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Abstract: Grey prediction models for time series have been widely applied to demand forecasting
because only limited data are required for them to build a time series model without any statistical
assumptions. Previous studies have demonstrated that the combination of grey prediction with
neural networks helps grey prediction perform better. Some methods have been presented to improve
the prediction accuracy of the popular GM(1,1) model by using the Markov chain to estimate the
residual needed to modify a predicted value. Compared to the previous Grey-Markov models,
this study contributes to apply the functional-link net to estimate the degree to which a predicted
value obtained from the GM(1,1) model can be adjusted. Furthermore, the troublesome number of
states and their bounds that are not easily specified in Markov chain have been determined by a
genetic algorithm. To verify prediction performance, the proposed grey prediction model was applied
to an important grey system problem—foreign tourist forecasting. Experimental results show that the
proposed model provides satisfactory results compared to the other Grey-Markov models considered.
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1. Introduction

Both time series and econometric methods have been commonly used for demand forecasting.
However, prediction performance of econometric methods can be significantly influenced by
incomplete information associated with explanatory factors; and models for time series, such as
ARIMA [1] and Box-Jenkins models, usually require large size of samples to obtain reasonable
prediction accuracy [2–5]. Neural networks, such as multilayer perceptron and support vector
regression, have also been applied to demand forecasting [6,7]. Although the neural network has
proven to be an efficient technique involving computational intelligence in representing complex
nonlinear mappings, similar to econometric methods, multilayer perceptron and support vector
regression suffer from incomplete information associated with input variables.

Grey prediction models [8] have the ability to characterize an unknown system with small data
sets [9], without requiring conformance to statistical assumptions such as normality distribution.
For time series prediction, GM(1,1) is among the most frequently used grey prediction models [10].
It requires only four recent samples to derive reliable and acceptable prediction accuracy [5],
and has been widely applied to various decision problems involving management, economics, and
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engineering [2–4,11–16]. To better improve the prediction performance of the original GM(1,1) model,
several versions combining with computational intelligence have been proposed, such as models with
self-adaptive intelligence [17], neural-network-based grey prediction for electricity consumption
prediction [18,19], PGM(1,1) using particle swarm optimization to determine the development
coefficient [20], GM(1,1) models with online sequential extreme learning machine [21], an optimized
nonlinear grey Bernoulli model [22], an adaptive GM(1,1) for electricity consumption [3], and grey
wave forecasting through qualified contour sequences [23]. Literally, the combination of grey prediction
and neural networks can better represent system dynamics with uncertainty and nonlinearity [21].

The GM(1,1) model with residual modification could be established to improve prediction
accuracy of the original GM(1,1) model [7,9]. To modify the predicted values from the original model,
a residual modification model is commonly set up by building the original GM(1,1) model, and then
constructing the residual GM(1,1) model by a residual series [4,19]. As a matter of facts, construction
of grey prediction models with residual modification all stemmed from the foundation of the GM(1,1)
residual model. It is interesting that prediction accuracy obtained by the original GM(1,1) model can be
effectively improved using the Markov chain to realize the residual model [24,25]. The Grey-Markov
model, MCGM(1,1) uses the GM(1,1) model to get the basic trend of the original data, and then uses
the Markov chain to fix residual errors generated by the GM(1,1) model. It has shown advantages
over the GM(1,1) model, when the time series data fluctuated significantly [26,27]. Other related
MCGM(1,1) studies, such as Hsu and Wen [28] and Hsu [29] used Markov chain sign estimation to
modify residuals for the trans-Pacific air passenger market and the global integrated circuit industry.
Hsu et al. [30] combined a Fourier grey model with Markov chain to predict turning time of the
stock market. Kumar and Jain [31] applied MCGM(1,1) to predict conventional energy consumption.
Li et al. [32] combined RGM(1,1) with the Markov chain for thermal electric power generation. Mao
and Sun [33] applied MCGM(1,1) to fire accident prediction. Sun et al. [25] proposed a MCGM(1,1)
variant using the Cuckoo search algorithm for foreign tourist arrivals prediction. Wang [34] showed
the effectiveness of MCGM(1,1) for tourism demand prediction. Xie et al. [35] proposed a QP-Markov
model to estimate the probability that one energy component can transit to another energy component.

