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Abstract: Accurate electricity price forecasting plays an important role in the profits of electricity
market participants and the healthy development of electricity market. However, the electricity
price time series hold the characteristics of volatility and randomness, which make it quite
hard to forecast electricity price accurately. In this paper, a novel hybrid model for electricity
price forecasting was proposed combining Beveridge-Nelson decomposition (BND) method,
fruit fly optimization algorithm (FOA), and least square support vector machine (LSSVM)
model, namely BND-FOA-LSSVM model. Firstly, the original electricity price time series were
decomposed into deterministic term, periodic term, and stochastic term by using BND model.
Then, these three decomposed terms were forecasted by employing LSSVM model, respectively.
Meanwhile, to improve the forecasting performance, a new swarm intelligence optimization
algorithm FOA was used to automatically determine the optimal parameters of LSSVM model
for deterministic term forecasting, periodic term forecasting, and stochastic term forecasting.
Finally, the forecasting result of electricity price can be obtained by multiplying the forecasting
values of these three terms. The results show the mean absolute percentage error (MAPE), root mean
square error (RMSE) and mean absolute error (MAE) of the proposed BND-FOA-LSSVM model
are respectively 3.48%, 11.18 Yuan/MWh and 9.95 Yuan/MWh, which are much smaller than
that of LSSVM, BND-LSSVM, FOA-LSSVM, auto-regressive integrated moving average (ARIMA),
and empirical mode decomposition (EMD)-FOA-LSSVM models. The proposed BND-FOA-LSSVM
model is effective and practical for electricity price forecasting, which can improve the electricity
price forecasting accuracy.

Keywords: electricity price forecasting; least square support vector machine (LSSVM); Beveridge-Nelson
decomposition method (BND); fruit fly optimization algorithm (FOA); intelligence forecasting

1. Introduction

With the constant advance of electricity market reform, electricity price forecasting has become
an important and valuable tool [1]. In the day-ahead electricity market, the electric energy trade
and settlement are performed based on the market clearing price (MCP), which directly impacts the
earnings of market participants. For independent power producers, they should submit the bidding
curves according to accurately forecasted electricity price, which can reduce the market risk and
maximize their profits. For power supply enterprises, they need optimally allocate the purchasing
electricity in spot market and bilateral contract market according to accurately forecasted electricity
price. For electricity supervision departments, they also use the forecasted electricity price information
to supervise the electricity market, which can guarantee the healthy and sustainable development
of electricity market. Therefore, accurate electricity price forecasting is quite important, which has
become common concerns of electricity market participants [2].
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Generally speaking, the electricity price will be influenced by several factors, such as power
load demand, transmission congestion, economic development, and generator available capacity [3].
The electricity price time series hold the characteristics of volatility and randomness, which make
accurate electricity price forecasting hard work [4,5]. In the past years, many researchers have
made extensive efforts to develop the electricity price forecasting models and algorithms. There are
mainly two kinds of forecasting methods for electricity price, which are conventional time-series
statistical method and the emerging artificial intelligent method. For the conventional time-series
statistical method, it holds the assumption that the electricity price has linear relationship with its
influencing factors. This kind of forecasting technique mainly includes the auto-regressive integrated
moving average (ARIMA) [6–8] method and generalized autoregressive conditional heteroscedasticity
(GARCH) [9–11]. However, in fact, the relationships between electricity price and its influencing
factors are not linear. So, the electricity price forecasting performance is unsatisfactory, and the
forecasting accuracy needs to be improved for this kind of forecasting method. Under this background,
a new electricity price forecasting technique, namely, the artificial intelligent method, was developed.
For artificial intelligent-based electricity price forecasting method, there is no longer the assumption
of linear relationships between electricity price and its influencing factors, which can effectively
cover the shortages of conventional time-series statistical method. This kind of forecasting technique
mainly includes artificial neural networks [12,13], fuzzy neural networks [14], extreme learning
machines [15,16], and support vector machines [17,18]. However, there is also weakness for artificial
intelligent forecasting method, namely the model parameters need to be set first, such as the kernel
parameters of support vector machines and neuron number of neural networks. This is really difficult
for electricity price forecasting handlers. To solve this issue, an intelligent optimization algorithm is
usually used to automatically determine the parameters of artificial intelligent forecasting models,
such as particle swam optimization (PSO) [19,20] and genetic algorithm (GA) [21,22].

