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Abstract: The main purpose of feature subset selection is to remove irrelevant and redundant
features from data, so that learning algorithms can be trained by a subset of relevant features.
So far, many algorithms have been developed for the feature subset selection, and most of these
algorithms suffer from two major problems in solving high-dimensional datasets: First, some of
these algorithms search in a high-dimensional feature space without any domain knowledge about
the feature importance. Second, most of these algorithms are originally designed for continuous
optimization problems, but feature selection is a binary optimization problem. To overcome the
mentioned weaknesses, we propose a novel hybrid filter-wrapper algorithm, called Ensemble
of Filter-based Rankers to guide an Epsilon-greedy Swarm Optimizer (EFR-ESO), for solving
high-dimensional feature subset selection. The Epsilon-greedy Swarm Optimizer (ESO) is a novel
binary swarm intelligence algorithm introduced in this paper as a novel wrapper. In the proposed
EFR-ESO, we extract the knowledge about the feature importance by the ensemble of filter-based
rankers and then use this knowledge to weight the feature probabilities in the ESO. Experiments
on 14 high-dimensional datasets indicate that the proposed algorithm has excellent performance in
terms of both the error rate of the classification and minimizing the number of features.

Keywords: feature subset selection; hybrid filter-wrapper; high-dimensionality; Epsilon-greedy
Swarm Optimizer; multi-objective optimization; swarm intelligence

1. Introduction

Results obtained by studies in machine learning show that feature subset selection can improve
the performance of learning algorithms. The focus of feature subset selection is to remove irrelevant
and redundant features from a certain dataset and choose a subset of features which give us the
most information about the dataset [1]. From the machine learning point of view, if a system uses
irrelevant features, it will use this information to predict the unseen data and, therefore, will guide the
learning algorithm toward poor generalization. In addition to increasing the prediction accuracy of the
learning algorithm, the feature subset selection has two other benefits: reducing the cost of collecting
unnecessary data and reducing the learning and prediction time. However, dimensionality reduction
by a feature subset selection algorithm, especially for high-dimensional datasets, is one of the most
attractive branches of computer science and artificial intelligence.

Various algorithms have already been proposed to solve the feature subset selection problem.
The simplest algorithm is to test all subsets by an exhaustive search algorithm, such as tree search
algorithms, and select the best subset. Although this algorithm has a simple logic, directly evaluating all
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the feature subsets becomes a difficult optimization problem [2,3], because there are 2d different feature
subsets when we have a feature set with size d. Therefore, there are very few feature subset selection
methods that use an exhaustive search in the feature space [1]. It is noteworthy that exhaustive search
algorithms can only solve small- and medium-sized datasets and cannot be used for high-dimensional
datasets because an exhaustive search in high-dimensional space is practically impossible. In this case,
an approximate algorithm must be used which can remove redundant and irrelevant features with
tractable and reasonable computations [2]. The approximate feature subset selection algorithms can
be classified into three categories: filter methods, wrapper methods, and embedded methods [1].
Filter methods act as a preprocessing phase to rank all features wherein the top-ranked features are
selected and used by a learning algorithm. In wrapper methods, the feature subset selection criterion is
the performance of a learning algorithm, i.e., the learning algorithm is wrapped on a search algorithm
which will find a subset that gives the highest learning algorithm performance. In other words,
wrapper methods use the learning algorithm as a black box and the learning algorithm performance as
the objective function to evaluate the feature subsets. Embedded methods try to use the advantages of
both filter and wrapper methods.

Although the filter algorithms for feature subset selection are computationally efficient than
wrapper algorithms, but they suffer severely from the “feature interaction problem”. We can generally
define the feature interaction as a situation in which the optimization of a feature is affected by the
values of other features. These interactions can be in two-way, three-way, or complex multi-way
interactions among different features. For example, a feature that, individually, lacks meaningful
relevance with the target, could dramatically increase the predictive accuracy of the learning algorithm
if it is used in combination with other complementary features. In contrast, a feature that, individually,
has good relevance to the target, may be a redundant feature in combination with other features.
It should be noted that deleting or selecting these features, which is a highly probable task by the filter
algorithms, can prevent us from finding the optimal feature subset. To avoid the feature interaction
problem, we need to evaluate a subset of features as a whole with wrapper algorithms.

