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Abstract: The computational discovery of DNA motifs is one of the most important problems in
molecular biology and computational biology, and it has not yet been resolved in an efficient manner.
With previous research, we have solved the single-objective motif discovery problem (MDP) based
on biogeography-based optimization (BBO) and gained excellent results. In this study, we apply
multi-objective biogeography-based optimization algorithm to the multi-objective motif discovery
problem, which refers to discovery of novel transcription factor binding sites in DNA sequences.
For this, we propose an improved multi-objective hybridization of adaptive Biogeography-Based
Optimization with differential evolution (DE) approach, namely MHABBO, to predict motifs from
DNA sequences. In the MHABBO algorithm, the fitness function based on distribution information
among the habitat individuals and the Pareto dominance relation are redefined. Based on the
relationship between the cost of fitness function and average cost in each generation, the MHABBO
algorithm adaptively changes the migration probability and mutation probability. Additionally, the
mutation procedure that combines with the DE algorithm is modified. And the migration operators
based on the number of iterations are improved to meet motif discovery requirements. Furthermore,
the immigration and emigration rates based on a cosine curve are modified. It can therefore generate
promising candidate solutions. Statistical comparisons with DEPT and MOGAMOD approaches on
three commonly used datasets are provided, which demonstrate the validity and effectiveness of the
MHABBO algorithm. Compared with some typical existing approaches, the MHABBO algorithm
performs better in terms of the quality of the final solutions.

Keywords: multi-objective optimization; motif discovery; transcription factor binding site; hybrid
adaptive biogeography-based optimization

1. Introduction

The motif discovery problem (MDP) in molecular biology is to find similar regions common to
each sequence in a given set of DNA, RNA, or protein sequences [1]. It is an important problem for
locating binding sites and finding conserved regions in unaligned sequences. From a computational
point of view, finding motifs in many sequences is an NP-hard problem. Many methods have been
applied to solve MDP and have achieved excellent results such as statistical methods, probabilistic
methods etc. In recent years, with the development of evolutionary algorithms and their advantages,
they have also been gradually applied to MDP.

Evolutionary computation (EC) is an optimization method based on the principles of biological
evolution and is gaining more attention in recent years. EC has certain advantages for motif
discovery [2]. Evolutionary algorithms (EA) carry out global search and have relatively low
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sensitivity to initial conditions [3]. They are comparatively flexible in terms of how solutions are
represented and evaluated, and do not require knowledge about the problem to which they are
being applied. EC methods have been successfully applied to solve the motif discovery problem
such as the genetic algorithm (GA) [4], bacterial foraging optimization algorithm integrating taboo
search (TSBFO) [5], estimation of distribution algorithm with differential evolution (DE/EDA) [6],
evolutionary multi-objective optimization (DEPT) [7], multi-objective artificial bee colony (MOABC)
algorithm [8], Multi-objective genetic algorithm (MOGAMOD) [9], Non-dominated Sorting Genetic
algorithm-III (NSGA-III) [10] and Multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [11], etc. The biogeography-based optimization (BBO) algorithm (Simon, 2008) [12] is
a nature-inspired computational technique based on the mathematical models of biogeography. As
a population-based stochastic algorithm, the BBO algorithm generates the next generation population
by simulating the characteristics of the biological species migration. Because of information sharing
in the migration process, the BBO algorithm has a better exploitation ability. The BBO algorithm is
superior for solving the single-objective motif discovery problem [13–15], which has also been modified
to solve multi-objective optimization problems (MOPs) [16–19]. However, in these papers, the BBO
algorithm has still not been applied to solving the multi-objective motif discovery problem. In the
literature [20], we have applied hybridization of adaptive biogeography-based optimization algorithm
and differential evolution (DE) to multi-objective optimization problems (MOPs), and have achieved
excellent performance on the convergence and the distribution of solutions.

The aim of this paper is based on our previous research, and is to apply the BBO algorithm to the
multi-objective motif discovery problem. So far as we know, it is the first time that the multi-objective
biogeography-based optimization has been applied to multi-objective MDP. In this paper, a new
algorithm named MHABBO is presented and used to solve multi-objective MDP, and then presents
a comparative study on twelve datasets with other different algorithms.

The motivation for proposing MHABBO for MDP in this research is threefold. First, based on
the above literature review, there have been several successful applications based on multi-objective
biogeography-based optimization (MBBO). Second, we have proposed a new MBBO algorithm and
achieved excellent performance on multi-objective benchmark functions [20]. Finally, we will try to
apply it to solve multi-objective MDP.

The key contributions of this paper are as follows. Firstly, we propose a new approach called
MHABBO based on BBO algorithm to predict motifs. In the MHABBO algorithm, the migration in
the BBO is implemented with the number of iterations to avoid the presence of a very stable local
minimum. Secondly, motivated by the work described in References [21–24], the mutation is performed
by integrating with DE to produce new feasible solutions. Simultaneously, the parameters of migration
probability and mutation probability are adaptively changed. Furthermore, the immigration and
emigration rates based on the cosine curve are modified. Finally, we apply MHABBO algorithm to the
multi-objective motif discovery problem.

