattern (Figure 4ii). 

The CC for the 10 monthly outlook models showed that the “instance and rules” model had 

consistently higher correlations than the “rules alone” models (Figure 4iii). Our assessment also 

showed that for all 10 models, the “instance and rules” model version were found to have higher 

accuracy than the “rules alone” model (Figure 4iii). The comparison of average CC between the 

“instance and rules” model and the “rules alone” model showed the “instance and rules” model CC 

to be significantly higher than the “rules alone” model (p < 0.05). 

In addition to the instance and rules options, there is let Cubist decide in the Cubist regression tree 

modeling option [69]. For the 10 models assessed, the let Cubist decide option was found to have the 

same accuracy (in terms of MAD, RE, and CC values) as composite models (which combine instances 

and rules), showing equivalent performances of the two modeling options in the Cubist modeling tool. 

Similar results were also found by Ruefenacht et al. [93] in that the let cubist decide model has the same 

accuracy as the composite models. The challenge using the let cubist decide option was the increased 

time required to build the model, as the optimal decision was determined by Cubist. 

In addition to the composite rule-based nearest-neighbor models, RuleQuest [69] can also generate 

committee models made up of several rule-based models. Each member of the committee predicts the 

target value for a case and the members’ predictions are averaged to give a final prediction. 

The first member of a committee model is always exactly the same as the model generated 

without the committee option. The second member is a rule-based model designed to correct the 

predictions of the first member; if the first member’s prediction is too low for a case, the second 

member will attempt to compensate by predicting a higher value. The third member tries to correct 

the predictions of the second member, and so on. The default number of members is five, a value that 

balances the benefits of the committee approach against the cost of generating extra models [69]. 

Before combining the committee and neighbor models, the performances of these approaches 

were separately analyzed (Figure 5). For deciding the actual threshold values for the number of 

committees and neighbors to be used in Cubist drought modeling, the r-squared values and RMSE 

were assessed. 

  
(a) (b) 

Information 2017, 8, 79 11 of 18 

 

  
(c) (d) 

Figure 5. Performance evaluations using (a) r-squared values for 1–100 committees; (b) Root mean 

square error (RMSE) for 1–100 committees; (c) r-squared values for 1–9 neighbors; (d) RMSE for 1–9 

neighbors. 

Figure 5 presents the r-squared values and RMSE for the different committees and number of 

neighbors to be used. In the committee models, it can be observed that the highest average r-squared 

value was obtained for 30 committees, and there was no performance improvement gained with the 

addition of more committees. The RMSE decreased as the number of committees increased from 1 to 

30, but remained the same as further committees were added. Therefore, in using the committee 

models, it is imperative to use 30 committee models in future drought modeling experiments. 

For the number of neighbors, the r-squared value was found to increase up to seven neighbors 

with the r-squared values remaining unchanged, as additional neighbors were included. The RMSE 

was found to decrease up to seven neighbors and remain the same thereafter. Therefore, the optimum 

neighbor threshold was found to be seven to achieve the highest predictive accuracy. 

The comprehensive set of prediction performances on models for three months (June, July and 

August) using 0–9 neighbors and with committee ranges 1–100 are presented in Figure 6. This 

analysis was done in line with the GUI-based implementations of RuleQuest [69] for modeling. The 

GUI has different checkbox options and also has options for specifying the values for the number of 

nearest instances and committees. Therefore, Figure 6 gives us the benefits that we may achieve by 

specifying the parameters in the GUI options, as well as parameter specification in the command line, 

batch-processing options. 

For the 0-neighbor and 1-committee options, the highest r-squared value and lowest RMSE values 

were achieved for the August one-month outlook (see the * symbol in Figure 6) with the lowest r-

squared and the highest RMSE observed for the June three-month outlook (see the black square symbol 

in Figure 6). These model performances are in line with our previous explanations. From the assessed 

possible combinations with 0–9-neighbors and 1–100 committee June–August outlooks, the same 

pattern was observed for all with the exception of 1-neighbor with 1-committee, 10-committee, 50-

committee, and 100-committee options (Figure 6). In all four combinations with 1-neighbor, the RMSE 

was the highest and the r-squared was the lowest. The possible explanation for this is that having only 

one instance and creating the model based on this instance only generated a biased model, and the 

model performance becomes highly affected. The zero-neighbors option did not use the instance 

modeling option, which is better than the 1-neighbor instance modeling option (Figure 6). 