However, for an MCGM(1,1)-based model, it is not easy to determine the number of states
and their bounds for the Markov chain—these parameters are usually specified in advance through
experience and the modification range for a predicted value derived by the original GM(1,1) model is
identical to its corresponding predicted residual from the Markov chain. These more or less have an
impact on prediction performance. Because of the advantage of combining grey prediction with neural
networks, we propose a residual modification model based on neural networks, NN-Grey-Markov,
incorporating a functional link net (FLN) with effective function approximation capability [36–39] to
estimate the modification range with respect to a predicted residual obtained from the Markov chain.
The genetic algorithm (GA) is employed to determine connection weights of an FLN, the number
of states, and the bounds of each state, to construct the proposed grey prediction model with high
prediction accuracy.

Foreign tourist forecasting can be recognized to be a grey system problem since several factors
influence tourism demand in uncertain ways. That is, several factors such as exchange rate, security,
and disease cause fluctuations in tourism demand but the precise manner of this effect is not clear.
The variety of the international tourism market has meant foreign tourist prediction has been a
challenging task for tourism administrators [25,40,41]. The global tourism industry has a significant
impact on a nation’s economic development and foreign tourist forecasting plays a very important
role when devising tourism development plans for cities or countries. It therefore makes us more
intrigued to examine the prediction performance of the proposed residual modification model on
foreign tourist forecasting.

The remainder of the paper is organized as follows: Section 2 introduces the MCGM(1,1) model
and Section 3 presents the proposed NN-Grey-Markov model. Section 4 validates the prediction
accuracy of the proposed grey prediction model for foreign tourist forecasting using two real cases.
This paper is concluded with Section 5.
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2. The MCGM(1,1) Model

2.1. Original GM(1,1) Model

By one time accumulated generating operation (1-AGO) [9], a new sequence, x(1) = (x(1)1 , x(1)2 , . . . ,

x(1)n ), can be generated from an original data sequence x(0) = (x(0)1 , x(0)2 , . . . , x(0)n ) as follows:

x(1)k =
k

∑
j=1

x(0)k , k = 1, 2, . . . , n (1)

and x(1)1 , x(1)2 , . . . , x(1)n can be approximated by a first-order whitenization differential equation,

dx(1)

dt
+ a x(1) = b (2)

where a is the developing coefficient and b is the control variable. Using 1-AGO is beneficial to identify
regularity hidden in data sequences, even if the original data are finite, insufficient, and chaotic.

The predicted value, x̂(1)k , for x(1)k can be obtained by solving the differential equation with initial

condition x(1)1 = x(0)1 ,

x̂(1)k = (x(0)1 −
b
a
)e−a(k−1) +

b
a

(3)

Thus, x̂(1)1 = x(0)1 holds, and a and b can be estimated from the grey difference equation

x(0)k + az(1)k = b (4)

where z(1)k is the background value,

z(1)k = αx(1)k + (1 − α)x(1)k−1 (5)

where α = 0.5 usually, for convenience. Using n − 1 grey difference equations (k = 2, 3, . . . , n), a and b
can be derived using the ordinary least squares approach,

[a, b]T = (BTB)−1BTy (6)

where

B =


−z(1)2 1

−z(1)3 1
...

...

−z(1)n 1

 (7)

and
y = [x(0)2 , x(0)3 , . . . , x(0)n ]

T
(8)

Using the inverse AGO, the predicted value of x(0)k is

x̂(0)k = x̂(1)k − x̂(1)k−1, k = 2, 3, . . . , n (9)

Therefore,

x̂(0)k = (1− ea) (x(0)1 −
b
a
)e−a(k−1), k = 2, 3, . . . , n (10)

and x̂(1)1 = x̂(0)1 holds.
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2.2. Residual Modification by Markov Chain

Let ε = (ε1, ε2, . . . , εn) denote the sequence of residual values, where

εk =
∣∣∣x(0)k − x̂(0)k

∣∣∣, k = 1, 2, . . . , n (11)

Let [εmin, εmax] denote the range of residuals, where εmin and εmax are the minimum and maximum
values among εk, respectively. Then [εmin, εmax] can be divided into r intervals (r ≥ 2), with each
interval treated as a state. The state with lower bound εmin is state 1, and state r is the state with upper
bound εmax. Therefore, state of εk can be determined depending on where it locates. It is not necessary
to require intervals with equal length.

