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Abstract: The linguistic neutrosophic numbers (LNNs) can express the truth, indeterminacy, and
falsity degrees independently by three linguistic variables. Hence, they are an effective tool for
describing indeterminate linguistic information under linguistic decision-making environments.
Similarity measures are usual tools in decision-making problems. However, existing cosine similarity
measures have been applied in decision-making problems, but they cannot deal with linguistic
information under linguistic decision-making environments. To deal with the issue, we propose two
cosine similarity measures based on distance and the included angle cosine of two vectors between
LNNs. Then, we establish a multiple attribute group decision-making (MAGDM) method based
on the cosine similarity measures under an LNN environment. Finally, a practical example about
the decision-making problems of investment alternatives is presented to demonstrate the effective
applications of the proposed MAGDM method under an LNN environment.

Keywords: cosine similarity measure; linguistic neutrosophic number; multiple attribute group
decision-making

1. Introduction

The fuzzy decision-making method is an important and complex research topic in decision-making
theory. In recent decades, various fuzzy decision-making methods have been presented and applied in
many decision-making fields. However, in real-world situations, some complex decision-making problems
cannot be described by evaluation information with real numbers. In general, decision-makers make
decisions under circumstances with vague, imprecise, and uncertain information. Therefore, they prefer to
make a qualitative evaluation for attributes using linguistic terms because of the complexity of objective
things and the ambiguity of human thinking. For this reason, Zadeh firstly proposed the concept of a
linguistic variable and its application to approximate reasoning [1]. Based on the concept of a linguistic
variable, Herrera et al. put forward a consensus model in group decision making and established
three steps for solving a multi-criteria decision-making problem under linguistic information [2,3].
Next, many scholars also provided some 2-tuple linguistic representation models [4–7], two-dimension
uncertain linguistic operations [8–10], and aggregation operators [11–15] to deal with decision-making
problems with linguistic information.

Furthermore, linguistic variables were integrated with other fuzzy theories to handle decision-making
problems. Wang and Li proposed the aggregation operators of intuitionistic linguistic fuzzy numbers
(ILFNs) and gave a decision-making approach by combining intuitionistic fuzzy numbers (IFNs) with
linguistic variables [16]. Then, some extensions of IFNs were widely studied, including some improved
intuitionistic linguistic aggregation operators and their application in MAGDM problems [17–23],
interval-valued intuitionistic linguistic sets and their application in multi-criteria decision-making
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(MCDM) problems [24], and so on. Rodriguez et al. also proposed hesitant fuzzy linguistic term sets
(HFLTSs) by combining the hesitant fuzzy sets (HFSs) with linguistic variables [25]. Some new HFLTS
approaches have been presented to solve decision-making problems in recent years [26–34]. Moreover,
Zhou et al. defined intuitionistic hesitant linguistic sets (IHLSs) and several operators on the basis of
hesitant fuzzy linguistic sets (HFLSs) and intuitionistic linguistic sets (ILSs) [35]. Faizi et al. proposed
an outranking method for MCDM problems using IHLSs [36].