Compared with DEPT and MOGAMOD approaches on three commonly used datasets, the
MHABBO algorithm performs better, or at least comparably, in terms of the quality of the final
solutions. Statistical comparisons with some typical existing approaches demonstrate the validity and
effectiveness of the MHABBO algorithm. Experimental results show that the obtained Pareto solutions
can approximate to the Pareto optimal front and has good diversity and uniform distribution.

The paper is organized as follows. Section 2 describes the motif discovery problem. The MHABBO
algorithm process for multi-objective motif discovery problem is proposed in Section 3. Section 4
shows the simulation and experiment results. Finally, a brief conclusion is illustrated in Section 5.

2. Motif Discovery Problem

In this paper, we also use the same objectives as those used in Reference [9] to find many long
and strong motifs. The multi-objective motif discovery problem is converted into the following
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three-objective optimization problem: Maximize similarity, Maximize motif length and Maximize
support. These three objectives for MDP are defined as follows [7]:

(1) Support: Support indicates the level of the support of the candidate motifs to the consensus
motif. The consensus motif is built by using the candidate motifs. The level of the
support is measured by similarity rate of the candidate motif to the consensus motif. The
similarity rate means the same number of the nucleosides between the candidate motif and the
consensus motif. When the similarity rate is larger than 50%, the subsequent corresponding
to candidate motif can be considered as a Support. For example, the consensus motif
is assumed to be GACCTTTTGCAATCCTGG, the candidate motif of the sequence 1, i.e.,
GACCACTTGCAGTCTTAG, has 13 nucleotides identical to the consensus motif, and the
consensus motif has 18 nucleotides, so its similarity rate is 13/18 = 72%.

(2) Motif Length: The motif length points to the number of the nucleotides of the consensus motif.
In the example, the motif length is 18. According to real datasets used in this paper, the value of
the motif length is limited to between 5 and 60.

(3) Similarity: the similarity objective function of motif is defined as the average of the dominance
values of all position weight matrix columns. The similarity is calculated based on Equation (1).
In which the dv in each column (dominant nucleotide) is the dominance value of the dominant
nucleotide, it is calculated by Equation (2):

Similarity(Moti f ) = ∑l
i=1 dv(i)
length

(1)

dv(i) = maxb{ f (b, i)} i = 1, . . . , l (2)

where f (b, i) is the score of nucleotide b in column i in the position weight matrix, and l is the
motif length.

To better understand the similarity objective function, an example is used to illustrate it. Firstly,
a position weight matrix (PWM) from the motif patterns found by MHABBO in every sequence is
generated. Then, the percentage of occurrence of nucleotides at each motif position is calculated
(see Table 1). The highest value of each matrix column is selected. The similarity is obtained by
averaging all these dominance values. In this example, the similarity value is computed as 0.81 (81%)
by using Equation (6):

(1 + 1 + 0.5 + 0.75 + 1 + 1 + 0.75 + 0.5 + 1 + 0.5 + 0.75 + 1 + 0.75 + 1 + 0.5 + 1 + 0.5 + 1)/18 = 0.81.

Table 1. Position Weight Matrix for a Motif.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 0 1 0.25 0.25 0 0 0 0.25 0 0.25 0.75 1 0 0 0.25 0 0.25 0
C 0 0 0.5 0.75 0 0 0 0.25 0 0.5 0 0 0.25 1 0.5 0 0.25 0
T 0 0 0.25 0 1 1 0.75 0.5 0 0.25 0.25 0 0.75 0 0.25 1 0 0
G 1 0 0 0 0 0 0.25 0 1 0 0 0 0 0 0 0 0.5 1

3. MHABBO Algorithm

In this section, we describe the MHABBO algorithm for the motif discovery problem in detail. In
the MHABBO algorithm, the migration in the BBO is implemented with the number of iterations, the
mutation is performed by integrating with DE to produce new feasible solutions. Simultaneously the
parameters about migration probability and mutation probability are adaptively changed. Meanwhile,
the immigration rate and emigration rate based on a cosine curve are modified.

First, we describe the representation of the individuals in our algorithms. Because each individual
contains the necessary information used to form a possible motif, an individual is represented as the
motif length and the starting location si of the potential motif on all the sequences. Representation of
an individual is shown as Table 2. This representation is the same as that used in [9].
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Table 2. The representation of an individual.

Motif Length Seq. 0 Seq. 1 Seq. 2 . . . Seq. n

length S0 S1 S2 ... Sn

3.1. Migration Operator for the MDP

The sharing of features between solutions is represented as immigration and emigration
between the islands. The immigration rate λ and the emigration rate µ of each solution are used
to probabilistically share features between solutions. Motivated by the work in [25], these parameters
are modified based on the cosine curve. The immigration rate and emigration rate of each individual
are changed respectively by Equations (3) and (4). In which NP is the size of population.