Subsequently, an m-step transition probability matrix P(m) can be generated as follows:

P(m) =


p(m)

11 p(m)
12 . . . p(m)

1r

p(m)
21 p(m)

22 . . . p(m)
2r

...
...

. . .
...

p(m)
r1 p(m)

r2 . . . p(m)
rr

 (12)

where p(m)
ij denotes the transition probability from state i to j (1 ≤ i, j ≤ r) by m steps,

p(m)
ij =

t(m)
ij

ti
(13)

where t(m)
ij denotes the number of transitions from state i to j by m steps, and ti denotes the number

of state i among the sequence of residual values. For each row in P(m), the sum of elements equals
one. However, p(m)

ii can be specified directly as one when the sum of elements in the row i equals zero.
In other words, such a state is treated as an absorbing state.

The predicted residual value, ε̂
(m)
k can be computed if εk locates in state i,

ε̂
(m)
k = p(m)

i1 c1 + p(m)
i2 c2 + . . . + p(m)

ir cr (14)

where cw (1≤ w≤ r) is the center of state w, whose lower and upper bounds are lw and uw, respectively.
Alternatively, cw can be expressed as [25,32]

cw = αw lw + (1 − αw) uw (15)

Then x̂(0)k can be revised as a new predicted value x̃(0)k by adding the predicted residual ε̂
(m)
k .

x̃(0)k = x̂(0)k + ε̂
(m)
k , k = 1, 2, . . . , n (16)

The Markov chain is used to modify the residuals generated by the GM(1,1) model. Sun et al. [25]
and Mao and Sun [33] used the sequence of relative errors rather than the sequence of residual values.

3. The Proposed NN-Grey-Markov Model

Two issues must be addressed for the original Grey-Markov model. First, the modification range
of x̂(0)k in the original Grey-Markov model is restricted to ε̂

(m)
k with a positive sign, which may affect

prediction accuracy of the residual modification models. To increase flexibility, the restriction may
be relaxed by deriving the sign and modification range with respect to ε̂

(m)
k . Second, the number of

intervals, r, is fixed and usually specified in advance. To improve prediction accuracy it is reasonable
to apply a GA—which is a powerful search and optimization method [42–44]—to automatically
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determine r and the lower and upper bounds of each interval. FLN is an appropriate tool to provide
estimations for the sign and modification range, due to its effective function approximation capability.

Section 3.1 describes how to apply FLN to estimate the sign and modification range for each
predicted residual, and Section 3.2 describes the construction of the proposed NN-Grey-Markov model
using GA to determine the required parameters, including FLN connection weights, r and the lower
and upper bounds of each interval.

3.1. Incorporating Functional-Link Net into the Proposed NN-Grey-Markov Model

For flexibility, it is reasonable to modify x̂(0)k as x̃(0)k by adding or subtracting ε̂
(m)
k ,

x̃(0)k = x̂(0)k + yk ε̂
(m)
k , k = 1, 2, . . . , n (17)

where yk ranges from −1 to 1 and can be interpreted as the degree to which x̂(0)k can be adjusted.

That is, if yk is positive, the greater yk, the more likely x̂(0)k is to be adjusted toward x̂(0)k + ε̂
(m)
k . On the

contrary, if yk is negative, the smaller yk, the more likely x̂(0)k is to be adjusted toward x̂(0)k − ε̂
(m)
k .