In these extensions of fuzzy linguistic methods mentioned above, including ILFNs, HFLTSs, and
IHLSs, there are only two linguistic variables for describing the linguistic information of both the
truth/membership and falsity/non-membership degrees. So, the existing linguistic variables cannot
express indeterminate or inconsistent linguistic information. However, the real decision-making problems
often contain indeterminate or inconsistent information. To express this indeterminate or inconsistent
information, Smarandache proposed the concept of neutrosophic sets (NSs) [37] and neutrosophic
numbers (NNs) [38,39]. In neutrosophic theory, NSs and NNs are two different branches. Recently,
NSs have been studied by some scholars and applied for solving MCDM problems [40–42]. NNs can
effectively describe incomplete or indeterminate information because they consist of a determinate
part and indeterminate part. Ye proposed a bidirectional projection method for MAGDM problems
with NNs [43]. Ye presented a MAGDM method under an NN environment [44]. Linguistic variables
can easily express a qualitative evaluation for an attribute in complex decision-making problems,
but they cannot describe indeterminate or inconsistent evaluation information. To overcome the
insufficiency of the existing linguistic variables, many researches extended linguistic variables to NSs
and NNs. Li et al. introduced the concept of linguistic neutrosophic sets (LNSs) and their application in
multicriteria decision-making problems [45]. Luo et al. proposed a decision-making approach based on
an extended linguistic preference structure [46]. Wang et al. presented a decision-making method under
single-valued neutrosophic linguistic environments [47]. Fang and Ye [48] put forward the concept of
linguistic neutrosophic numbers (LNNs) by combining neutrosophic numbers (NNs) with linguistic
variables, which is characterized independently by the truth, indeterminacy, and falsity linguistic
variables. The basic operational laws of LNNs were developed. Further, an LNN-weighted arithmetic
averaging (LNNWAA) operator and an LNN-weighted geometric averaging (LNNWGA) operator
were proposed for MAGDM problems with LNNs [48]. The similarity measure between fuzzy sets is
an important mathematical tool for determining the degree of similarity between two objects, which is
effectively applied in decision-making problems. Biswas et al. proposed a cosine similarity measure of
trapezoidal fuzzy neutrosophic numbers [49]. Mahmood et al. presented three similarity measures
between simplified neutrosophic hesitant fuzzy sets [50]. The above cosine similarity measures have
been applied in decision-making problems, but they cannot deal with linguistic information under
linguistic decision-making environments. Hence, this paper extends cosine similarity measures to
LNNs, which can solve linguistic information decision-making problems. In this paper, we propose
two cosine similarity measures based on distance and the included angle cosine between LNNs in
vector space, and establish a MAGDM method based on the cosine similarity measures under an
LNN environment. The main advantage of the LNN method is that it is able to effectively handle
indeterminate linguistic information under linguistic decision-making environments.

The rest of the article is organized as follows. Section 2 briefly introduces some basic concepts
of LNNs. Section 3 proposes the cosine similarity measures based on distance and the included
angle cosine of two vectors. In Section 4, we establish a MAGDM method based on the cosine
similarity measures of LNNs. Section 5 gives a practical example and comparison analysis using LNNs.
Conclusions of this work are summarized in Section 6.

2. Some Basic Concepts of LNNs

In this section, we briefly introduce basic concepts of linguistic variables, linguistic term sets, and
linguistic neutrosophic numbers (LNNs), which will be needed in the following analysis.
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Zadeh firstly proposed the concept of linguistic variables [1], which represent qualitative data
using words or sentences in natural language [2]. Let S = {s0, s1, . . . , sτ} is a linguistic term set with
odd cardinality τ + 1, where si represents the value of a linguistic variable. For example, taking τ = 8,
one can specify a linguistic term set S = {s0 = extremely low, s1 = very low, s2 = low, s3 = slightly low, s4

= medium, s5 = slightly high, s6 = high, s7 = very high, s8 = extremely high}. Then, the linguistic term
set must satisfy the following characteristics [2,3]:

(1) Ordering: si ≥ sj if i ≥ j.

(2) Negation operator: Neg (si) = sτ + 1−i.
(3) Maximum operator: Max (si, sj) = si if i ≥ j.

(4) Minimum operator: Min (si, sj) = sj if i ≥ j.

By combining neutrosophic numbers (NNs) [39,40] with linguistic variables, Fang and Ye [48]
introduced the concept of linguistic neutrosophic numbers (LNNs) and give the following definition:

Definition 1 [48]. Assume that S = {s0, s1, . . . , sτ} is a linguistic term set with odd cardinality τ + 1. If e = <sα,
sβ, sγ> is defined for sα, sβ, sγ ∈ S and α, β, γ ∈ [0, τ], where sα, sβ, and sγ represent, respectively, the truth
degree, indeterminacy degree, and falsity degree by linguistic terms, then e is called a linguistic neutrosophic
number (LNN).

3. Cosine Measures of LNNs

In this section, two cosine measures between LNNs are proposed.