Figure 5. Performance evaluations using (a) r-squared values for 1–100 committees; (b) Root mean
square error (RMSE) for 1–100 committees; (c) r-squared values for 1–9 neighbors; (d) RMSE for
1–9 neighbors.

For the number of neighbors, the r-squared value was found to increase up to seven neighbors
with the r-squared values remaining unchanged, as additional neighbors were included. The RMSE
was found to decrease up to seven neighbors and remain the same thereafter. Therefore, the optimum
neighbor threshold was found to be seven to achieve the highest predictive accuracy.

The comprehensive set of prediction performances on models for three months (June, July and
August) using 0–9 neighbors and with committee ranges 1–100 are presented in Figure 6. This analysis
was done in line with the GUI-based implementations of RuleQuest [69] for modeling. The GUI
has different checkbox options and also has options for specifying the values for the number of
nearest instances and committees. Therefore, Figure 6 gives us the benefits that we may achieve by
specifying the parameters in the GUI options, as well as parameter specification in the command line,
batch-processing options.

For the 0-neighbor and 1-committee options, the highest r-squared value and lowest RMSE values
were achieved for the August one-month outlook (see the * symbol in Figure 6) with the lowest r-squared
and the highest RMSE observed for the June three-month outlook (see the black square symbol in
Figure 6). These model performances are in line with our previous explanations. From the assessed
possible combinations with 0–9-neighbors and 1–100 committee June–August outlooks, the same
pattern was observed for all with the exception of 1-neighbor with 1-committee, 10-committee,
50-committee, and 100-committee options (Figure 6). In all four combinations with 1-neighbor,
the RMSE was the highest and the r-squared was the lowest. The possible explanation for this
is that having only one instance and creating the model based on this instance only generated a biased
model, and the model performance becomes highly affected. The zero-neighbors option did not use
the instance modeling option, which is better than the 1-neighbor instance modeling option (Figure 6).
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3.3. Percentage Splits for Training and Testing

The percentage splits for training–testing were done for 50/50%, 60/40%, 70/30%, 80/20%,
90/10%, and 99/1%. The relative performances of the models were compared for six models during
the core of the growing season (June one-month outlook, June two-month outlook, June three-month
outlook, July one-month outlook, July two-month outlook, and August one-month outlook) (Figure 7).
The MAD ranged from 0.2 to 0.5. In all of the assessed models, the minimum MAD was found for the
August one-month outlook, and the maximum MAD was observed for the June three-month outlook
(Figure 7a). This is in agreement with our expectation that as prediction length increases from one
month to three months, the error increases and the performance of the models decreases.

The descriptive statistics for the MAD of the six models are presented in Table 4. The average of
the MAD for the six models ranged from 0.35 to 0.36. The minimum error was recorded for the 99/1%
split and the maximum error was observed for the 50/50% split. The same pattern was observed for
the RE (not presented here) as the MAD. The possible explanation for this is that as more data are used
for training the model and less data are assigned to the test set, the MAD was found to be decreasing.
Therefore, in terms of the MAD parameter, 99/1% is performing the best.

Table 4. Performance of the monthly outlook models for the MAD on the percentage splits.

Monthly Outlooks
Percentage Splits

50/50% 60/40% 70/30% 80/20% 90/10% 99/1%

June one-month 0.365 0.367 0.365 0.363 0.363 0.361
June two-month 0.4408 0.4386 0.4354 0.4336 0.4398 0.4392

June three-month 0.4886 0.487 0.4901 0.4851 0.4912 0.4999
July one-month 0.2622 0.2623 0.2625 0.258 0.2592 0.2497
July two-month 0.3672 0.3655 0.3658 0.3625 0.3501 0.3424

August one-month 0.2118 0.2091 0.2082 0.2095 0.2077 0.2044
Average 0.355933 0.354917 0.3545 0.35195 0.351833 0.349433

Maximum 0.4886 0.487 0.4901 0.4851 0.4912 0.4999
Minimum 0.2118 0.2091 0.2082 0.2095 0.2077 0.2044

Standard deviation 0.09537 0.095348 0.095776 0.094646 0.097163 0.101541
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The relative performances of the six models described above were also compared in terms of
accuracy CC (Figure 7b). The CC ranged from 0.74 to 0.96. In all models assessed, the maximum CC was
found for the August one-month outlook, and the minimum CC was observed for the June three-month
outlook. This is in agreement with our expectation in that the August one-month outlook predicted
September conditions, where these two months have similar vegetation conditions for the study area
near the end of the core growing season [45]. In general, as the prediction length increases, the CC
was found to be decreasing (Figure 7a). There are not significant differences between the percentage
splits in terms of both MAD and RE (Figure 7b). The CC was found to be increasing consistently
as split percentage changes from 50/50% to 99/1% (Figure 7b). For the practical implementation of
drought modeling using CART, it seems imperative to use the 90/10% splits (compared to both 80/20%
and 99/1%) for two reasons: (1) the accuracy is higher compared to 80/20% and reasonably lower
compared to 99/1% splits, and (2) evaluation of the model’s performance on unseen data will be more
representative and robust using 10% of the data for testing rather than 1% of the total dataset.