Least square support vector machine (LSSVM) is a kind of improved algorithm of support vector
machine, which has been used for many forecasting problems such as wind speed prediction [23],
carbon price forecasting [24], electricity consumption forecasting [25,26], and network traffic
forecasting [27]. However, it has rarely employed to forecast electricity price. Therefore, this paper will
use the LSSVM model to forecast electricity price. Meanwhile, to improve the forecasting performance,
a new intelligent optimization algorithm, namely, fruit fly optimization algorithm (FOA), is used
to automatically determine the parameters of LSSVM model because the FOA shows superiorities
over other intelligent optimization algorithms, which include short program code, quick convergence
and high identification accuracy [28,29]. Considering the nonlinear and nonstationary characteristics
of electricity price time series, the Beveridge-Nelson decomposition (BND) method is also used to
decompose electricity price time series in this paper, which aims to improve the forecasting accuracy
of electricity price. Therefore, this paper proposes a new electricity price forecasting method, namely,
BND-FOA-LSSVM. To verify the applicability and effectiveness of this proposed BND-FOA-LSSVM
electricity price forecasting method, a case study is selected, and its forecasting result is compared
with other methods.

The remaining part of the paper is organized as follows. Section 2 introduces the basic theories
of BND, FOA and LSSVM. Section 3 elaborates the proposed BND-FOA-LSSVM electricity price
forecasting model. A case study is performed in Section 4, and the discussions related to forecasting
performances of different methods are given in Section 5. Section 6 draws the conclusions.

2. Basic Theories of BND, FOA, and LSSVM

2.1. BND Method

For decomposing the non-stationary time series, two researchers, Stephen Beveridge and Charles
Nelson, put forward the Beveridge-Nelson decomposition (BND) method in 1981 [30]. The data series
with the first order co-integration characteristic can be decomposed into permanent term and transitory
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trend. The permanent term includes deterministic trend and stochastic trend, and the transitory trend
has a stationary process with a zero average value, which can be named as the periodic term [31,32].

When the BND method is used to decompose time series, it is essential to identify whether the
time series satisfies first order stationary or not. If satisfied, the detailed procedures of BND method
for electricity price time series are as below.

Set the natural logarithm of electricity price time series as lnP. According to the Wold theorem,
it can have:

∆ ln Pt = µ + εt +
∞

∑
i=1

λiεt−i (1)

where ∆ ln Pt = ln Pt − ln Pt−1, Pt is the electricity price at time t, µ is the mean value of ∆ ln Pt in the
long run, εt ~i.i.d.N

(
0, σ2), t is the time period, and λi is the coefficient.

The expected value of Equation (1) is:

E(∆ ln Pt) = E(µ) + E(εt) + E

(
∞

∑
i=1

λiεt−i

)
= E(µ) (2)

where E is the computation process of expected value for each variable.
Based on the BND theorem, the deterministic term DTt of electricity price time series can be

decomposed as:
DTt = ln P0 + µt (3)

where DTt represents the deterministic term at time t, and lnP0 is the initial value of natural logarithm
value of electricity price.

Morley pointed out that the time series can be much more accurately forecasted through
employing a stationary univariate AR (Auto Regressive) [33], namely:

(∆ ln Pt − µ) = φ(∆ ln Pt−1 − µ) + εt (4)

where |φ| < 1.
Under the normality assumption, the minimum mean squared error (MMSE) of j-period ahead

forecast of the first difference of ∆lnPt is:

Et
[(

∆ ln Pt+j − µ
)]

= φj(∆ ln Pt − µ) (5)

Tt, the total trend term of time series, is identified as the MMSE prediction of the long-term level
of the series. It is equivalent to the present level of the series plus the infinite sum of the MMSE of
j-period ahead first difference forecasts, namely:

Tt = lim
j→∞

Et
[(

ln Pt+j − jµ
)]

= ln Pt + lim
j→∞

Et
[(

∆ ln Pt+j − µ
)]

(6)

where Tt is the total trend term of time series.
Then, the total trend term of lnPt can be obtained, namely:

Tt = ln Pt + φ/(1− φ) ∗ (∆ ln Pt − µ) (7)

Meanwhile, the periodic term of lnPt can be expressed as:

Ct = −φ/(1− φ) ∗ (∆ ln Pt − µ) (8)

where Ct is the periodic term at time t.
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The random impulse term can be computed as:

RTt = ln Pt +
φ

1− φ
(∆ ln Pt − µ)− (ln P0 + µt) (9)

where RTt demonstrates the random term at time t.