λi =
1
2
(cos(

i
NP
× π − π

2
) + 1). (3)

µi =
1
2
(− cos(

i
NP
× π − π

2
) + 1). (4)

Motivated by blended migration operator in [26], in our algorithm, the coefficient of solution
Hi is related to the number of iterations. The modified migration operator is based on the following
considerations. First, blend combination operators have been widely used in other optimization
algorithms. Second, good solutions will be not degraded due to migration. Besides, poor solutions can
still accept a lot of new features from good solutions. The migration operator is designed to accelerate
the speed of convergence based on the number of iterations. Modified migration is defined as:

Hi(j) =
t

tmax
Hi(j) + (1− t

tmax
)Hk(j) . (5)

where Hi is immigrating island, Hk is emigrating island, Hi(j) is the jth dimension of the ith solution,
and t is the number of iterations, tmax is the maximum number of iteration. Equation (5) means a new
solution after migration is comprised of two components: the migration of feature from itself and
another solution. It accelerates the convergence speed of the algorithm. And modified migration
operator is described as follows (Algorithm 1):

Algorithm 1: Migration for the MDP (MigrationDo(H, Pmodi f ))
Input: Initial population H and migration probability
Output: The population H that have been optimized by migration

For i = 1 to NP // NP is the size of population
If rand < Pmodi f

Use λi to probabilistically decide whether to immigrate to Hi
If rand(0, 1) < λi then

For k = 1 to NP
Select the emigrating island Hk with probability ∞µi

If rand(0, 1) < µk then
For j = 1 to Nd // Nd is the dimension size

Hi(j) = t
tmax

Hi(j) + (1− t
tmax

)Hk(j)
End for

End if
End for

End if
End if

End for
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3.2. Mutation Operator for the MDP

Although the hybridization of the BBO with DE has achieved many good results [27–29], they
incorporate DE into the migration procedure for single-objective optimization problems. In MHABBO
algorithm, DE is incorporated into the mutation procedure for multi-objective optimization problems.
The algorithm helps to find the non-dominated solutions. A mutated individual (Hi(j)) is generated
according to Equation (6)

Hi(j) = Hi(j) + c1 × (Hbest(j)−Hi(j)) + c1 × (Hr1(j)−Hr2(j)) (6)

where Hi(j) is selected for mutation, c1 is the mutation scaling factor, usually its value is set as range
between 0.1 and 0.15. Hr1(j), Hr2(j) is the randomly selected two solutions, Hbest(j) is the best solution
in this generation. In MHABBO algorithm, this mutation scheme tends to increase the diversity among
the population. Modified mutation operator is described as follows (Algorithm 2):

Algorithm 2: Mutation for the MDP (Mutation Do(H, Pmuta))
Input: The population H optimized by migration, mutation probability
Output: The population H that have been optimized by mutation

For i = 1 to NP // NP is the size of population
Select mutating habitat Hi with probability ∝ Pmuta

If Hi is selected, then
For j = 1 to Nd // Nd is the dimension size

Hi(j) = Hi(j) + c1 × (Hbest(j)−Hi(j)) + c1 × (Hr1(j)−Hr2(j))
End for

End if
End for

3.3. Adaptive BBO for MDP

Modification probability factors and mutation probability factors in the BBO algorithm are
denoted as Pmodi f and Pmuta respectively. The two factors with ranges between 0 and 1 are set by
users. The settings of the parameters are related to the experience of the user, and they may be
unfavorable for the selection of migration individual and mutation individual. In order to choose
better migration individual and mutation individual, these parameters are changed dynamically with
the fitness function.

In the adaptive BBO algorithm, the parameters of modification probability and mutation
probability are altered according to Equations (7) and (8). In Equations (7) and (8), constant factor k1,
k2, k3 and k4 which range between 0 and 1 are set by users. Usually k1 = 0.4, k2 = 0.95, k3 = 0.1, k4 = 0.25.

Pmodi f =

{
k1 × MaxCost−FitnessCost

MaxCost−AvgCost FitnessCost ≥ AvgCost
k2 FitnessCost < AvgCost

(7)

Pmuta =

{
k3 × MaxCost−FitnessCost

MaxCost−AvgCost FitnessCost ≥ AvgCost
k4 FitnessCost < AvgCost

(8)

3.4. The Redefinition of the Fitness Function

In this paper, we propose the multi-objective MHABBO algorithm for multi-objective motif
discovery problem. Generally speaking, solving multi-objective optimization problems is through
Pareto non-dominated sorting and crowding distance sorting of different solutions. The fitness function
is determined based on the Pareto dominance relation in [30]. However, only considering the Pareto
dominance relation is not enough, if the distribution of solutions is also included, the definition of
the fitness function will be more reasonable. Originating from SPEA2 algorithm [31], which measures
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the Pareto dominance relationship and density relationship between different solutions as fitness
function. So the fitness function is redefined based on density information and Pareto dominance
relationship among the habitats. That is, we employ non-dominated sorting approach to determine
the non-dominated rank of individuals. Specifically, the Pareto dominance relationship refers to the
number of non-dominated solutions that dominate an individual. The density of each individual is
calculated by the k nearest neighbor method. For any individual Hi = (Hi1, Hi2 . . . , Hin) in the habitat
population H = {H1, H2 . . . , HNP} , its fitness function is defined by Equation (9) as follows.