4. Conclusions

In this paper, CART modeling approaches were explored to develop a clear methodology,
specifically a practical data and information mining approach, for drought modeling and predictions.
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The developed approach is targeted to help decision makers convert large volumes of data available
from different sources (e.g., satellite observations and in situ measurements) into actionable information
that can be used for drought prediction, management, and mitigation activities.

The CART approach was used to construct a number of successful model trees, which can be
interpreted by decision makers for use in drought management decisions. The model trees produced
are easily understandable and can be interpreted for actionable information. After assessing the
modeling options, it was concluded that ensemble models had the best performance.

Among the 10 models assessed, the “instance and rules” models had significantly lower MAD
values than the “rules alone” models. The models’ accuracies were also found to be significantly
higher in the “instance and rules” models (in terms of correlation coefficients) (0.77–0.96) compared to
the “rules alone” models. The better performance of models generated using the “instance and rules”
approach can be attributed to the bagging (i.e., bootstrap aggregating) method that was added to this
type of model, which has been shown to improve model performance compared to approaches such as
the “rules alone” option tested here.

In the experimental drought prediction modeling, there were two modeling options, the nearest
neighbor and the committee options, which were found to significantly improve model performance.
Assessment of the different combinations of nearest-neighbor and committee models revealed that
these two options significantly increased performance of the CART drought models when proper
parameters were defined compared to the default parameter specifications.

For the practical implementation of this drought modeling experiment, the following conclusions
can be drawn:

1. The “instance and rules” models significantly increased the performance of the drought model
compared to the “rules alone” model. For further performance enhancement of the models,
the instance-and-rules model can be combined with ensemble models.

2. When using ensemble model options, it was confirmed that the highest average r-squared
value was obtained for the model with 30 committees. There was no gain in performance
when additional committees were added to the models. RMSE consistently decreased for
models with one to 30 committees but remained the same for all models with more than
30 committees. Therefore, it is imperative to use 30 committee models for future experiments
employing committee models.

3. For ensemble models, the r-squared value increased consistently with up to seven neighbors,
with r-squared values remaining constant when any additional neighbors were considered. RMSE
also decreased with up to seven neighbors but remained constant when additional neighbors
were considered. Therefore, the optimum threshold for the highest model accuracy is the use of
seven neighbors.

4. In the iterative experiment to determine the best training/testing data split (i.e., 50/50%, 60/40%,
70/30%, 80/20%, 90/10%, or 99/1%), the CC results revealed a consistent increase as split
percentage changed from 50/50% to 99/1%. For the practical implementation of regression tree
modeling of drought, accuracy was higher when the original data set was split 90/10% into
training and testing data sets.

In the experimental analysis, the “nearest neighbor” models or the “instance and rules” modeling
option had the best performance. One of the challenges in “nearest neighbor” models was that the
models were adversely affected by the presence of irrelevant attributes. All attributes were taken
into account when evaluating the similarity of the two cases (“rules alone”, and “instance and rules”)
and irrelevant attributes introduced a random factor into this measurement. Composite models are
most effective when the numbers of attributes are relatively small and all attributes are relevant to the
prediction task. However, there was uncertainty regarding the decision about which attributes are the
most relevant and which are irrelevant. Future research is recommended for developing an approach
for selecting the most relevant attributes for drought modeling experiments.
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This research demonstrated the CART modeling approach for practically specifying the modeling
parameters, which is again helpful for integrating the different data available from climate, satellite,
environmental, and oceanic sources in drought modeling. In an overall assessment, a regression tree
modeling approach, which is well known in other domains, was found to be an excellent approach in
capturing the drought pattern.

Limitation of the current study is that the results are applicable to only one study area with
a vegetation growing season from June to October and were not replicated for other study areas to
observe spatio-temporal differences. Future research could determine the influence of spatio-temporal
differences on model performance.
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