Definition 2. Assume that S = {s0, s1, . . . , sτ} is a linguistic term set with odd cardinality τ+1. If E
= {e1, e2, . . . , en} and G = {g1, g2, . . . , gn} are two sets of LNNs, where ek =< sαek , sβek , sγek > and
gk =< sαgk , sβgk , sγgk > are LNNs with, sβek , sγek , sαgk , sβgk , sγgk ∈ S and f(sj) = j is a linguistic scale
function for αek, βek, γek, αgk, βgk, γgk ∈ [0, τ] and k = 1, 2, . . . , n. Then, two cosine measures of E and G are
proposed based on distance and the included angle cosine of two vectors, respectively, as follows:

Cosine similarity measure based on distance

C1
LNNS(E, G) = 1

n

n
∑

k=1
cos

(
| f (sαek )− f (sαgk )|+

∣∣∣ f (sβek
)− f (sβgk

)
∣∣∣+| f (sγek )− f (sγgk )|

6τ π

)
= 1

n

n
∑

k=1
cos
(
|αek−αgk |+|βek−βgk |+|γek−γgk |

6τ π
) (1)

Cosine similarity measure based on the included angle cosine of two vectors

C2
LNNS(E, G) = 1

n

n
∑

k=1

f (sαek )· f (sαgk )+ f (sβek
)· f (sbgk

)+ f (sγek
)· f (sγgk )√

( f (sαek ))
2
+
(

f
(

sβek

))2
+( f (sγek ))

2×
√
( f (sγgk ))

2
+
(

f
(

sβgk

))2
+( f (sγgk ))

2

= 1
n

n
∑

k=1

αek ·αgk+βek ·βgk+γek ·γgk√
(αek)

2+(βek)
2+(γek)

2×
√
(αgk)

2+(βgk)
2+(γgk)

2

(2)

According to the above definition, the two cosine similarity measures Ci
LNNs (E, G) (i = 1, 2) for

LNNs satisfy the following properties (p1)–(p3):

(p1) 0 ≤ Ci
LNNs (E, G) ≤ 1;

(p2) Ci
LNNs (E, G) = Ci

LNNs (G, E);
(p3) If E = G, then Ci

LNNs (G, E) = 1.

Proof. Firstly, we prove the properties (p1)–(p3) of C1
LNNs (E, G).
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(p1) Let θ = (|αek − αgk|+ |βek − βgk|+ |γek − γgk|)π/6τ, there exist 0 ≤ (|αek − αgk|)/τ ≤ 1,
0 ≤ (|βek − βgk|)/τ ≤ 1, and 0 ≤ (|γek − γgk|)/τ ≤ 1. Then, there is
0 ≤ (|αek − αgk|+ |βek − βgk| +|γek − γgk|)/3τ ≤ 1.

For 0 ≤ θ ≤ π/2, 0 ≤ cosθ ≤ 1. Hence, 0 ≤ C1
LNNs (E, G) ≤ 1 holds.

(p2) It is straightforward.
(p3) If E = G, there are < sαek , sβek , sγek >=< sαgk , sβgk , sγgk > . Here, E and G can be

considered as sets, there exist E ⊇ G and E ⊆ G, then sαek = sαgk , sβek = sβgk and sγek = sγgk ,
for k = 1, 2, . . . , n. According to the operational laws of LNNs, we have f

(
sαek

)
= f

(
sαgk

)
,

f
(
sβek

)
= f

(
sβgk

)
, and f

(
sγek

)
= f

(
sγgk

)
, hence αek = αgk, βek = βgk, and γek = γgk, then

cos
{(
|αek − αgk|+

∣∣βek − βgk
∣∣+ |γek − γgk|

)
π/6τ

}
= cos0 = 1. Thus, C1

LNNs (G, E) = 1 holds.
Secondly, we prove the properties (p1)–(p3) of C2

LNNs (E, G).
(p1) It is obvious that C2

LNNs (E, G) ≥ 0. Then, we only prove C2
LNNs (E, G) ≤ 1.

According to Cauchy-Schwarz inequality, we can obtain the following inequality:

αek · αgk + βek · βgk + γek · γgk ≤
√
(αek)

2 + (βek)
2 + (λek)

2 ×
√
(αgk)

2 + (βgk)
2 + (γgk)

2.

Obviously, 1
n

n
∑

k=1

αek ·αgk+βek ·βgk+γek ·γgk√
(αek)

2+(βek)
2+(γek)

2×
√
(αgk)

2+(βgk)
2+(γgk)

2
≤ 1.

Hence, 0 ≤ C2
LNNs (G, E) ≤ 1 holds.