F(Hi) = ∑
Hi∈H,Hj≺Hi

1
NP |{k|Hj, Hk ∈ H∧ k 6= j ∧ k 6= i ∧Hj ≺ Hk}|+ D(i);

D(i) = 1
σe

i +2 , e =
⌊√

NP + N
⌋

i, j, k, e ∈ {1, 2, . . . , NP}

(9)

where Hi, Hj, Hk ∈ H are habitats, σe
i is the distance between the habitat Hi and He in the objective

space, the operator | · | is the cardinality of the set. e is integer value of the square root of the sum
of population number NP and elitism number N. According to Equation (14), the fitness function
F(Hi), is the sum of D(i) and the average of the sum of the number of dominated habitats in the total
population. In which the number of dominated habitats means the total number of any other habitats
whom every individual who dominates Hi can dominate in the population. Therefore, the lower the
dominated degree of habitat Hi is, the smaller the fitness function of Hi is, when the fitness function of
Hi is 0, it indicates that Hi is a non-dominated habitat.

3.5. Main Procedure of MHABBO for Multi-Objective Motif Discovery Problem

Firstly, the fitness function on the basis of density information and Pareto dominance relation
is redefined, then the modified migration procedure and the mutation procedure are merged into
the BBO. Furthermore, related parameters in the BBO such as modification probability and mutation
probability, emigration rate and immigration rate, are altered. The procedure of the MHABBO is
described in Algorithm 3.

Algorithm 3: The main pseudo-code of MHABBO algorithm for multi-objective MDP

Input: The Sequences S
Output: support, motif length, similarity and the non-dominated consensus motif instance and
corresponding PWM.

1. Init(number of iterations, elitism parameter keep, migration probability Pmodi f , mutation probability
Pmuta etc.)

2. P⇐ GenerateInitialRandomPopulation()
3. EvaluateFitness(Hi) for each habitat Hi in P according to Equation (9).
4. While the halting criterion is not satisfied do
5. Elite⇐ P (1:keep)
6. Compute λi, µi for each habitat Hi according to Equations (3) and (4)
7. P⇐MigrationDo(P, Pmodi f ) Algorithm 1
8. P⇐MutationDo(P, Pmuta) Algorithm 2
9. EvaluateFitness(Hi)
10. SortPopulation(P)
11. P⇐ReplaceWorstbyElites (P, Elite)
12. P⇐ClearDuplicates(P)
13. [maximum cost, minimum cost, average cost]⇐EvaluateCostItems()
14. [Pmodi f ,Pmuta]⇐updateProbability() Equations (7) and (8)
15. End while

We generate the initial population for three different targets. That is, a solution is randomly
generated when the length and support is different. Besides, we get the similarity between this
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candidate motif and consensus motif. Each solution has these three different indicators, including the
length, support and similarity. That is, each solution reflects multiple different objectives. The function
GenerateInitialRandomPopulation() in Algorithm 3 is described as follows:

GenerateInitialRandomPopulation()

1. The length of candidate motif is randomly generated on the basis of the range of motif length
2. The beginning position of candidate motif in the sequence is randomly given according to the length of

the sequence
3. Evaluate support

3.1 Generate a candidate motif based on the beginning position and the length of motif for
each sequence

3.2 Generate PWM based on these candidate motifs
3.3 Generate consensus motif according to PWM
3.4 Compare candidate motif generated from each sequence with the consensus motif, if similarity

rate is greater than 0.5, the number of support is added one.

4. Regenerate PWM according to support
5. Confirm the consensus motif Hi according to PWM
6. Repeat the above steps, generate a specified number of population

In the evaluation of the fitness function, the degrees of Pareto domination and distribution
information between different solutions are reflected by fitness function. That is, the Pareto
non-dominated sorting is equivalent to the ranking of the value of fitness function. The MHABBO
measures the Pareto dominance relationship and density information between different solutions as
fitness function. We employ non-dominated sorting approach to determine the non-dominated rank of
individuals. The function EvaluateFitness(Hi) in Algorithm 3 is described as follows:

EvaluateFitness(Hi)

1. Confirm the Length, the Support of Hi

2. Compute Similarity of Hi by Equation (7)
3. Count the number of the solution dominating Hi based on the three objective function

(Length, Support and Similarity)
4. For each solution Hj dominating Hi,

5. Count the number of the solution dominating Hj

6. For each solution Hk dominating Hj

7. Evaluate Fitness function for each habitat Hi according to Equation (14)

4. Simulation and Analysis

4.1. Simulation, Comparison and Discussion

4.1.1. Results Comparisons with Other Methods

In order to demonstrate the feasibility of the MHABBO algorithm for the MDP, MHABBO
algorithm is compared with MOGAMOD and DEPT. Some experiments are carried out on a number
of real sequence datasets which are selected from the TRANSFAC database [32]. Motif instances from
different sequences of each dataset have already been tagged, so these datasets are used as a benchmark
for the discovery of TBFSs [33]. The properties of datasets are shown in Table 3. Every real dataset
corresponds to living beings in nature. More concretely, three of the datasets are from the fly (those
beginning by dm), three from the human being (hm), three from the mouse (mus), and three from yeast
(yst). Meanwhile, datasets with a different number of sequences and different sizes (nucleotides per
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sequence) are selected to ensure that our algorithm works with several types of instances. For example,
the yst04r sequence dataset contains 7 sequences of 1000 bps each. Motif instances from the yst04r
sequence have 7 instances ranges from 5 to 25. The hm03r sequence dataset contains 10 sequences
of 1500 bps each. Motif instances from the hm03r sequence have 15 instances ranges from 14 to 46.
Using datasets from different species, the new algorithm can obtain the meaning motifs in all types of
biological data. The times are also given in Table 3. The algorithm has been implemented by using
the MATLAB R2014b programming language. All experiments were performed using windows10 OS,
64 bit processer, Inter(R) Core(TM) i5-6200U CPU (2.30 GHz) with 12 GB of RAM.