The wrapper methods were classified into two categories: sequential selection algorithms and
meta-heuristic search algorithms [1,4]. The sequential selection algorithms start with an empty
set (or a full set) and add features (or remove features) until the maximum value of objective
function is obtained. Typical examples for sequential selection algorithms are sequential forward
selection (SFS) [5] and sequential backward selection (SBS) [5]. Since sequential selection algorithms
use the greedy approach, they suffer from the so-called “nesting effect” because a feature that is
added or removed cannot be removed or added in later stages [6]. In the feature subset selection
problem, the interaction between the features has a great impact on the accuracy of learning algorithm,
so that a feature can be good on its own, but cannot produce good performance for learning algorithms
in interaction with other features. Therefore, to find an optimal subset of features, the ability of
removing and adding the features over time should be given [4]. In contrast to the sequential selection
algorithms, meta-heuristic search algorithms evaluate different subsets to optimize the objective
function [7]. Different subsets are generated either by searching around in a search space or by
generating solutions to the optimization problem. The class of meta-heuristic search algorithms
includes, but is not restricted to, Genetic Algorithms (GAs) [8], Particle Swarm Optimization (PSO) [9],
Competitive Swarm Optimization (CSO) [10], Gravitational Search Algorithm (GSA) [11], and Ant
Colony Optimization [12].

Although the accuracy of features obtained by the wrappers is better than the accuracy of
the features obtained by the filters, in general, most of the wrappers do not perform well for
high-dimensional feature subset selection [4]. There are two main reasons for this ineffectiveness.
First, most algorithms perform the search in the high-dimensional feature space without any domain
knowledge about the feature importance. Second, the most of existing algorithms are designed for
continuous optimization problems, but the feature subset selection is essentially a binary optimization
problem. Based on Xue et al. [4], one of the most important research fields for the feature subset
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selection problem is to propose new binary algorithms for solving the high-dimensional feature subset
selection problem.

In this paper, we propose a novel hybrid filter-wrapper algorithm, called the Ensemble
of Filter-based Rankers to guide an Epsilon-greedy Swarm Optimizer (EFR-ESO), for solving
high-dimensional feature subset selection. Experiments on 14 high-dimensional datasets indicate that
the proposed algorithm has a great performance both in terms of the error rate of the classification
and in terms of minimizing the number of features. The two main contributions of this paper can be
summarized as follows:

• A novel binary swarm intelligence algorithm, called the Epsilon-greedy Swarm Optimizer (ESO),
is proposed as a new wrapper algorithm. In each iteration of the ESO, a particle is randomly
selected, then the nearest-better neighbor of this particle in the swarm is found, and finally a new
particle is created based on these particles using a new epsilon-greedy method. If the quality
of new particle is better than the randomly-selected particle, the new particle is replaced in the
swarm, otherwise the new particle is discarded.

• A novel hybrid filter-wrapper algorithm is proposed for solving high-dimensional feature subset
selection, where the knowledge about the feature importance obtained by the ensemble of
filter-based rankers is used to weight the feature probabilities in the ESO. The higher the feature
importance, the more likely it is to be chosen in the next generation. In the best of our knowledge,
no empirical research has been conducted on the using feature importance obtained by the
ensemble of filter-based rankers to weight the feature probabilities in the wrapper algorithms.

The structure of this paper is organized as follows. In Section 2, the literature review of the paper
is presented. In Section 3, the proposed EFR-ESO algorithm for the high-dimensional feature subset
selection is introduced. Section 4 presents the theoretical global convergence analysis of EFR-ESO.
Section 5 contains the experimental results of the paper, in which the numerical performance of the
proposed algorithm for high-dimensional feature subset selection is evaluated and its results are
compared with results of other feature subset selection algorithms. Finally, in Section 6 the conclusion
and future work are given.

2. Literature Review

Research on meta-heuristic algorithms for feature subset selection began around the 1990s.
However, these methods did not come to fame until around 2007, when the size of datasets became
relatively large. In the best of our knowledge, Genetic Algorithms (GAs) are the first meta-heuristic
widely used for feature subset selection. The results of the first research in the field of feature subset
selection by GA was published in 1989 [13]. After that, many studies were done to improve the GA
for feature subset selection. For example, Li et al. [14] suggested a GA with multiple populations for
feature subset selection in which every two-neighbor population exchanged two solutions to share
their obtained knowledge. In [15] a hybrid genetic algorithm (HGA) is proposed for feature subset
selection, where the GA is combined with a local search.