2.2. FOA

Inspired by the food-finding behavior of the fruit fly, a new swarm intelligence optimization
algorithm was proposed by researcher Pan in 2012, namely the fruit fly optimization algorithm
(FOA) [34]. Currently, the FOA has been employed in many practical issues, such as power load
forecasting [35], oil and gold prices forecasting [36], and ship motion prediction [37]. In this paper,
the FOA is used for parameters determination of the LSSVM model for electricity price forecasting.

The FOA includes the following four steps.

Step 1: Parameters setting.

The primary parameters of FOA comprise the initial fruit fly swarm location (X_axis, Y_axis),
the number of fruit flies SearchAgents_no; the maximum number of iterations Max_iteration; and the
random flight distance range FR.

Step 2: Population initialization.

As a swarm based algorithm, the initial population (Xi, Yi) of fruit flies in FOA can be given
according to the random flight direction and the distance for food finding of an individual fruit fly by
using osphresis.

Xi = X_axis + Random Value (10)

Yi = Y_axis + Random Value (11)

Step 3: Population evaluation.

In this step, the distance of food location to the origin (Dist) is firstly calculated, and then the
smell concentration judgment value (S) can be calculated as follows:

Disti =
(

X2
i + Y2

i

)1/2
(12)

Si = 1/Disti (13)

By substituting Si into the smell concentration judgment function (also called Fitness function),
the smell concentration (Smelli) of fruit fly location can be obtained, namely

Smelli = Function(Si) (14)

Finally, the optimal fruit fly can be found which has the optimized smell concentration among all
the fruit flies, and the fitness function value can also be determined, namely

[bestSmell, bestIndex] = optimise(Smelli) (15)

Step 4: Selection operation.

After the optimal food location with the optimized smell concentration value is found, all fruit
flies will fly toward it by using their visions. Then, the positions and smell concentration values of fruit
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flies will be updated. Repeat steps 2 and 3 and perform the iterative optimization until the terminal
criterion is satisfied. Then, the optimal location and smell concentration values can be determined.

Smellbest = bestSmell (16)

X_axis = X(bestIndex) (17)

Y_axis = Y(bestIndex) (18)

2.3. LSSVM Model

The least square support vector machine (LSSVM) model is a kind of emerging artificial intelligent
technique, which can be used for forecasting issues and classification issues [38]. Compared with the
support vector machine, the LSSVM alleviates convex quadratic programming based on structural
risk minimization with a regularization constraint set on model weight [39]. The LSSVM has the
advantages of setting slackness by an equality constraint and solving the regression problem as a set of
linear equations, which can provide faster training and higher accuracy compared with support vector
machine (SVM). The basic theory of LSSVM model is illustrated as below.

Set a series of samples {xi, yi}m
i=1, regarding xi ∈ Rn as the input vector and yi ∈ R as the

corresponding output value of sample i. By using a nonlinear function φ, the electricity price data are
mapped to a higher dimensional space from the original feature space, namely:

f (x) = wTϕ(x) + b (19)

where w is the weight vector, and b is the error.
In the original space, the LSSVM formula with an equality constraint can be represented as minJ(w, ξ) = 1

2 wTw + 1
2 C

m
∑

i=1
ξ2

i

s.t. y = wϕ(x) + b + ξi

(20)

where C is regularization parameter, and ξi is slackness variable.
Then, the Lagrangian function L can be obtained as:

L(w, b, ξ, a) =
1
2

wTw +
1
2

C
m

∑
i=1

ξ2
i −

m

∑
i=1

ai

{
wTϕ(xi) + b + ξi − yi

}
(21)

where ai is Lagrange multiplier.
The conditions of Karush-Kuhn-Tucker (KKT) for optimality are determined by

∂L
∂w = 0→ w =

m
∑

i=1
aiϕ(xi)