(p2) It is obvious that the property is true.
(p3) If E = G, < sαek , sβek , sγek >=< sαgk , sβgk , sγgk >, for k = 1, 2, . . . , n. Here, E and G

can be considered as two vectors, so ‖E‖ = ‖G‖, ‖E‖ =
√(

f (sαek )
)2

+
(

f (sβek )
)2

+
(

f (sγek )
)2, and

‖G‖ =
√(

f (sαgk )
)2

+
(

f (sβgk )
)2

+
(

f (sγgk )
)2, and there exists

E · G
‖E‖ · ‖G‖ = E·E

‖E‖ ·‖G‖

=
f (sαek ) f (sαgk ) + f (sβek

) f (sβgk
)+ f (sγek ) f (sγgk )√

( f (sαek ))
2
+
(

f (sβek
)
)2

+( f (sγek ))
2·
√
( f (sαgk ))

2
+
(

f (sβgk
)
)2

+( f (sγgk ))
2

=
f (sαek ) f (sαgk )+ f (sβek

) f (sβgk
)+ f (sγek ) f (sγgk )

( f (sαek ))
2
+
(

f (sβek
))2+

(
f (sγek ))

2

=

(
f (sαek ))

2+
(

f (sβek ))
2+

(
f (sγek ))

2

( f (sαek ))
2
+
(

f (sβek ))
2+

(
f (sγek ))

2 = 1

According to the operational laws of LNNs, we have f
(
sαek

)
= αek, f

(
sβek

)
= βek, f

(
sγek

)
= γek,

f
(
sαgk

)
= αgk, f

(
sβgk

)
= βgk, and f (sγeg) = γgk, then

αek · αgk + βek · βgk + γek · γgk√
(αek)

2 + (βek)
2 + (γek)

2 ×
√
(αgk)

2 + (βgk)
2 + (γgk)

2
= 1

Hence, C2
LNNs (G, E) = 1 holds.

Thus, we have finished the proof.

If we consider the weights of the elements ek and gk (k = 1, 2, . . . , n), the two weighted cosine
similarity measures between E and G are proposed, respectively, as follows:

Cω1
LNNS(E, G) =

n

∑
k=1

ωkcos
(
|αek − αgk|+ |βek − βgk|+ |γek − γgk|

6τ
π

)
(3)

Cω2
LNNS(E, G) =

n

∑
k=1

ωk
αek · αgk + βek · βgk + γek · γgk√

(αek)
2 + (βek)

2 + (γek)
2 ×

√
(αgk)

2 + (βgk)
2 + (γgk)

2
(4)
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where ωk ∈ [0, 1], and ∑n
k=1 ωk = 1 for k = 1, 2, . . . , n.

It is obvious that the two weighted cosine similarity measures Cωi
LNNs (E, G) (i = 1, 2) also satisfy

the following properties (p1)–(p3):

(p1) 0 ≤ Cω i
LNNs (E, G) ≤ 1;

(p2) Cω i
LNNs (E, G) = Cω i

LNNs (G, E);
(p3) If E = G, then Cωi

LNNs = 1.

Especially when ωk = 1/n for k = 1, 2, . . . , n, Equations (3) and (4) are reduced to
Equations (1) and (2), respectively.

We can easily prove the properties (p1)–(p3) for Cωi
LNNs (E, G) (i = 1, 2) by a similar proof process.

4. MAGDM Method Based on the Cosine Measures of LNNs

In this section, we apply the cosine similarity measures of LNNs to solve MAGDM problems with
LNN information.

For an MAGDM problem, let H = {h1, h2, . . . , hm} be a set of m alternatives and
A = {A1, A2, . . . , An} be a set of n attributes. The weight vector of the attributes Aj (j = 1, 2, . . . , n)
is ωA = (ωA1, ωA2, . . . , ωAn)T, satisfying ωAj ∈ [0, 1], and ∑n

j=1 ωAj = 1 for j = 1, 2, . . . , n.
Assume that EX = {EX1, EX2, . . . , EXy} is a group of experts and their corresponding weight vector is
ωE = (ωE1, ωE2, . . . , ωEy)T, satisfying ωEk∈ [0, 1], and ∑

y
k=1 ωEk = 1 for k = 1, 2, . . . , y. The linguistic

term is set S = {s0 = extremely low, s1 = very low, s3 = low, s4 = medium, s5 = slightly high, s6 = high,
s7 = very high, s8 = extremely high}. Each expert can assign the truth degree, falsity degree, and
indeterminacy degree to each attribute Aj (j = 1, 2, . . . , n) on the alternatives hi (i = 1, 2, . . . , m)
according to the linguistic terms, respectively. Therefore, we can established an LNN decision matrix