Table 3. The properties of the benchmark datasets.

Dataset #Sequence Length #Instance #Width of Motifs Time (s)

Dm01g 4 1500 7 13–28 50
Dm04g 4 2000 9 10–26 51
Dm05g 5 2500 14 6–21 58
Hm03r 10 1500 15 14–46 42
Hm04m 13 2000 11 7–44 37
Hm16g 7 3000 7 9–54 38
Mus02r 9 1000 12 10–33 38
Mus07g 4 1500 4 15–33 53
Mus11m 12 500 15 6–27 42
Yst03m 8 500 18 6–24 44
Yst04r 7 1000 7 5–25 39
Yst08r 11 1000 14 12–49 39

Parameters used by the MHABBO algorithm are shown in Table 4. MHABBO algorithm has
been run 5 times for each dataset with different random seeds. The top 20 results obtained by
a non-dominated sort in the 5 runs are recorded. Due to the limit of the length of article, we only list
the parameters used for yst04r dataset: DE mutation scheme is DE/rand/1/bin, the population size is
100, the maximal generation number is 100, number of variables in each individual is 8, the value of
motif length is between 5 to 25, habitat modification probability is 0.75, mutation probability is 0.05,
elitism parameter is 10, and scaling factor is 0.01, k1 factor is 0.4; k2 factor is 0.95; k3 factor is 0.05; k4

factor is 0.1. Other test problems have similar parameters to yst04r dataset. These parameters that are
different from the yst04r dataset have a number of variables for each individual mutation probability
and modification probability etc. We assume a motif instance is correctly discovered if the predicted
binding site is within 3 bps away from the true binding site.

Table 4. Parameters used by MHABBO algorithm.

MHABBO DEPT MOGAMOD

Population Size: 100 Population Size: 200 Population Size: 200
Migration Probability: 0.75 Crossover Probability: 0.25 Crossover: SPX with probability 0.6
Mutation Probability: 0.05 Mutation Factor: 0.03 Mutation Factor: 0.5

Maxgen: 100
Elitism parameter: 10

Selection Scheme:
Rand/1/Binomial

Parents choose: Binary Tournament
New Generation Selection: Elitist

Scaling factor c1: 0.01
k1: 0.4, k2: 0.95, k3: 0.05; k4: 0.1

The performance of MHABBO for the MDP has been compared with other different methods
such as MOGAMOD and DEPT. Comparisons of the motif predicted by MHABBO and corresponding
Support, Similarity and Motif Length with other methods for yst04r are shown in Table 5. Comparisons
of three objectives and the motif predicted by MHABBO with other methods for yst08r are shown in
Table 6. Comparisons of three objectives and the motif predicted by MHABBO with different methods
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for hm03r are shown in Table 7. The motifs predicted with “*” in the Table 6 indicate that the motif
predicted is consistent with the known motif instance.

Table 5. Comparisons of the predicted motif with different methods for yst04r.

Method Support Length Similarity Predicted Motif

AlignACE [34] N/A 10 N/A C ATTCCA

MEME [35] N/A 11 N/A C ATTCCCC

Weeder [36] N/A 10 N/A TTTTCT CA

MOGAMOD [9]
5 14 0.84 C A CTTCCACTAA
6 14 0.77 C ATTCCTCTAT

DEPT
5 22 0.854 TAAATCTTTTACTTTTTTTTCT
6 19 0.842 CTAATTCATTCTTTTTCAA
7 15 0.847 TTTCT CAAACACA

MHABBO

6 5 0.85 AAATC*
2 19 0.82 GAGCAAGAAGCCAATGAAA
2 10 0.8 TAACCAAGAA*
3 5 0.93 TTTCT

Table 6. Comparisons of the predicted motif with different methods for yst08r.

Method Support Length Similarity Predicted Motif

AlignACE N/A 11 N/A CACCCA ACAC

N/A 12 N/A T ATT CACT A

MEME N/A 11 N/A CACCCA ACAC

Weeder N/A 10 N/A ACACCCA AC

MOGAMOD
7 15 0.84 C ACT T CCT
8 14 0.83 CCA AAAAA C

8 13 0.85 ACACCCA ACATC

DEPT
7 20 0.84 TCAATTTTTTTTTTCTATTC
8 19 0.83 TTATTTTTTTCTCTTTC
8 15 0.85 CCATATTTCTTCTA

MHABBO

2 40 0.74 CACTACAATTGCTTTGAGTGGTGTATTCTCAGTCGCCAAG
3 16 0.75 GGTGTATGTCCTAATA*
3 34 0.68 AACCAGACAAAC*AAAAGAAAAAAAAAATTAAAAG
2 31 0.81 AGAACAAAAAAAAAAAAAAAAAAAAAAAAAA

Table 7. Comparisons of the predicted motif with different methods for hm03r.