∂L
∂b = 0→

m
∑

j=1
ai = 0

∂L
∂ξi

= 0→ ai = Cξi
∂L
∂ai

= 0→ wTϕ(xi) + b + ξi − yi

(22)

Removing the variables w and ξi, the optimization process can be transformed into the linear
equation as below: [

0 QT

Q K + C−1 I

][
b
A

]
=

[
0
Y

]
(23)
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where Q = [1, . . . ,1]T, A = [a1,a2, . . . ,am]T; Y = [y1,y2, . . . ,ym]T. In line with the Mercer’s condition,
the Kernel function can be expressed as:

K(xi,xj) = ϕ(xi)
Tϕ(xj) (24)

Then, the LSSVM model for regression can be written as:

f (x) =
m

∑
i=1

aiK(x, xi) + b (25)

Since the radial basis function (RBF) has a fewer parameters to be set and a superior overall
performance, it is selected to be the Mercer kernel function K(x,xi) in this paper, which is shown in
Equation (26).

K(x, xi) = exp
{
−‖x− xi‖2/2σ2

}
(26)

Therefore, there are two parameters which are needed to be determined for LSSVM model,
which are the regularization parameter “C” and RBF kernel width “σ”. In this paper, these two
parameters of LSSVM model will be optimally determined by a new intelligent optimization algorithm
FOA for electricity price forecasting.

3. The Proposed Novel Hybrid BND-FOA-LSSVM Model for Electricity Price Forecasting

In this paper, a novel hybrid BND-FOA-LSSVM model is proposed for electricity price forecasting,
which aims to improve the forecasting accuracy of electricity price. Since electricity price time
series hold the characteristics of volatility and randomness, the BND method is firstly employed to
decompose the initial electricity price time series into deterministic term, periodic term, and stochastic
term. Then, the LSSVM model will be utilized to respectively forecast these three decomposed
terms, and the parameters of LSSVM model will be optimized and determined by using FOA.
Finally, the forecasted electricity price can be obtained by multiplying the forecasting results of
three decomposed terms.

The detailed procedures of the proposed hybrid BND-FOA-LSSVM model for electricity price
forecasting are elaborated as follows.

Step 1: Unit root test.

When the BND method is used, it is required to examine whether the logarithmic sequences
of initial electricity price time series are first order stationary. The Augmented Dickey-Fuller (ADF)
method is employed to conduct unit root test. If it satisfies the stationary condition, we can proceed to
the next step.

Step 2: Initial electricity price time series decomposition.

After the first order stationary of logarithmic sequence of initial electricity price time series is
confirmed, the initial electricity price time series can be decomposed into deterministic term, periodic
term, and stochastic term.

Step 3: Parameters’ setting.

In FOA, four parameters are needed to be initialized, which are the initial fruit fly swarm
location (X_axis, Y_axis); the number of fruit flies SearchAgents_no; the maximum number of iterations
Max_iteration; and the random flight distance range FR. In this paper, we set (X_axis, Y_axis) ⊂ [0, 1],
SearchAgents_no = 20, Max_iteration = 100, and FR ⊂ [−10, 10].

Step 4: Optimization starts.
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The fitness function f [∗] needs to be firstly determined through employing FOA to determinate
the optimal two parameters values of LSSVM model. In this study, the root mean square error (RMSE)
shown in Equation (27) is used to build the fitness function.

RMSE =

√
1
n

n

∑
k=1

(x(k)− x̂(k))2 (27)

where x(k) is actual value of electricity price at time k; x̂(k) is forecasting value of electricity price at
time k.

The FOA starts to optimize two parameters of LSSVM model by creating a series of random
solutions. The smell concentration judgment value Si of fruit fly i is employed to represent
two parameters of LSSVM model. The optimal smell concentration judgment value of fruit
fly will be updated at each iteration, and the corresponding optimal parameters of LSSVM
model in current stage can be obtained. Assumed that the actual electricity price data series{

x(0)(1), x(0)(2), · · · , x(0)(n)
}

is used in the first iteration, and then the forecasting (fitting) electricity

price series
{

x̂(0)(1), x̂(0)(2), · · · , x̂(0)(n)
}

can be calculated based on the built LSSVM model.
Then, the fitness function can be confirmed by minimizing the RMSE of forecasting electricity price
data points, namely

RMSE = min

√
1
n

n

∑
k=1

(x(k)− x̂(k))2 (28)

Step 5: Optimization ends.