Dk =
(

dk
i,j

)
m×n

=
[

Dk
1, Dk

2, · · · , Dk
m

]T
, where dk

i,j =< sαk
i,j

, sβk
i,j

, sγk
i,j

>(i = 1, 2, . . . , m; j = 1, 2,

. . . , n; k = 1, 2, . . . , y) is an LNN for sαk
i,j

, sβk
i,j

, sγk
i,j
∈ [0, 1], and Dk

i =
{

dk
i,1, dk

i,2, · · · , dk
i,n

}
={

< sαk
i,1

, sβk
i,1

, sγk
i,1
>, < sαk

i,2
, sβk

i,2
, sγk

i,2
>, ...,< sαk

i,n
, sβk

i,n
, sγk

i,n
>
}

.

Then, we apply the cosine similarity measures of LNNs to solve MAGDM problems using the
following steps:

Step 1: Establish an ideal alternative (ideal solution) LNN matrix as follows: H∗ =
(

h∗i,j
)

m×n
=[

H∗1 , H∗2 , · · · , H∗m
]T with h∗i,j =< max

(
sαi,j

)
, min

(
sβi,j

)
, min

(
sγi,j

)
> (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Step 2: Calculate the weighted cosine measure values between Dk
i and the ideal alternative H∗i by

Equation (3) or Equation (4) and obtain the value of Cω1
LNNs (Dk

i , H∗i ) or Cω2
LNNs (Dk

i , H∗i ) (i = 1, 2, . . . , m).
Step 3: Calculate the overall weighted cosine measure values considering the corresponding

weight of each expert to evaluate the alternatives Hi (i = 1, 2, . . . , m), as follows:

Cω1
LNNs

(
Dk, Hi

)
=

y

∑
k=1

ωEk · Cω1
LNNs

(
Dk

i , H∗i
)

(5)

Cω2
LNNs

(
Dk, Hi

)
=

y

∑
k=1

ωEk · Cω2
LNNs

(
Dk

i , H∗i
)

(6)

where ωEk∈ [0, 1] and ∑
y
k=1 ωEk = 1 for k = 1, 2, . . . , y.

Step 4: Rank the alternatives according to the values of Cω1
LNNs (Dk, Hi) or Cω2

LNNs (Dk, Hi) and
select the best one(s). The bigger the cosine measure value, the better the alternative.

Step 5: End.
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5. Practical Example and Comparison Analysis

In this section, we provide a practical example of the selection problem of investment alternatives
adapted from [48] to demonstrate the applications of the developed MAGDM approach with
neutrosophic linguistic information.

5.1. Practical Example

There is an investment company, which needs to invest a sum of money in the best selection.
There is a panel with four possible investment alternatives H = {H1, H2, H3, H4}, where: (a) H1 is a
car company; (b) H2 is a food company; (c) H3 is a computer company; (d) H4 is an arms company.
The investment company needs to make a decision based on three attributes: (a) A1 is the risk factor;
(b) A2 is the growth factor; (c) A3 is the environmental factor. The weight vector of the three attributes is
ωA = (0.35, 0.25, 0.4)T. Three decision-makers denoted as EX = {EX1, EX2, EX3} are invited to evaluate
the alternatives on the three attributes by LNNs from the linguistic term set S = {s0 = extremely low,
s1 = very low, s3 = low, s4 = medium, s5 = slightly high, s6 = high, s7 = very high, s8 = extremely
high}, and then their corresponding weight vector is given as ωE = (0.37, 0.33, 0.3)T. Thus, we can
establish the LNN decision matrix Dk according to the linguistic evaluation information given by each
decision-maker EXk (k = 1, 2, 3) as follows:

D1 =


D1

1
D1

2
D1

3
D1

4

 =


< s6, s1, s2 > < s7, s2, s1 > < s6, s2, s2 >

< s7, s1, s1 > < s7, s3, s2 > < s7, s2, s1 >

< s6, s2, s2 > < s7, s1, s1 > < s6, s2, s2 >

< s7, s1, s2 > < s7, s2, s3 > < s7, s2, s1 >

,

D2 =


D2

1
D2

2
D2

3
D2

4

 =


< s6, s1, s2 > < s6, s1, s1 > < s4, s2, s3 >

< s7, s2, s3 > < s6, s1, s1 > < s4, s2, s3 >

< s5, s1, s2 > < s5, s1, s2 > < s5, s4, s2 >

< s6, s1, s1 > < s5, s1, s1 > < s5, s2, s3 >

,

D3 =


D3

1
D3

2
D3

3
D3

4

 =


< s7, s3, s4 > < s7, s3, s3 > < s5, s2, s5 >

< s6, s3, s4 > < s5, s1, s2 > < s6, s2, s3 >

< s7, s2, s4 > < s6, s1, s2 > < s7, s2, s4 >

< s7, s2, s3 > < s5, s2, s1 > < s6, s1, s1 >

.

Then, the developed MAGDM approach can be applied to this decision-making problem using
the following steps:

Step 1: We establish the LNN matrix H* = (h∗i,j)4×3 of ideal alternatives (ideal solutions)
H∗i (i = 1, 2, 3, 4) as follows:

H∗ =


H∗1
H∗2
H∗3
H∗4

 =


< s8, s0, s0 > < s8, s0, s0 > < s8, s0, s0 >

< s8, s0, s0 > < s8, s0, s0 > < s8, s0, s0 >

< s8, s0, s0 > < s8, s0, s0 > < s8, s0, s0 >

< s8, s0, s0 > < s8, s0, s0 > < s8, s0, s0 >

,

where h∗i,j = < max(sαi,j), min(sβi,j
), min(sγi,j) >=< s8, s0, s0 > (i = 1, 2, 3, 4; j = 1, 2, 3) and

H∗k = {< s8, s0, s0 > < s8, s0, s0 > < s8, s0, s0 >} (k = 1, 2, 3, 4).
Step 2: We calculate the weighted cosine measure values based on the distance between Dk

i and
the ideal alternative H∗i by Equation (3) as follows:

Cω1
LNNs (D1, H*) = {Cω1

LNNs (D1
1 , H∗1), Cω1

LNNs (D1
2 , H∗2 ), Cω1

LNNs (D1
3 , H∗3), Cω1

LNNs (D1
4 , H∗4 )} = {0.9425, 0.9606,

0.9381, 0.9554};

Cω1
LNNs (D2, H*) = {Cω1

LNNs (D2
1 , H∗1), Cω1

LNNs (D2
2 , H∗2 ), Cω1

LNNs (D2
3 , H∗3 ), Cω1

LNNs (D2
4 , H∗4 )} = {0.9055, 0.8974,

0.8869, 0.9212};
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Cω1
LNNs (D3, H*) = {Cω1

LNNs (D3
1 , H∗1), Cω1

LNNs (D3
2 , H∗2 ), Cω1

LNNs (D3
3 , H∗3 ), Cω1

LNNs (D3
4 , H∗4 )} = {0.8447, 0.8807,

0.9094, 0.9407}

Similarly, we can calculate the weighted cosine measure values based on the included angle cosine
of two vectors between Dk

i and the ideal alternative H∗i by Equation (4) as follows:

Cω2
LNNs (D1, H*) = {Cω2

LNNs (D1
1 , H*

1), Cω2
LNNs (D1

2 , H∗2 ), Cω2
LNNs (D1

3 , H∗3 ), Cω2
LNNs (D1

4 , H∗4 )} = {0.9279, 0.9464,

0.9234, 0.9367};

Cω2
LNNs (D2, H*) = {Cω2

LNNs (D2
1 , H∗1 ), Cω2

LNNs (D2
2 , H∗2 ), Cω2

LNNs (D2
3 , H∗3 ), Cω2

LNNs (D2
4 , H∗4 )} = {0.8684, 0.8516,

0.8459, 0.9057};

Cω2
LNNs (D3, H*) = {Cω2

LNNs (D3
1 , H∗1 ), Cω2

LNNs (D3
2 , H∗2 ), Cω2

LNNs (D3
3 , H∗3 ), Cω2

LNNs (D3
4 , H∗4 )} = {0.7708, 0.8400,

0.8663, 0.9287}.