Particle Swarm Optimization (PSO) is another meta-heuristic widely used for feature subset
selection. Both continuous PSO and binary PSO have been used for solving this problem [4].
When using the continuous PSO for feature subset selection, a threshold λ is applied to specify the
selection statues of a feature. If the feature value of a particle is larger than λ, the corresponding feature
is selected. Otherwise, if the feature value of a particle is smaller than λ, the corresponding feature is not
selected. In [16], the PSO is hybridized with Support Vector Machines (SVM) for simultaneous feature
subset selection and parameter optimization and a framework, called the PSO–SVM, is proposed
to increase the prediction ability. In [17], two different chaotic maps are injected into binary PSO to
specify its inertia weight in order for feature subset selection. Zhang et al. [18] proposed a binary
PSO with mutation operator to feature subset selection in spam detection. In [19], a novel version of
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PSO, called Competitive Swarm Optimizer (CSO), was proposed for high-dimensional feature subset
selection. The other studies on feature subset selection using PSO can be found in [20–22].

In the previous literature, some researchers model the feature subset selection as a multi-objective
optimization problem which has two main objectives: (1) minimizing the classification error rate;
and (2) minimizing the number of features. For example, research on PSO for multi-objective feature
subset selection started only in the last four years, where Xue et al. [23] conducted the first work to
optimize the classification performance and the number of features as two separate objectives.

There are many more recent works on other algorithms for feature subset selection. Zhou et al. [24]
proposed a computer-assisted diagnosis method based on wavelet entropy and feature subset selection
to detect abnormal magnetic resonance images of brain. Emary et al. [25] proposed two novel binary
versions of Ant Lion Optimizer (ALO) for feature subset selection. Zawbaa et al. [26] proposed a chaotic
version of ALO for feature subset selection, where a chaotic system try to improve the balance between
exploration and exploitation. Shunmugapriya and Kanmani [27] proposed a hybrid algorithm which
combines ACO and Artificial Bee Colony (ABC) algorithms for feature subset selection in classification,
where each ant exploit by the bees to find the best ant of the colony and each bee adapts their food
source by the ants.

All the algorithms mentioned above have good performance only for small-dimensional or
medium-dimensional feature subset selection. For this reason, they are not able to find the optimal
feature subset in high-dimensional datasets. Most of existing methods for high-dimensional feature
subset selection apply a two-stage algorithm. In the first stage, one or multiple filter algorithms
are used to evaluate the relevance of each feature with the target, then ranks them according to
the relevance value. In the second stage, only the top-ranked features are used as the candidate
features for the wrapper algorithm. In [28] a PSO-based feature subset selection algorithm is proposed
for the classification of high-dimensional cancer microarray data. In the first stage, the dataset is
clustered by the k-means algorithm, then a filter algorithm is applied to rank each gene in every cluster.
The high-ranked genes of each cluster are selected and a feature pool is constructed. In the second stage,
the PSO attempts to find a near optimal feature subset from this feature pool. In [29] a hybrid genetic
algorithm for feature subset selection is proposed to increase the classification prediction in credit risk
assessment. In the first stage, multiple filter algorithms are applied to determine irrelevant features of
a dataset. Then, the GA is prevented from spending time to explore the irrelevant regions of the feature
space. In [30] a genetic algorithm (GA) is proposed for feature subset selection in which it combines
various existing feature subset selections. In the first stage, multiple filter algorithms are used to select
the high-ranked features of dataset. Then the feature subsets obtained from filter algorithms generate
a feature pool. In the second stage, the GA will attempt to find a near optimal feature subset from this
feature pool. As a fundamental weakness, the first stage of these algorithms removes lowly-ranked
features without considering their interaction with other features. As previously stated, a lowly-ranked
feature could dramatically increase the predictive accuracy of the learning algorithm if it is used in
combination with other complementary features. To solve this weakness, novel hybrid filter-wrapper
algorithms are needed to solve high-dimensional feature subset selection. In this paper, we propose
a novel two-stage algorithm which does not remove any lowly-ranked features from the dataset to
find the optimal feature subset, but it weights lowly-ranked features with a small probability. By doing
this, these lowly-ranked features are not removed from the search process, but they are given a small
chance of being selected. Therefore, those lowly-ranked features, which could dramatically increase
the predictive accuracy of the learning algorithm, have a chance to be selected during the feature
subset selection process.