Through the whole iteration process, different values of RMSEs will be generated, and the
minimum RMSE will be found when the optimization process comes to the end. When the max
iterative number is reached, the optimization process ends. Then, the optimal values of parameters “σ”
and “c” can be obtained, and the LSSVM model optimized by FOA can be established. Finally, the future
electricity price can be forecasted.

The procedure of the proposed BND-FOA-LSSVM model for electricity price forecasting is
depicted in Figure 1.
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algorithm (FOA)-least square support vector machine (LSSVM) model for electricity price forecasting. 

Figure 1. Flowchart of the proposed Beveridge-Nelson decomposition (BND)-fruit fly optimization
algorithm (FOA)-least square support vector machine (LSSVM) model for electricity price forecasting.
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4. Case Study

In this paper, the daily electricity price in the northeast power grid of China is used to perform
case study and validate the forecasting performance of the proposed hybrid BND-FOA-LSSVM model
for electricity price forecasting. The sample set contains one year (365 days) of daily electricity price
data points ranging from 1 January to 31 December, which are shown in Figure 2. Of these, 243 daily
electricity price data points from 1 January to 31 August are treated as training sample set, and the
remaining 122 electricity price data points from 1 September to 31 December are considered as a testing
sample set.
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Figure 2. Daily electricity price time series from 1 January to 31 December.

4.1. Electricity Price Decomposition Result

The BND method is firstly used to decompose the logarithmic sequence of daily electricity price
time series. Before decomposition, it should do unit root test based on ADF test to judge whether the
logarithmic sequences of daily electricity price time series are first order stationary or not. The ADF
test result is listed in Table 1, which indicates the time series of daily electricity price are stable after
first order difference. So, the daily electricity price can be decomposed by using BND method, and the
results are shown in Figure 3, which includes deterministic term, periodic term, and stochastic term.

Table 1. The Augmented Dickey-Fuller (ADF) test results.

Sequence Test Form (C,T,K) ADF Test Value p Value Conclusion

ln P (N,N,1) −1.5398 0.1958 Unstable
∆ ln P (N,N,0) −10.6845 0.0000 stable
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4.2. FOA-LSSVM Forecasting Results

The FOA-LSSVM model is used to forecast these three decomposed terms, respectively.
Two parameters of LSSVM model will be automatically determined by FOA. The inputs of FOA-LSSVM
model for electricity price forecasting include historical electricity price at the same day of last month
and electricity price yesterday and the day before yesterday. That is to say, for the deterministic
term forecasting, the deterministic term at the same day of last month, yesterday and the day before
yesterday will be treated as the input variables of the FOA-LSSVM-based electricity price forecasting
model; for the periodic term forecasting, the periodic term at the same day of last month, yesterday
and the day before yesterday will be treated as the input variables of the FOA-LSSVM-based model;
for the stochastic term forecasting, the stochastic term at the same day of last month, yesterday and
the day before yesterday will be treated as the input variables of the FOA- LSSVM-based model.
Finally, the electricity price forecasting values can be obtained via the multiplication of the forecasted
deterministic term, periodic term, and stochastic term.

Before using the FOA-LSSVM model to forecast, the sample data should be normalized by using
Equation (29).

z =
x− xmin

xmax − xmin
(29)

where xmin and xmax represent the minimum and maximum value of each input data series, respectively.
At the training stage, the parameters c and σ will be dynamically determined by FOA for the

deterministic term, periodic term, and stochastic term, respectively, and the results are listed in Table 2.
The iterative RMSE trends of FOA-LSSVM model for parameters optimization in terms of deterministic
term, periodic term, and stochastic term are respectively shown in Figure 4. These optimal parameters
values will be used for deterministic term forecasting, periodic term forecasting, and stochastic
term forecasting at testing stage, and the forecasting results of deterministic term, periodic term,
and stochastic term at testing stage, namely, daily electricity price between 1 September and



Information 2017, 8, 120 11 of 16

31 December, can be obtained. Finally, by multiplying the forecasted deterministic term, periodic term,
and stochastic term from 1 September and 31 December, the electricity price from 1 September and
31 December can be obtained, which are shown in Figure 5.

Table 2. The optimal values of σ2 and c.