Step 3: Considering the corresponding weight ωE = (0.37, 0.33, 0.3)T of the experts to evaluate the
alternatives Hi (i = 1, 2, 3, 4), we can calculate the overall weighted cosine measure values based on
distance by Equation (5) as follows:

Cω1
LNNs (Dk, H1) = 0.37 × Cω1

LNNs (D1
1 , H∗1 ) + 0.33 × Cω1

LNNs (D2
1 , H∗1 ) + 0.3 × Cω1

LNNs (D3
1 , H∗1 ) = 0.9009;

Cω1
LNNs (Dk, H2) = 0.37 × Cω1

LNNs (D1
1 , H∗2 ) + 0.33 × Cω1

LNNs (D2
1 , H∗2 ) + 0.3 × Cω1

LNNs (D3
1 , H∗2 ) = 0.9158;

Cω1
LNNs (Dk, H3) = 0.37 × Cω1

LNNs (D1
1 , H∗3 ) + 0.33 × Cω1

LNNs (D2
1 , H∗3 ) + 0.3 × Cω1

LNNs (D3
1 , H∗3 ) = 0.9126;

Cω1
LNNs (Dk, H4) = 0.37 × Cω1

LNNs (D1
1 , H∗4 ) + 0.33 × Cω1

LNNs (D2
1 , H∗4 ) + 0.3 × Cω1

LNNs (D3
1 , H∗4 ) = 0.9397.

Similarly, we can calculate the overall weighted cosine measure values based on the included
angle cosine of two vectors by Equation (6) as follows:

Cω2
LNNs (Dk, H1) = 0.8611, Cω2

LNNs (Dk, H2) = 0.8832, Cω2
LNNs (Dk, H3) = 0.8807, Cω2

LNNs (Dk, H4) = 0.9241.

Step 4: According to the above values of Cω1
LNNs (Dk, Hi) and Cω2

LNNs (Dk, Hi) (i = 1, 2, 3, 4), both
the cosine measure values based on distance and the cosine measure values based on the included
angle cosine of two vectors, there are the same ranking orders: H4 > H2 > H3 > H1. Thus, according to
the maximum value of cosine similarity measures, the alternative H4 is the best choice.

5.2. Related Comparison

For further comparison, Table 1 lists the MAGDM results based on the cosine measures
of LNNs proposed in this paper and the LNNWAA and LNNWGA Operators in the relevant
paper [48], respectively.

Obviously, from the result of Table 1, ranking orders and the best alternatives based on the
new method proposed in this paper are consistent with the results provided by Fang and Ye [48].
Compared with the literature [48], the calculation process of the cosine measures for MAGDM proposed
in this paper is relatively simple compared to the LNNWGA operator and the LNNWAA operator
in [48]. For further comparison, the MAGDM methods developed in the relevant papers [43,44] cannot
deal with indeterminate and inconsistent linguistic information; while the method presented in this
paper can solve linguistic decision-making problems with LNN information. The above comparisons
demonstrate that this paper presented a new way for solving decision-making problems under an
LNN environment.

Table 1. Decision results based on LNN MAGDM methods.

MAGDM Method Cosine Measure Value (Score Function) Ranking Order The Best Alternative

Cω1
LNNs (Dk, Hi) 0.9009, 0.9158, 0.9126, 0.9397 H4 > H2 > H3 > H1 H4

Cω2
LNNs (Dk, Hi) 0.8611, 0.8832, 0.8807, 0.9241 H4 > H2 > H3 > H1 H4

LNNWAA Operator [48] 0.7528, 0.7770, 0.7613, 0.8060 H4 > H2 > H3 > H1 H4
LNNWGA Operator [48] 0.7397, 0.7747, 0.7513, 0.8035 H4 > H2 > H3 > H1 H4
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6. Conclusions

Under a linguistic environment, two cosine similarity measures of LNNs based on the distance
and the included angle cosine of two vectors were presented in this paper. Then, an MAGDM method
with LNNs was developed based on the proposed cosine similarity measures. Finally, to demonstrate
the application and effectiveness of the proposed method, we introduced a practical example about
the MAGDM problems based on the cosine similarity measures of LNNs. The decision-making results
show that the proposed method can effectively solve decision-making problems with LNN information.
In the future work, we shall study some new correlation coefficients between LNNs and their MAGDM
methods, and extend the similarity measures to linguistic neutrosophic cubic numbers [51].
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