3. The Proposed Algorithm

Algorithm 1 shows the general steps of proposed algorithm, the Ensemble of Filter-based Rankers
to guide an Epsilon-greedy Swarm Optimizer (EFR-ESO). As can be seen, the proposed algorithm is
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a steady-state swarm optimization algorithm that only one solution of the swarm is updated in each
iteration. The steps of the proposed algorithm are discussed in more detail below.

Algorithm 1: General outline of EFR-ESO.

t = 0;

Randomly generate the initial swarm
→
Xi(t), i = 1, . . . , N;

Evaluate the initial swarm with the evaluation function;
Calculate the rank of each feature by ensemble of filter rankers;
Calculate the feature probabilities;
While stopping criterion is not satisfied Do

Randomly select a particle in the swarm, named
→
Xr(t).

Find the nearest-better neighbor of
→
Xr(t), named

→
XNB(t).

Generate a new particle
→
Xnew(t) based on

→
Xr(t) and

→
XNB(t) by Epsilon-greedy algorithm.

Evaluate the fitness of
→
Xnew(t).

If the fitness of
→
Xnew(t) is better than

→
Xr(t), then replace

→
Xnew(t) in the swarm.

t = t + 1;
End while
Output: The best solution found.

3.1. Solution Representation

To design a meta-heuristic, representation is necessary to encode each solution of the problem.
The representation used in the proposed algorithm is the well-known binary representation [7].

Suppose
→
Xi(t) be the position of the ith member of population as follows:

→
Xi(t) =

(
x1

i (t), x2
i (t), . . . , xd

i (t), . . . , xn
i (t)

)
, (1)

where n is the number of features and xd
i (t) is defined as follows:

xd
i (t) =

{
1, i f dth f eature is selected

0, otherwise
. (2)

In the other words, the ith solution will be encoded by a vector
→
Xi(t) of n binary variables where

the dth decision variable of
→
Xi(t) denotes the presence or absence of the dth feature of the dataset in

the solution.

3.2. Nearest-Better Neighborhood

As can be seen in Algorithm 1, we must find the nearest-better neighbor for each arbitrary selected
particle in the swarm. Here, this process is done by the concept of nearest-better neighborhood in which
each particle i is connected to a particle j so that: (1) the objective function value of particle j is better
than particle i; and (2) in the decision space, particle j is at least as close to particle i, based on a distance
measurement function, as any other particle k that its quality is better than particle i. For the distance
function, we use the Hamming distance [31] which is one of the most famous distance measurement
functions for binary spaces. Note that the nearest-better neighborhood helps the proposed algorithm
to escape from premature convergence in local optimum feature subsets. The reason for this is that
moving towards the nearest-better neighbor can satisfy two important criteria, i.e., convergence and
diversity [7,32,33]. We can gain the convergence because the nearest-better neighbor encourages
a particle to move toward a better solution; and we can gain the diversity because the nearest-better
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neighbor encourages a particle to move toward as near a solution as possible. Algorithm 2 shows how
to find the nearest-better neighbor for each particle r.

Algorithm 2: Outline of finding the nearest-better neighbor for particle r.

Inputs:
→
Xi(t), i = 1, . . . , N.

NB(t) = 0;
minDist = ∞;
For i = 1 to N Do

If f
(→

Xi(t)
)
< f

(→
Xr(t)

)
AND Distance

(→
Xr(t),

→
Xi(t)

)
< minDist

NB(t) = i;

minDist = Distance
(→

Xi(t),
→
Xr(t)

)
;

End if
End for

If NB(t) == 0
NB(t) = r;

End if

Output: NB(t).

3.3. Particle Generation by the Epsilon-Greedy Algorithm

Suppose
→
Xr(t) is a randomly-selected particle in the current iteration and

→
XNB(t) is the

nearest-better neighbor of
→
Xr(t) in the swarm. In the particle generation step of Algorithm 1, there are

two different situations for determining the value of each feature of new particle
→
Xnew(t). The first

situation is that both parent solutions, i.e.,
→
Xr(t) and

→
XNB(t), have the same value for the ith feature.

