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Abstract:



Circulant matrices have attracted interest due to their rich algebraic structures and various applications. In this paper, the concept of vector-circulant matrices over finite fields is studied as a generalization of circulant matrices. The algebraic characterization for such matrices has been discussed. As applications, constructions of vector-circulant based additive codes over finite fields have been given together with some examples of optimal additive codes over [image: there is no content].
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1. Introduction


Classical and quantum information media, such as storage devices and communication systems, are not one hundred percent reliable in practice because of noise or interference. Coding theory has been introduced to deal with this problem since the 1960s. Additive codes constitute an important class of codes due to their rich algebraic structures and wide applications in both classical and quantum communications (see [1,2,3,4,5], and references therein).



For a prime power q and a positive integer n, [image: there is no content] denotes the finite field of order q and [image: there is no content] denotes the [image: there is no content]-algebra of all [image: there is no content] matrices whose entries are from [image: there is no content]. Given [image: there is no content], a matrix [image: there is no content] is said to be [image: there is no content]-twistulant [6] if


[image: there is no content]








for some [image: there is no content]. Such a matrix is called circulant (resp., negacirculant) matrix when [image: there is no content] (resp., [image: there is no content]). The set of all [image: there is no content] circulant (resp., [image: there is no content]-twistulant, negacirculant) matrices over [image: there is no content] is isomorphic to [image: there is no content] (respectively, [image: there is no content], [image: there is no content]) as commutative algebras [6]. Circulant matrices over finite fields and their well-known generalizations in the notions of twistulant and negacirculant matrices have widely been studied and applied in many branches of Mathematics. Recently, they have been applied to construct circulant based additive codes [3] and double circulant codes [7] with optimal and extremal parameters.



In this paper, the concept of vector-circulant matrices over finite fields is studied as a generalization of circulant matrices. We focus on the algebraic characterization of such matrices as well as their applications. Constructions of vector-circulant based additive codes over finite fields are given together with some examples of optimal additive codes over [image: there is no content].



The paper is organized as follows. In Section 2, vector-circulant matrices over finite fields [image: there is no content] are studied together with the characterization of their algebraic structures. In Section 3, applications of vector-circulant matrices in constructing vector-circulant based additive codes over finite fields are given. Examples of some optimal additive codes derived from vector-circulant matrices are provided as well. In Section 4, suggested ideas for constructions of quantum codes based on these additive codes are discussed.




2. Vector-Circulant Matrices over Finite Fields


In this section, a general concept of circulant matrices over finite fields is given. Properties of such matrices are studied together with the algebraic characterizations.



For a given vector [image: there is no content], let [image: there is no content] be an [image: there is no content]-linear transformation defined by




ρλ((v0,v1,…,vn-1))=(0,v0,v1,…,vn-2)+vn-1λ=(vn-1λ0,v0+vn-1λ1,…,vn-2+vn-1λn-1).



(1)





The map [image: there is no content] defined above is called the [image: there is no content]-vector-cyclic shift on [image: there is no content] and it is called the cyclic shift on [image: there is no content] if [image: there is no content].



For a fixed vector [image: there is no content], a matrix [image: there is no content] is said to be vector-circulant, or specifically, [image: there is no content]-vector-circulant if


A=a0a1⋯an-1ρλ(a0a1⋯an-1)ρλ2(a0a1⋯an-1)⋮ρλn-1(a0a1⋯an-1)=:cirλ(a0,a1,…,an-1)








for some [image: there is no content].



Clearly, a [image: there is no content]-vector-circulant matrix becomes the classical circulant and [image: there is no content]-twistulant matrices when the vectors [image: there is no content] are [image: there is no content] and [image: there is no content], respectively.



Example 1.

Consider the finite field [image: there is no content]. The matrices


[image: there is no content]








and


[image: there is no content]








are [image: there is no content]and [image: there is no content]vector-circulant matrices, respectively. They are obviously not circulant.





For a vector [image: there is no content], let


[image: there is no content]








be the corresponding polynomial representation of [image: there is no content].



The linear transformation [image: there is no content] is key to determining the algebraic structures of vector-circulant matrices. Some necessary properties of [image: there is no content] are determined in terms of [image: there is no content] as follows. From Equation (1), it is easily verified that [image: there is no content] is an [image: there is no content]-linear transformation defined corresponding to the matrix


[image: there is no content]








which is the companion matrix of the polynomial [image: there is no content] in [image: there is no content], i.e., [image: there is no content], for all [image: there is no content]. Consequently, for [image: there is no content], [image: there is no content] is an [image: there is no content]-linear transformation defined corresponding to [image: there is no content]. By convention, we set [image: there is no content] to be the identity map and [image: there is no content]. It follows that


[image: there is no content]



(2)




where [image: there is no content] for [image: there is no content].



Observe that the matrix [image: there is no content] does not need to be invertible. For [image: there is no content], the singularity of [image: there is no content] depends on [image: there is no content]. By applying a suitable sequence of elementary row operations, [image: there is no content] is equivalent to an [image: there is no content] diagonal matrix [image: there is no content]. Then, the next proposition follows.