We estimated yk with FLN using the hyperbolic tangent function,

tanh(z) =
ez − e−z

ez + e−z (18)

as the activation function, which has range (−1, 1).
An enhanced pattern with respect to a single input denoted by tk, can be generated as (tk, sin(πtk),

cos(πtk), sin(2πtk), cos(2πtk), sin(4πtk)) through a functional link, where tk denotes the time period k
with respect to x̂(0)k . Let θ be the bias to the output node. Then the actual output value, yk, corresponding
to (tk, sin(πtk), cos(πtk), sin(2πtk), cos(2πtk), sin(4πtk)) is

yk = tanh(w1tk + w2sin(πtk) + w3cos(πtk) + w4sin(2πtk) + w5cos(2πtk) + w6sin(4πtk) + θ) (19)

Although the components in the functional expansion representation can be unrestrictedly
extended for tk, this is not practical in real applications. (tk, sin(πtk), cos(πtk), sin(2πtk), cos(2πtk),
sin(4πtk)) with respect to tk is acceptable [37]. Hu [45] also demonstrated the superiority of applying
residual modification using FLN to predict energy demand.

3.2. Constructing the Proposed NN-Grey-Markov Model

To construct the proposed grey prediction model with high prediction accuracy, we consider
the mean absolute percentage error (MAPE), which is usually recommended to be used for
modelling [46,47]. MAPE with respect to x(0) is formulated as follows:

MAPE =
1
n

n

∑
k=1

∣∣∣x(0)k − x̃(0)k

∣∣∣
x(0)k

× 100% (20)

What we are aiming for is to set up a prediction model with high prediction accuracy. The problem
can be formulated as maximizing the reciprocal of MAPE for constructing the prediction model. Using
this fitness function, a real-valued GA was developed to automatically determine 7 + 2r parameters,
including the connection weights (w1, w2, w3, w4, w5, w6), bias (θ), the number of intervals (r), partition
points (p1, p2, . . . , pr−1), and relative weights in respective intervals (α1, α2, . . . , αr) for the proposed
grey prediction model, where w1, w2, w3, w4, w5, w6, and θ range from −1 to 1, p1, p2, . . . , pr−1 range
from εmin to εmax, and r range from 2 to 10. It is noted that ur−1 = lr = pr−1 holds.

Let nsize and nmax denote the population size and maximum number of generations, respectively,
and Pm denote the population in generation m (1 ≤ m ≤ nmax). After evaluating the fitness value
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of each chromosome in Pm, nsize new chromosomes were generated for Pm+1 by means of selection,
crossover, and mutation. GA was performed for nmax generations. When the stopping condition was
satisfied, the algorithm is terminated, and the best chromosome with maximum fitness value among
consecutive generations can be used to examine the generalization ability of the NN-Grey-Markov
model. These genetic operations are briefly described below.

3.2.1. Selection

Let chromosome u (1 ≤ u ≤ nsize) produced in Pm be represented as
wm

u,1wm
u,2wm

u,3wm
u,4wm

u,5wm
u,6θm

u rm
u pm

u,1 pm
u,2 . . . pm

u,r−1αm
u,1αm

u,2 . . . αm
u,r. Two chromosomes from Pm

were randomly selected by binary tournament selection, and the one with higher fitness was put into
a mating pool. This process was repeated until nsize chromosomes were placed in the mating pool.
nsize/2 pairs of chromosomes from the pool were then randomly selected, and offspring of the selected
parents were reproduced by crossover and mutation.

3.2.2. Crossover

Crossover was applied to reproduce children by altering the parent chromosomal makeup.
For two selected chromosomes, u (wm

u,1wm
u,2wm

u,3wm
u,4wm

u,5wm
u,6θm

u rm
u pm

u,1 pm
u,2 . . . pm

u,r−1αm
u,1αm

u,2 . . . αm
u,r)

and v (wm
v,1wm

v,2wm
v,3wm

v,4wm
v,5wm

v,6θm
v rm

v pm
v,1 pm

v,2 . . . pm
v,r−1αm

v,1αm
v,2 . . . αm

v,r) (1 ≤ v ≤ nsize), each pair of
real-valued genes can be used to generate two new genes with crossover probability Prc.