In this case, the value that is the same as parents is selected with probability 1− ε1, and the value that
is the opposite of the parents is selected with a probability of ε1. The second situation is that the parent
solutions do not have the same value for the ith feature. In this case, for the ith feature the value 0 is
selected with the probability 1− ε2, and the value 1 is selected with the probability of ε2.

According to the above descriptions, the bit value xd
new(t) is generated based on the values of

xd
r (t), xd

NB(t), ε1, and ε2 as follows:

xd
new(t) =


xd

r (t), i f xd
r (t) == xd

NB(t) and rand > ε1

∼ xd
r (t), i f xd

r (t) == xd
NB(t) and rand ≤ ε1

0, i f xd
r (t) 6= xd

NB(t) and rand > εd
2

1, i f xd
r (t) 6= xd

NB(t) and rand ≤ εd
2

, (3)

where rand is a uniformly-distributed random number in the interval [0, 1].
Note that the selected values for ε1 and εd

2 play an important role in balancing exploration and
exploitation and, therefore, guiding the search:

• ε1 is a constant scalar for each feature of dataset and its value is used to balance between
exploration and exploitation. It should be noted that depending on the value of this parameter,
there are three different types of behavior for the algorithm. In the first situation, if the value of ε1

is very close to 0.5, then the algorithm behaves similarly to a “pure random search” algorithm
and, therefore, strongly encourages exploration [34,35]. In this case, the knowledge gained during
the search process is completely ignored. In the second situation, if the value of ε1 is very close
to 1, then the algorithm behaves similarly to an “opposition-based learning” algorithm [36].
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In this case, the algorithm is trying to move in the opposite direction to the knowledge that it
has gained. In the third situation, if the value of ε1 is very close to 0, then algorithm strongly
promotes exploitation. In this case, the algorithm tries to move in line with the knowledge that it
has gained. As a general heuristic, to avoid being trapped into a local optimum, each algorithm
must start with exploration, and change into exploitation by a lapse of iterations. Such a strategy
can be easily implemented with an updating equation in which ε1 is a non-increasing function of
the generation t. In this paper, we use the following equation to update the value of ε1:

ε1(t) = ε1(0)−
t

NFE
× ε1(0), (4)

where ε1(0) is the initial value of the ε1 parameter, and t and NFE are the number of iterations
elapsed and the maximal number of fitness evaluation, respectively.

• ε2 is a vector which their values are used to bias the swarm toward a special part of the search
space. If the value of εd

2 be near to 0.5, then the chance of choosing the dth feature are equal to
the chance of not being selected. In multi-objective feature subset selection, we tend to select
fewer features. This means that we tend to generate a particle on that part of the search space
in which there exist fewer features. In the other words, we prefer new solutions containing a
large number of 0s instead of 1s. In this case, we can set the value of εd

2 in the interval [0, 0.5).
Note that this simple rule helps the algorithm to find a small number of features which minimize
the classification error. To calculate the value of εd

2 , we recommend using the rank of the dth
feature obtained by an ensemble of different filter methods, as discussed in Section 3.4.

3.4. Ensemble of Filter-Based Rankers to Set the Value of ε2

So far many filter-based rankers have been proposed for feature subset selection. The previous
research results confirmed that each filter-based ranker is suitable only for a subset of datasets.
In the other words, a filter-based ranker may excellently rank the features of a specific dataset while
performing poorly in another dataset. Therefore, choosing the best filter-based ranker for a certain
dataset may be difficult due to insufficient knowledge about the dataset and stochastic nature of
the data collection process. In the case that we want to use only one filter-based ranker for feature
subset selection, it is required to perform the numerous trial-and-error runs to choose a suitable filter
algorithm. This approach clearly suffers from high resource consumption, because feature subset
selection is a computationally-expensive problem. Motivated by these observations, we propose an
ensemble of filter-based rankers which aims to combine the outputs of several filter algorithms in
order to reduce the variability of the ranked features and generate a more robust filter algorithm.
It is noteworthy that the output of the proposed ensemble method is used as the knowledge about
feature importance to intelligently adjust the value of the ε2 vector.