Proposition 1.

Let [image: there is no content]. Then [image: there is no content] is invertible if and only if [image: there is no content].





[image: there is no content] denotes the set of all [image: there is no content][image: there is no content]-vector-circulant matrices over [image: there is no content]. Consider [image: there is no content] as a noncumulative algebra over [image: there is no content], [image: there is no content] is a commutative subalgebra of [image: there is no content]. It follows directly from the linearity of [image: there is no content] that [image: there is no content] is a subspace of the [image: there is no content]-vector space [image: there is no content]. Moreover, by Equation (1), the set [image: there is no content] can be verified to be a basis of [image: there is no content].



The following properties of companion matrices and vector-circulant based matrices are well-known and play a role in applications.



Lemma 1.

Let [image: there is no content]. Then, the following statements hold.

	(i) 

	
[image: there is no content] for all integers [image: there is no content].




	(ii) 

	
[image: there is no content] for all integers [image: there is no content].











Corollary 1.

Let n be a positive integer and let [image: there is no content]. Then [image: there is no content] for all [image: there is no content].





It is well know that the set of [image: there is no content] circulant matrices over [image: there is no content] is a commutative subalgebra of [image: there is no content] and it is isomorphic to [image: there is no content] as commutative algebras (see [6]). These results can be easily generalized to the case of vector-circulant matrices as follows.



Theorem 1.

Let n be a positive integer and let [image: there is no content]. Then, [image: there is no content] is a commutative subalgebra of [image: there is no content] with identity [image: there is no content].





Using the algebra isomorphism [image: there is no content] defined by


[image: there is no content]











we have the following relation.



Theorem 2.

Let n be a positive integer and let [image: there is no content]. Then, [image: there is no content] is isomorphic to [image: there is no content] as commutative algebras.






3. Vector-Circulant Based Additive Codes over Finite Fields


In this section, we restrict our study to a finite field [image: there is no content] and focus on applications of vector-circulant matrices over [image: there is no content] in constructing additive codes over [image: there is no content]. Since additive codes over finite fields have applications in both classical and quantum communications (see, for example, [1,2,3,4,5]), it is of natural interest to study this family of codes. Constructions of good/optimal additive codes have been widely studied (see [3,8,9,10], and references therein). Characterizations of self-dual and formally self-dual additive codes have been given in [11,12], respectively. Circulant based additive codes and cyclic additive codes have been studied in [1,8], respectively. Here, we focus on the construction of additive codes based on vector-circulant matrices. Examples of some additive codes with good/optimal parameters derived from vector-circulant matrices are given as well.



A code of length n over [image: there is no content] is defined to be a non-empty subset of [image: there is no content]. A code C is said to be additive if it is an additive subgroup of the additive group [image: there is no content]. Throughout, every code is assumed to be additive. It is known (see [3]) that C contains [image: there is no content] codewords for some [image: there is no content], and can be defined by a [image: there is no content] generator matrix, with entries from [image: there is no content], whose rows span C additively. We regard an additive code of length n over [image: there is no content] containing [image: there is no content] codewords as an [image: there is no content] code. The rate of an [image: there is no content] code is defined to be [image: there is no content]. The Hamming weight of [image: there is no content], denoted by [image: there is no content], is defined to be the number of nonzero components of [image: there is no content]. The Hamming distance between [image: there is no content] is defined as [image: there is no content]. The minimum distance of the code C, denoted by [image: there is no content], is the minimal Hamming distance between any two distinct codewords of C. As C is additive, the minimum distance equals the smallest nonzero weight of any codewords in C. An [image: there is no content] code with minimum distance d is called an [image: there is no content] code. The efficiency of codes is determined by their minimum distances. Precisely, a code with high minimum distance is more useful in practice.



Given [image: there is no content], a [image: there is no content]-vector-circulant based additive code over [image: there is no content] is defined to be the code additively spanned by the rows of a [image: there is no content]-vector-circulant matrix of the form


G:=cirλ(a0,a1,…,an-1)=a0a1⋯an-1ρλ(a0a1⋯an-1)ρλ2(a0a1⋯an-1)⋮ρλn-1(a0a1⋯an-1).











Such a code is called a circulant based additive code if [image: there is no content] and it is called a λ-twistulant based additive code if [image: there is no content]. An advantage of this construction is that there are typically much more additive codes than circulant based or twistulant based additive codes [3] due to the various choices of [image: there is no content].



Remark 1.

We have made the following observations for the number of possible choices of generator matrices for additive codes of length n over [image: there is no content].

	1. 

	
The number of [image: there is no content]circulant matrices over [image: there is no content]is [image: there is no content].




	2. 

	
The number of [image: there is no content]vector-circulant matrix over [image: there is no content]is [image: there is no content].




	3. 

	
The number of [image: there is no content]matrices over [image: there is no content]is [image: there is no content].









We note that each value above does not determine explicitly the number of its corresponding additive codes since two different matrices in [image: there is no content] can generate the same additive code. The advantage of searching for good additive codes from vector-circulant matrices is that there are much more choices of generator matrices than circulant matrices and the search space is not too large as [image: there is no content].