wm
u,i
′ = hiwm

u,i + (1 − hi)wm
v,i, wm

v,i
′ = (1 − hi)wm

u,i + hiwm
v,i, i = 1, 2, . . . , 6

θm
u
′ = h7θm

u + (1 − h7)θ
m
v , θm

v
′ = (1 − h7) θm

u + h7θm
v

rm
u
′ = h8rm

u + (1 − h8)rm
v , rm

v
′ = (1 − h8) rm

u + h8rm
v

pm
u,i
′ = h8+j pm

u,i + (1 − h8+j)pm
v,i, pm

v,i
′ = (1 − h8+j)pm

u,i + h8+j pm
v,i, j = 1, 2, . . . , r − 1

αm
u,i
′ = h7+r+jα

m
u,i + (1 − h7+r+j)α

m
v,i, pm

v,i
′ = (1 − h7+r+j)α

m
u,i + h7+r+jα

m
v,i, j = 1, 2, . . . , r

where h1, h2, . . . , h7+2r are all random numbers in the interval [0, 1]. It is noted that Prc should be
specified as a large value because it controls the exploratory range in the solution space.

3.2.3. Mutation

Mutation was performed with probability Prm for each real valued parameter in a new
chromosome generated by crossover. To avoid excessive perturbation, a low mutation rate was
taken into account. When a mutation happened with a real valued gene, that gene was changed
by adding a randomly selected number from a specified interval. After crossover and mutation,
ndel (0 ≤ ndel ≤ nsize) chromosomes in Pm+1 were removed randomly from the set of new chromosomes
to create space for the chromosome with maximum fitness value in Pm.

4. Empirical Study

4.1. Background

The global tourism industry plays a significant role in the economic development of a country.
To boost the tourism industry, devising tourism development and marketing strategies by estimating
the number of the foreign tourists has become increasingly important for governments and industries
in the private sector such as airlines, hospitality services, and travel agencies. Effective tourism
demand forecasting can significantly affect the amount of resources that governments and private
sectors invest [6]. In Taiwan, tourism statistics show that foreign tourists mainly came from Japan,
Hong Kong, Macao, Korea, China, and USA for 2014–2016. It is noteworthy that the number of tourist
arrivals from Southeast Asia increased by 15% in May 2016 compared to May 2015. In face of the
growth rate, authorities have actively investigated how to continuously expand the tourism market
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in the Southeast Asia through new policies. Therefore, foreign tourist forecasting will have a great
impact on the outcomes of programs related to the policy.

Real datasets are used to conduct experiments to compare foreign tourist forecasting from the
proposed NN-Grey-Markov model against the original GM(1,1), MCGM(1,1), and several models
proposed by Sun et al. [25], including segmented GM(1,1) (SGM(1,1)), SGM(1,1) using Markov chain
(MCSGM(1,1)), and MCSGM(1,1) using a Cuckoo search algorithm (CMCSGM(1,1)). In contrast to
the original GM(1,1) and MCGM(1,1) using all observed data, the SGM model first used a rolling
mechanism to determine the set of newly observed data, and then constructed the GM(1,1) model.
Thus, the rolling mechanism could select only a few recent data by capturing the developing trend
from all observed data. This reflects the premise that as the system develops, the significance of older
data reduces [9].

As the system develops further, the significance of the older data reduces [9,48]. Therefore, the
training data, retained after rolling, were applied to the SGM(1,1), MCSGM(1,1) and CMCSGM(1,1)
models. The rolling mechanism could select only a few recent data by capturing the developing trend
from the training data. For x(0) = (x(0)1 , x(0)2 , . . . , x(0)n ), the l-point rolling (4≤ l≤ n− 1) can be exercised
on x(0) to construct a GM(1,1) model. MAPEl corresponding to the l-point rolling can be computed as

MAPEl =
1

n− l

n

∑
k=l+1

∣∣∣x(0)k − x̃(0)k

∣∣∣
x(0)k

× 100% (21)

Finally, the best number of point, say v, that can be used to construct a GM(1,1) model, called
SGM(1,1), is determined as

v = argmin
l

MAPEl (22)

For fair comparisons, the proposed NN-Grey-Markov model used the same training data as the
SGM(1,1), the MCSGM(1,1), and the CMCSGM(1,1) models. The rest of this section is organized as
follows. Section 4.1 presents the parameter specifications for the GA and Section 4.2 presents prediction
accuracy for different grey prediction models on real data.