Parameters Deterministic Trend Periodic Component Stochastic Trend

σ2 3.2174 3.0478 4.5733
c 16.5741 10.5822 12.9847
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5. Discussions

To verify the effectiveness of the proposed BND-FOA-LSSVM model for electricity price
forecasting, five compared prediction models are selected in this paper, which are single LSSVM,
BND-LSSVM, FOA-LSSVM, ARIMA (autoregressive integrated moving average), and EMD
(empirical mode decomposition)-FOA-LSSVM. For single LSSVM model, there are no electricity
price time series decomposition or parameter optimization. For the BND-LSSVM model, there is
electricity price time series decomposition by using the BND method, but no parameter optimization.
For the FOA-LSSVM model, there is parameter optimization by using FOA, but no electricity price
time series decomposition. For ARIMA, there is no electricity price time series decomposition. For the
EMD-FOA-LSSVM model, the electricity price time series are firstly decomposed into deterministic
term, periodic term, and stochastic term, and then these three terms will be separately forecasted by
using the FOA-LSSVM model. For single LSSVM, BND-LSSVM, FOA-LSSVM, and EMD-FOA-LSSVM
models, the input variables, output variable and related parameters are set as the same as that in
Section 4. For the ARIMA model, the daily electricity price data is served as input variable.

The electricity price forecasting results of the proposed BND-FOA-LSSVM, single LSSVM,
BND-LSSVM, FOA-LSSVM, ARIMA and EMD-FOA-LSSVM models are shown in Figure 6, and the
relative errors of forecasted electricity price by using these six models are listed in Figure 7.
From Figure 7, it can be seen that all the relative errors of forecasted electricity price of the proposed
BND-FOA-LSSVM model are smaller than 6.8%, and some are even smaller than 1%, such as
5 September, 26 September, 1 October, 15 October, 17 October, 2 December, 5 December, 15 December,
16 December, 18 December, and 30 December. However, the relative errors of forecasted electricity price
of single LSSVM and ARIMA models are much larger, and some are more than 20%. The maximum
and minimum relative errors of BND-LSSVM model are, respectively, −9.88% and 4.14%, and those
of FOA-LSSVM model are, respectively, −9.13% and 2.26%. The maximum and minimum relative
errors of EMD-FOA-LSSVM model are, respectively, 7% and 0.48%. Therefore, it can be said that, from
the perspective of relative error, the proposed BND-FOA-LSSVM model has the best electricity price
forecasting performance.
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To further verify the forecasting performance of the proposed BND-FOA-LSSVM model, three
frequently used forecasting error criteria are also selected, namely root mean square error (RMSE,
as shown in Equation (27)), mean absolute percentage error (MAPE, as shown in Equation (30)),
and mean absolute error (MAE, as shown in Equation (31)).
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where x(k) is actual value of electricity price at time k; x̂(k) is forecasting value of electricity price at
time k.

The RMSEs, MAPEs and MAEs of these six forecasting models, namely, BND-FOA-LSSVM,
LSSVM, BND-LSSVM, FOA-LSSVM, ARIMA and EMD-FOA-LSSVM, are listed in Table 3. From the
perspective of RMSE, the proposed BND-FOA-LSSVM model has the best forecasting performance
because it has the minimum RMSE (namely 11.18 Yuan/MWh), followed by the EMD-FOA-LSSVM,
FOA-LSSVM, BND-LSSVM, LSSVM, and ARIMA models. The RMSE of the BND-FOA-LSSVM model
is (12.06 − 11.18)/12.06 = 7.30%, (18.05 − 11.18)/18.05 = 38.06%, (21.36 − 11.18)/21.36 = 47.66%,
(50.78 − 11.18)/50.78 = 77.98%, and (53.43 − 11.18)/53.43 = 79.08% lower than that of
the EMD-FOA-LSSVM, FOA-LSSVM, BND-LSSVM, LSSVM, and ARIMA models, respectively.
From the perspective of MAPE, the proposed BND-FOA-LSSVM model still has the
minimum MAPE value, which is 3.48%, much lower than that of the LSSVM, BND-LSSVM,
FOA-LSSVM, ARIMA, and EMD-FOA-LSSVM models. The MAPE of the BND-FOA-LSSVM
model is (3.76 − 3.48)/3.76 = 7.45%, (5.84 − 3.48)/5.84 =40.41%, (7.27 − 3.48)/7.27 = 52.13%,
(16.89 − 3.48)/16.89 = 79.40%, and (17.71− 3.48)/17.71 = 80.35% lower than that of EMD-FOA-LSSVM,
FOA-LSSVM, BND-LSSVM, LSSVM, and ARIMA models, respectively. Meanwhile, the proposed
BND-FOA-LSSVM model obtains the minimum MAE, which is 9.95 Yuan/MWh. The MAE of
the BND-FOA-LSSVM model is (10.81 − 9.95)/10.81 = 7.96%, (16.92 − 9.95)/16.92 = 41.19%,
(20.82 − 9.95)/20.82 = 52.21%, (48.50 − 9.95)/48.50 = 79.48%, and (50.63 − 9.95)/50.63 = 80.35%
lower than that of the EMD-FOA-LSSVM, FOA-LSSVM, BND-LSSVM, LSSVM, and ARIMA
models, respectively.