It is not difficult to see that the rate of a vector-circulant based additive code is


rate(C)=thenumberofmaximalFp-linearlyindependentrowsofG2n≤12.











In the case where [image: there is no content], an [image: there is no content] code has rate [image: there is no content] and it is called a half-rate code. It follows from the Singleton bound [1] that any half-rate additive code over [image: there is no content] must satisfy


[image: there is no content]











An [image: there is no content] code C is said to be extremal if it attains the equality in the Singleton bound, and near-extremal if it has minimum distance [image: there is no content].



Using the computer algebra system Magma [13], a procedure to generate vector-circulant based additive codes of small lengths over [image: there is no content] is implemented. Half-rate additive codes over [image: there is no content] with highest minimum distances of length up to 13 are shown in Table 1. We note that the codes of length 2 to 7 are extremal and the codes of length 8 to 13 are near-extremal. Comparing Table 5 in [1], and Table 1 in [9], the codes given in Table 1 are optimal.



Table 1. Half-rate vector-circulant based additive codes of length n over [image: there is no content] generated by [image: there is no content].







	
n

	
[image: there is no content]

	
v

	
[image: there is no content]






	
2

	
[image: there is no content]

	
[image: there is no content]

	
2




	
3

	
[image: there is no content]

	
[image: there is no content]

	
2




	
4

	
[image: there is no content]

	
[image: there is no content]

	
3




	
5

	
[image: there is no content]

	
[image: there is no content]

	
3




	
6

	
[image: there is no content]

	
[image: there is no content]

	
4




	
7

	
[image: there is no content]

	
[image: there is no content]

	
4




	
8

	
[image: there is no content]

	
[image: there is no content]

	
4




	
9

	
[image: there is no content]

	
[image: there is no content]

	
4




	
10

	
[image: there is no content]

	
[image: there is no content]

	
5




	
11

	
[image: there is no content]

	
[image: there is no content]

	
5




	
12

	
[image: there is no content]

	
[image: there is no content]

	
6




	
13

	
[image: there is no content]

	
[image: there is no content]

	
6










Examples of good vector-circulant based additive codes with rate less than [image: there is no content] are presented in Table 2. Compared with Table 1 in [9], the codes given in Table 2 are optimal.



Table 2. Vector-circulant based [image: there is no content] codes over [image: there is no content] generated by [image: there is no content].







	
n

	
k

	
[image: there is no content]

	
v

	
[image: there is no content]






	
5

	
4

	
[image: there is no content]

	
[image: there is no content]

	
4




	
6

	
4

	
[image: there is no content]

	
[image: there is no content]

	
4




	

	
5

	
[image: there is no content]

	
[image: there is no content]

	
4




	
7

	
4

	
[image: there is no content]

	
[image: there is no content]

	
5




	

	
6

	
[image: there is no content]

	
[image: there is no content]

	
4




	
8

	
4

	
[image: there is no content]

	
[image: there is no content]

	
6




	

	
6

	
[image: there is no content]

	
[image: there is no content]

	
5




	
9

	
6

	
[image: there is no content]

	
[image: there is no content]

	
6




	

	
8

	
[image: there is no content]

	
[image: there is no content]

	
5




	
10

	
8

	
[image: there is no content]

	
[image: there is no content]

	
6




	
11

	
8

	
[image: there is no content]

	
[image: there is no content]

	
6




	

	
10

	
[image: there is no content]

	
[image: there is no content]

	
6




	
13

	
12

	
[image: there is no content]

	
[image: there is no content]

	
6











4. Future Works


Additive codes and their duals defined with respect to the trace Hermitian inner product (see [2]) can be applied in constructing quantum codes (see [2,3,5]). In [5], symmetric quantum codes were constructed from self-orthogonal additive codes. Nested pairs of additive codes were used in constructing asymmetric quantum codes [2]. In [14], the hull of codes and complementary dual codes were applied for constructions of entanglement-assisted quantum codes. We note that the said properties for vector-circulant based additive codes can be determined directly from their corresponding vector-circulant matrices. Let C be an additive code additively generated by a vector-circulant matrix G and let B be a matrix whose rows form maximal [image: there is no content]-linearly independent rows of G. For a given matrix [image: there is no content] over [image: there is no content], let [image: there is no content]. Then, the following characterizations can be derived using ideas from [15].



	(i)

	
C is self-orthogonal with respect to the trace Hermitian inner if and only if [image: there is no content].




	(ii)

	
C is complementary dual with respect to the trace Hermitian inner if and only if [image: there is no content] is invertible.




	(iii)

	
If [image: there is no content] is a matrix whose rows are chosen from the rows of B, then the additive code [image: there is no content] generated by [image: there is no content] is a subcode of C, i.e., [image: there is no content] form a nested pair of additive codes.







Based on these properties, quantum codes can be constructed using suitable vector-circulant based additive codes and methods in [2,5,14].



For future studies, characterizations and constructions of vector-circulant based additive codes with additional properties such as self-dual, self-orthogonal, and complementary dual are therefore interesting problems. Computations for vector-circulant based additive codes with larger lengths are also interesting.
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