Method Support Length Similarity Predicted Motif

AlignACE N/A 13 N/A T T ATAAAAAA

MEME N/A 20 N/A A T TA ATAAAA AAAAAC

Weeder N/A 10 N/A T ATCACT

MOGAMOD

7 22 0.74 TATCATCCCT CCTA ACACAA
7 18 0.82 T ACTCT TCCCTA TCT
10 11 0.74 TTTTTTCACCA
10 10 0.79 CCCA CTTA
10 9 0.81 A T TCC

DEPT
7 22 0.78 A CTTA T CCT ACACA A A
9 12 0.83 A TCTCA T CC
10 9 0.85 T A ACTCA

MHABBO

2 29 0.85 ATCATAGGACCTCCCTTGCTTCCCAATGG
2 25 0.76 CCTTTTATTGTTCTATT*
2 13 0.85 AATTAGGAGACAA*
3 36 0.68 AACAACAAAAGATAAAAAGTCAAATGAATGAACTCA
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From these tables above, MHABBO achieves better results than MOGAMOD, while MHABBO
achieves solutions similar to solutions obtained by DEPT and several motif instances predicted by
MHABBO are very similar with the known motif instances. So we conclude that the MHABBO
algorithm can predict meaningful motifs, therefore it is a promising method for multi-objective motif
discovery. As the length of the predicted motifs becomes longer, the similarity does not obviously
decrease. From Tables 5 and 6, we observe that there are some motifs only one of algorithms can predict.
The reason is that different search strategies explore different search spaces. Hence, MHABBO is chosen
for motif discovery. Additionally, the MHABBO algorithm can not only predict some motifs acquired
by other known methods but also find novel motifs. However, the accuracy of the predicted motifs is
not high enough. The reason is that the performance of MHABBO is influenced by randomly selecting
an SIV during the process of migration and mutation between the islands. Another reason is that the
definition of fitness function just considers some factors, so it may lead them away from accuracy.

4.1.2. The Consensus Motifs Obtained by MHABBO Algorithm

Sequence logos are a graphical representation of an amino acid or nucleic acid multiple sequence
alignment developed by Tom Schneiderand Mike Stephens [37]. A sequence logo provides a richer
and more precise description of, for example, a binding site, than a consensus sequence. WebLogo is
a web based application designed to make the generation of sequence logos as easy and painless as
possible, so the consensus motifs predicted by our algorithm on different datasets are expressed by
WebLogo in Table 8.

Table 8. The Consensus motif predicted by MHABBO.

Dataset Predicted Motif

Dm01g
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4.1.3. Representation of the Pareto Fronts Obtained by MHABBO Algorithm 

In order to have a visual perspective on the results, we show the graphs corresponding to the 
solutions obtained by MHABBO for each dataset (see Figure 1). The graphs show the Pareto front 
points (blue points) that are obtained by running the algorithm configured with the optimal 
parameters. The motif length is represented in the X-axis, the similarity in the Y-axis, and the support 
in the Z-axis. Furthermore, we show the projection of each point at the planes XY (purple points), XZ 
(red points) and ZY (yellow points). 
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4.1.3. Representation of the Pareto Fronts Obtained by MHABBO Algorithm

In order to have a visual perspective on the results, we show the graphs corresponding to the
solutions obtained by MHABBO for each dataset (see Figure 1). The graphs show the Pareto front
points (blue points) that are obtained by running the algorithm configured with the optimal parameters.
The motif length is represented in the X-axis, the similarity in the Y-axis, and the support in the Z-axis.
Furthermore, we show the projection of each point at the planes XY (purple points), XZ (red points)
and ZY (yellow points).
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distribution of solutions on HM16g; (g) the distribution of solutions on MUS02r; (h) the distribution 
of solutions on MUS07g; (i) the distribution of solutions on MUS11m; (j) the distribution of solutions 
on YST03m; (k) the distribution of solutions on YST04r; (l) the distribution of solutions on YST08r. 
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these datasets achieves better distribution of solutions. For example, there are 7 motif instances with 
a length range between 9 and 54 in the hm16r dataset. The length value of most parts of these motif 
instances is about 20. It can be seen from Figure 1 that the length of most obtained solutions is about 
20. So the distribution of the obtained solutions is consistent with the distribution of the standard 
solution. As the length of the predicted motifs becomes longer, the similarity does not obviously 
decrease and as the support of the predicted motifs becomes larger, the similarity does not obviously 
decrease. The results demonstrate that the proposed MHABBO algorithm is competitive on the 
quantity and the distribution of final solutions. The results also present the distribution of the 
solutions and the convergence to Pareto-optimal front. It indicates that our approach performed well 
on multi-objective MDP. 

4.2. Metrics to Assess Performance 

Performance metrics play an important role in returning a scalar quantity, which reflects the 
quality of solutions. For each tool T and each data set D, we now have the set of known binding sites 
and the set of predicted binding sites. The correctness of T on D can be assessed both at the nucleotide 
level and at the motif level. There are many metrics that can be used to measure the quality of MDP 
[30], for example, nucleotide-level sensitivity (nSn), nucleotide-level positive predictive value (nPPV), 
the nucleotide-level correlation coefficient (nCC), nucleotide-level performance coefficient (nPC), the 
motif-level correlation coefficient (mCC) and the motif-level F-score[35] etc. The following metrics 
are used in this paper: the nPC and F-score. 