4.2. GA Parameters

It is known that population size and crossover and mutation probabilities can have impacts on GA
performance. There are no optimal parameter settings. Therefore, following [42,44], the experiment
parameters were chosen to be:

(i) nsize = 200: It is reasonable to specify population size ranging from 50 to 500 individuals.
(ii) nmax = 1000: nmax plays a role of stopping condition, and it should take available computing time

into account.
(iii) ndel = 2: A small number of elite chromosomes is considered.
(iv) Prc = 0.8, Prm = 0.01.

In the experiment, no matter what the data set is, the same parameters of GA were used to
examine the prediction accuracy of the proposed NN-Grey-Markov model.

4.3. Applications to Foreign Tourist Forecasting

4.3.1. Case I

The first experiment was conducted on the yearly statistics reported by Taiwan Tourism
Bureau [49]. Table 1 shows historical annual foreign tourists to Taiwan from six countries, Japan,
Hong Kong/Macao, Korea, China, USA, and Southeast Asia, collected from 2001 to 2016. Year
2016 was used for testing using a one-step transition probability matrix, i.e., m = 1. Therefore, after
performing the rolling mechanism, 2011–2015 data from China and 2012–2015 from the other countries
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can be used for model-fitting for the SGM(1,1), the MCSGM(1,1), the CMCSGM(1,1), and proposed
grey prediction models. Whichever the country is, the original GM(1,1) and the MCGM(1,1) were
constructed using data from 2001 to 2015.

Table 1. Historical annual foreign tourists from six countries to Taiwan.

Year Japan Hong Kong/Macao Korea China U.S.A. Southeast Asia

2001 976,750 435,164 85,744 348,808 488,968
2002 998,497 456,554 83,624 377,470 530,319
2003 657,053 323,178 92,893 272,858 457,103
2004 887,311 417,087 148,095 382,822 568,269
2005 1,124,334 432,718 182,517 390,929 636,925
2006 1,161,489 431,884 196,260 394,802 643,338
2007 1,166,380 491,437 225,814 397,965 700,287
2008 1,086,691 618,667 252,266 329,204 387,197 725,751
2009 1,000,661 718,806 167,641 972,123 369,258 689,027
2010 1,080,153 794,362 216,901 1,630,735 395,729 911,174
2011 1,294,758 817,944 242,902 1,784,185 412,617 1,071,975
2012 1,432,315 1,016,356 259,089 2,586,428 411,416 1,132,592
2013 1,421,550 1,183,341 351,301 2,874,702 414,060 1,261,596
2014 1,634,790 1,375,770 527,684 3,987,152 458,691 1,388,305
2015 1,627,229 1,513,597 658,757 4,184,102 479,452 1,425,485
2016 1,895,702 1,614,803 884,397 3,511,734 523,888 1,653,908

Figures 1 and 2 show prediction results with respect to model fitting and testing for different
models, respectively. Figure 1 shows that the proposed NN-Grey-Markov model outperforms the other
prediction models considered for model-fitting. For testing, the proposed NN-Grey-Markov model
outperforms the SGM(1,1), the MCSGM(1,1), and the CMCSGM(1,1) models, and it is little inferior to
the original GM(1,1) and the MCGM(1,1) models for Hong Kong/Macao and Southeast Asia.Information 2017, 8, 126  9 of 13 
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Figure 1. Model-fitting results for Case I.
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Figure 2. Testing results for Case I.