Therefore, it can be concluded that the proposed BND-FOA-LSSVM model has the best forecasting
performance for electricity price forecasting because it has the minimum MAPE, RMSE and MAE.
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The EMD-FOA-LSSVM model also obtain high forecasting accuracy, but lower than that of the
BND-FOA-LSSVM model, which indicates that the BND is an effective time series decomposition
technique. The ARIMA model obtains the worst forecasting performance related to electricity price
because it has the maximum MAPE, RMSE and MAE. The single LSSVM model has better electricity
price forecasting performance compared with ARIMA model, which indicates the superiority of
machine learning technique related to electricity price forecasting. The BND-LSSVM model has better
electricity price forecasting performance compared with the single LSSVM model, which indicates the
BND is an effective time series decomposition method because it can improve the forecasting accuracy.
The FOA-LSSVM model has better forecasting performance compared with the BND-LSSVM model
and the LSSVM model, which indicates the FOA is an efficient parameter optimization technique for
LSSVM model related to electricity price forecasting because it can improve the forecasting accuracy of
electricity price.

Table 3. Forecasting performances of different methods. Auto-regressive integrated moving average
(ARIMA); empirical mode decomposition (EMD); mean absolute percentage error (MAPE); root mean
square error (RMSE); mean absolute error (MAE).

Error Criteria BND-FOA-LSSVM LSSVM BND-LSSVM FOA-LSSVM ARIMA EMD-FOA-LSSVM

RMSE (Yuan/MWh) 11.18 50.78 21.36 18.05 53.43 12.06
MAPE (%) 3.48 16.89 7.27 5.84 17.71 3.76

MAE (Yuan/MWh) 9.95 48.50 20.82 16.92 50.63 10.81

All in all, the proposed BND-FOA-LSSVM model is effective and practical for electricity price
forecasting, which can improve the forecasting accuracy of electricity price.

6. Conclusions

In this paper, a new novel hybrid electricity price forecasting model based on BND-FOA-LSSVM
was proposed. The electricity price time series are first decomposed into deterministic term, periodic
term, and stochastic term. Then, these three decomposed terms are respectively forecasted by using
the FOA-LSSVM model, and two parameters of the LSSVM model are automatically determined
by using the FOA algorithm. Finally, the forecasting result of electricity price can be obtained by
multiplying the forecasted deterministic term, periodic term, and stochastic term. The case study
and forecasting performance evaluation indicate the proposed the BND-FOA-LSSVM model has the
best forecasting performance compared with single LSSVM, BND-LSSVM, FOA-LSSVM, ARIMA,
and EMD-FOA-LSSVM models for electricity price forecasting. The MAPE, RMSE and MAE of
BND-FOA-LSSVM model are, respectively, 3.48%, 11.18 Yuan/MWh and 9.95 Yuan/MWh, which are
much smaller than that of the LSSVM, BND-LSSVM, FOA-LSSVM, ARIMA, and EMD-FOA-LSSVM
models. The proposed BND-FOA-LSSVM model for electricity price forecasting in this paper is effective
and practical, which enriches the methodology library of electricity price forecasting. Meanwhile,
the proposed method in this paper can also be used for other issues, such as power load forecasting,
renewable energy forecasting, and economic forecasting.
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