Figure 1. Representation of the Pareto fronts obtained by MHABBO: (a) the distribution of solutions
on the DM01g dataset; (b) the distribution of solutions on DM04g; (c) the distribution of solutions on
DM05g; (d) the distribution of solutions on HM03r; (e) the distribution of solutions on HM04r; (f) the
distribution of solutions on HM16g; (g) the distribution of solutions on MUS02r; (h) the distribution of
solutions on MUS07g; (i) the distribution of solutions on MUS11m; (j) the distribution of solutions on
YST03m; (k) the distribution of solutions on YST04r; (l) the distribution of solutions on YST08r.

The Pareto fronts obtained by MHABBO are shown in Figure 1, which shows that MHABBO
on these datasets achieves better distribution of solutions. For example, there are 7 motif instances
with a length range between 9 and 54 in the hm16r dataset. The length value of most parts of these
motif instances is about 20. It can be seen from Figure 1 that the length of most obtained solutions
is about 20. So the distribution of the obtained solutions is consistent with the distribution of the
standard solution. As the length of the predicted motifs becomes longer, the similarity does not
obviously decrease and as the support of the predicted motifs becomes larger, the similarity does not
obviously decrease. The results demonstrate that the proposed MHABBO algorithm is competitive
on the quantity and the distribution of final solutions. The results also present the distribution of the
solutions and the convergence to Pareto-optimal front. It indicates that our approach performed well
on multi-objective MDP.

4.2. Metrics to Assess Performance

Performance metrics play an important role in returning a scalar quantity, which reflects the
quality of solutions. For each tool T and each data set D, we now have the set of known binding
sites and the set of predicted binding sites. The correctness of T on D can be assessed both at the
nucleotide level and at the motif level. There are many metrics that can be used to measure the quality
of MDP [30], for example, nucleotide-level sensitivity (nSn), nucleotide-level positive predictive value
(nPPV), the nucleotide-level correlation coefficient (nCC), nucleotide-level performance coefficient
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(nPC), the motif-level correlation coefficient (mCC) and the motif-level F-score[35] etc. The following
metrics are used in this paper: the nPC and F-score.

4.2.1. The Nucleotide-Level Performance Coefficient (nPC)

To measure the prediction accuracy of methods with respect to motif location, we have used the
nucleotide-level performance coefficient (nPC). It was also adopted by Tompa et al. to evaluate binding
site predictions in their single motif discovery benchmark study. The nPC is defined as follows:

nPC =
nTP

nTP + nFN + nFP
(10)

Here, nTP is the number of nucleotide positions in both known sites and predicted sites, while
nFN is the number of nucleotide positions in known sites but not in predicted sites, nFP is the number
of nucleotide positions not in known sites but in predicted sites.

In order to furtherly measure the efficiency of this algorithm, the nPC value obtained by the
MHABBO algorithm on different test functions are compared with other 14 algorithms. The results
obtained by the fifteen different algorithms used to the different test problems are given in Figure 2.
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Figure 2. Comparisons of nPC value obtained by MHABBO with other algorithms on different test
problems (Dm01g = 1, Dm04g = 2, Dm05g = 3, Hm03r = 4, Hm04m = 5, Hm16g = 6, Mus02r = 7,
Mus07g = 8, Mus11m = 9, Yst03m = 10, Yst04r = 11 and Yst08r = 12).

It can be seen from Figure 2 that the nPCs obtained by the MHABBO algorithm on datasets from
1 to 9 are significantly better than the other fourteen algorithms. Except that the nPCs obtained by the
MHABBO algorithm on datasets (Yst) are worse than several algorithms. This algorithm shows better
performance on higher organisms than simpler organisms. It can be concluded that the performance
of the algorithm is not obviously decreased with the increase of the dimension of the problem.

4.2.2. F-Score

To assess the performance of our algorithm at the motif-level, Precision, Recall and F-score are
adopted on the basis of Equation (10) [38], where the operator |·| is the cardinality of the set. The
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candidate motif instances obtained by MHABBO need to be verified by biological experiments. We
hope to have a high Precision and a high Recall. The F-score is a tradeoff between Precision and Recall.

Precision = |correct moti f |
|moti f f ound| , Recall = |correct moti f |

|true moti f | ,

F− score = 2 ∗ Precision∗Recall
Precision+Recall

(11)

Average results (precisions (P), recalls (R) and F-scores (F)) obtained by MHABBO on the twelve
datasets is shown in Table 9. The comparisons of MHABBO with other methods [33] on the three
datasets are given in Table 10.

Table 9. Average results (precisions (P), recalls (R) and F-scores (F)) of MHABBO on the twelve datasets.

Algorithms Dm
01g

Dm
04g

Dm
05g

Hm
03r

Hm
04m

Hm
16g

Mus
02r

Mus
07g

Mus
11m

Yst
03m

Yst
04r

Yst
08r

MHABBO
P 3/100 2/20 4/20 6/20 8/20 5/10 8/20 2/10 8/20 8/20 4/10 5/20
R 3/7 2/9 4/14 6/15 8/10 5/7 8/12 2/4 8/15 8/18 4/7 5/14
F 0.06 0.14 0.24 0.34 0.53 0.59 0.5 0.29 0.46 0.42 0.47 0.29

Table 10. Comparisons of MHABBO with other methods on the three datasets: average results
(precisions (P), recalls (R) and F-scores (F)).