4.3.2. Case II

Historical annual data from 1997 to 2013 published by China National Tourism Administration
were used to conduct the second experiment. The data were summarized in Reference [25].
The collected data were associated with foreign tourists from eight main countries, including Japan,
Korea, Malaysia, Mongolia, Philippines, Russia, Singapore, and USA. Year 2013 was used for testing by
a one-step transition probability matrix. Performing the rolling mechanism, 2005–2012 data from Korea,
Japan, USA, and Malaysia; 2006–2012 from Russia, 2003–2012 from Mongolia and Philippines; and
2004–2012 from Singapore from 2004 to 2012 can be used to construct the SGM(1,1), the MCSGM(1,1),
the CMCSGM(1,1), and proposed NN-Grey-Markov models. The original GM(1,1) and the MCGM(1,1)
were constructed using data from 1997 to 2012 for each economy. Using the same data, Sun et al. [25]
demonstrated the effectiveness of the CMCSGM(1,1) model.

Figures 3 and 4 show prediction results with respect to model fitting and testing for different
prediction models, respectively. For model-fitting, Figure 3 shows that the proposed NN-Grey-Markov
model is comparable or superior to the compared models. It is slightly inferior to the CMCSGM(1,1)
model for Malaysia. As for testing results, prediction accuracy of the proposed NN-Grey-Markov
model outperforms that of the CMCSGM(1,1) model, except for Malaysia and Singapore. The proposed
grey prediction model is superior to the original GM(1,1), the SGM(1,1), and the MCSGM(1,1) models.
It is obvious that the proposed NN-Grey-Markov model provides comparable and satisfactory results
compared to the other prediction models considered.
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5. Discussion and Conclusions

Data fluctuations such as tourism time series data often arise from random factors, which can
be effectively reduced by the Grey-Markov model. Based on the Grey-Markov model, this study
proposed a novel grey residual modification model, NN-Grey-Markov, for tourism demand prediction.
Compared to previous studies based on MCGM(1,1), there are two distinctive features of the proposed
NN-Grey-Markov model. First, the proposed grey prediction model incorporates FLN to estimate the
sign of each revised residual, and available degree to which a predicted value from the GM(1,1) model
can be adjusted. Second, we need not define the number of states and their bounds for the Markov
chain in advance, since these can be fully determined by GA. It should be noted that, the FLNGM(1,1)
model [45] integrated the original GM(1,1) with the residual GM(1,1) models and then used the
functional-link net to estimate the sign and the modification range with respect to a predicted residual
obtained from the residual GM(1,1) model. The implementation of the proposed NN-Grey-Markov
model is therefore different from that of the FLNGM(1,1) model.

Development of the tourism industry has contributed relatively highly to economic prosperity.
In the variable global tourism market, accurate prediction of tourism demand is crucial for governments
and private sectors to set up strategies—such as investment and construction—to promote the tourism
industry. It is challenging to predict precisely the trend of tourism demand. From the perspective of
the grey system, it is reasonable to apply the GM(1,1) model to foreign tourist prediction. Historical
annual data for foreign tourists, collected from Taiwan and China official institutions, were used to
evaluate prediction performance of the proposed NN-Grey-Markov model. The proposed model
with pre-specified GA parameters, including population size, number of generations, probabilities for
crossover and mutation, performs well. This means that fine parameter tuning is not required for the
proposed prediction model, and that parameter specifications introduced in the previous section were
acceptable. Real case experiments reveal that the proposed NN-Grey-Markov model outperformed
other grey prediction models considered for the majority of data sets. This validated the potential
usefulness of the proposed NN-Grey-Markov model for tourism demand prediction.

For future studies, there are two issues that require addressing. First, this study used a one-step
transition probability matrix to predict the residual for testing on a predicted time period. The other
alternative is to sum the rows of the transition probability matrices corresponding to some near
time periods prior to a predicted one to estimate the residual corresponding to a predicted time
period [32,33]. It would be interesting to examine the influence on foreign tourist prediction using the
proposed NN-Grey-Markov model. Second, FLN used the hyperbolic tangent function as the output
neuron’s activation function, computing a weighted sum of a vector of connection weights with an
enhanced pattern. This assumes additivity among individual variables in the enhanced pattern [50].
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However, these criteria are not always independent [12,51,52], and would be interesting to explore the
impact of non-additivity on prediction performance of the proposed NN-Grey-Markov model.
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