Algorithms for MDP
Dataset

Algorithms for MDP
Dataset

Hm03 Mu02 Yst08 Hm03 Mu02 Yst08

YMF [39]
P 0/25 1/12 0/11

AlignACE
[34]

P 0/14 0/0 9/41
R 0/15 1/12 0/14 R 0/15 0/12 9/14
F 0 0.08 0 F 0 0 0.33

SeSiMCMC
[40]

P 1/10 0/9 0/21
MEME [35]

P 1/12 2/14 6/11
R 1/15 0/12 0/14 R 1/15 2/12 6/14
F 0.08 0 0 F 0.074 0.154 0.48

QuickScore
[41]

P 0/22 1/22 3/56
MOTIFSAMPLE

[42]

P 0/21 1/18 7/9
R 0/15 1/12 3/14 R 0/15 1/12 7/14
F 0 0.06 0.08 F 0 0.07 0.61

MITRA [43]
P 0/10 0/9 1/12

ANN-SPEC
[44]

P 0/13 1/32 7/26
R 0/15 0/12 1/14 R 0/15 1/12 7/14
F 0 0 0.08 F 0 0.05 0.35

Improbizer
[45]

P 1/20 0/18 1/22
MEME3 [35]

P 0/7 0/0 9/17
R 1/15 0/12 1/14 R 0/15 0/12 9/14
F 0.06 0 0.06 F 0 0 0.58

MHABBO
P 6/20 8/20 5/20

ABBO/DE/GEN
[15]

P 5/30 5/30 8/30
R 6/15 8/12 5/14 R 5/15 5/12 8/14
F 0.34 0.5 0.29 F 0.22 0.24 0.36

Table 10 shows the average results of these algorithms in 5 runs. According to the F-score,
MHABBO on hm03r and mus02r dataset is the best algorithm of all twelve algorithms, and it is
better than ABBO/DE/GEN for single-objective motif discovery problems on hm03r and mus02r
dataset. However, it is worse on yst08r than MEME, MEME3, ABBO/DE/GEN and MOTIFSAMPLE.
This algorithm shows better performance on higher organisms than simpler organisms. The
experiments demonstrate the validity of the proposed MHABBO algorithm for multi-objective motif
discovery problems.

Assessing performance of the MHABBO algorithm at the nucleotide level and at the motif level,
similar results have been obtained. That is to say, the more dimensions of the problem there are, the
performance of the MHABBO does not worsen. This algorithm can obtain a more significant motif. It
also shows that the algorithm on the convergence has better performance on higher organisms than
simpler organisms.
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5. Conclusions and Future Research

Since multi-objective, biogeography-based optimization has not been applied to the
multi-objective motif discovery problem, we propose a hybrid multi-objective optimization algorithm
named MHABBO to solve three-objective motif discovery problem on the basis of our previous research
work. Compared with the existing methods, the proposed algorithm has the following advantages.
Firstly, the redefinition of fitness evaluation based on MOEA can simplify the multi-objective
optimization problem and use the Pareto dominance relationship to preserve population diversity.
Secondly, modifying migration operations can speed up the convergence of the algorithm, and the
mutation is performed by integrating with DE to produce new feasible solutions. In such a way,
population diversity can be maintained. Finally, the robustness of the algorithm is enhanced by
adaptively changed parameters related to the BBO algorithm.

Statistical comparisons with some typical existing approaches on several commonly used datasets
are provided. The main work has been done in this paper as follows. Firstly, the motif instances
obtained by the MHABBO algorithm on three commonly used datasets are compared with five other
algorithms. Secondly, according to the PWMs corresponding to the obtained motif instances on twelve
commonly used datasets, the logos of the motif instances are acquired using the online WebLogo
software. Thirdly, the Pareto fronts of obtained motif instances on twelve commonly used datasets are
drawn according to three-objective of the motif discovery problem. Finally, based on the NPC and
F-score methods, the new algorithm is compared with other classical algorithms.

The experiments have indicated that the MHABBO algorithm outperforms other algorithms on
the hm03r and mus02r datasets. From the Pareto fronts obtained by MHABBO, the results demonstrate
that the proposed MHABBO algorithm is competitive on the convergence to Pareto-optimal front and
the distribution of final solutions. It also shows that the algorithm on the convergence performs better
on higher organisms than simpler organisms. It demonstrates the validity and effectiveness of the
proposed MHABBO algorithm used to predict motifs from DNA sequences.

In this paper, we mainly discuss the multi-objective motif discovery problem. In the future, we
will continue to improve the multi-objective BBO algorithm. We will try to combine NSGA-III or
MOEA/D with the BBO algorithm for motif discovery problem. Additionally, in our earlier work,
we discussed the portfolio optimization problem in second-order stochastic dominance constraint
based on the BBO algorithm [46], and we will try to apply the multi-objective BBO algorithm to the
multi-objective portfolio optimization problem [47,48] in the future.
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