Figure 1 illustrates the flowchart of calculating the value of the ε2 vector for features of the
dataset. As can be seen in this figure, some ranking lists are generated using different filter-based
algorithms for feature ranking, and then these different ranking lists are integrated using the arithmetic
mean, where the final score of feature d is calculated by the mean of the ranking scores of this
feature in each ranking list. In this paper, we use six filter-based algorithms for feature ranking,
including Mutual Information Feature Selection (MIFS) [37], Joint Mutual Information (JMI) [38],
Max-Relevance Min-Redundancy (MRMR) [39], Interaction Capping (ICAP) [40], Conditional Infomax
Feature Extraction (CIFE) [41], and Double Input Symmetrical Relevance (DISR) [42]. To calculate the
value of ε2 vector, we normalize the final feature ranking vector obtained between 0.01 and 0.1 using
the min-max normalization method [6].



Information 2017, 8, 152 8 of 17Information 2017, 8, 152  8 of 17 

 

 

Figure 1. Flowchart of the ensemble of feature rankers to calculate the  vector. 

3.5. Particle Evaluation 

Each meta-heuristic must use a fitness (or cost) evaluation function which associates with each 
solution of the search space a numeric value that describes its quality. An effective fitness (cost) 
evaluation function must yield better evaluations to solutions that are closer to the optimal solution 
than those that are farther away. 

Fortunately, the definition of cost evaluation function for wrapper feature subset selection 
algorithms is straightforward. To evaluate the cost of the feature subset selection and avoid the over-
fitting, we use the average error rates of n-fold cross-validation (with n = 10) on training data. In this 
case, we use the k-nearest neighbors (k-NN) classifier [43] with k = 5 as learning algorithm for 
wrapper. The k-NN is a type of instance-based machine learning algorithm where its input is the k 
training instances in the feature space and its output is a class label. In k-NN, an instance is labeled 
by the majority class of its k nearest neighbors. 

3.6. Particle Replacement 

In particle replacement step, the generated particle ( )newX t
  is compared with the randomly-

selected particle ( )rX t
 . The particle ( )newX t

  is replaced with ( )rX t
 , if its quality is better than it. 

3.7. Algorithmic Details and Flowchart 

Algorithm 3 shows the detailed algorithmic steps of proposed EFR-ESO algorithm, and Figure 
2 illustrates its system architecture. 

Dataset 

MIFS 

Aggregate all ranked feature lists by arithmetic mean to obtain final ranked feature list 

Calculate the value of  for each 
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Output the  vector 

Figure 1. Flowchart of the ensemble of feature rankers to calculate the ε2 vector.

3.5. Particle Evaluation

Each meta-heuristic must use a fitness (or cost) evaluation function which associates with each
solution of the search space a numeric value that describes its quality. An effective fitness (cost)
evaluation function must yield better evaluations to solutions that are closer to the optimal solution
than those that are farther away.

Fortunately, the definition of cost evaluation function for wrapper feature subset selection
algorithms is straightforward. To evaluate the cost of the feature subset selection and avoid the
over-fitting, we use the average error rates of n-fold cross-validation (with n = 10) on training data.
In this case, we use the k-nearest neighbors (k-NN) classifier [43] with k = 5 as learning algorithm for
wrapper. The k-NN is a type of instance-based machine learning algorithm where its input is the k
training instances in the feature space and its output is a class label. In k-NN, an instance is labeled by
the majority class of its k nearest neighbors.

3.6. Particle Replacement

In particle replacement step, the generated particle
→
Xnew(t) is compared with the

randomly-selected particle
→
Xr(t). The particle

→
Xnew(t) is replaced with

→
Xr(t), if its quality is

better than it.

3.7. Algorithmic Details and Flowchart

Algorithm 3 shows the detailed algorithmic steps of proposed EFR-ESO algorithm, and Figure 2
illustrates its system architecture.
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Figure 2. System architecture of the proposed EFR-ESO algorithm for feature subset selection.
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Algorithm 3: Outline of EFR-ESO for minimization.

Initialize ε1(0), N, and stopping criterion;
t = 0;

For i = 1 to N Do

Randomly generate the initial solution
→
Xi(t);

End for

// feature probabilities calculation:
Calculate the rank of each feature by ensemble of filter rankers;
Calculate the feature probabilities, i.e., ε2 vector;

While stopping criterion is not satisfied Do
Update the value of ε1;

// Particle selection:

Randomly select a particle in the swarm, named
→
Xr(t).

Find the nearest-better neighbor of
→
Xr(t), named

→
XNB(t).

// Particle generation:
For d = 1 to n Do

Generate a random number rand in interval [0, 1];
Update the value of ε2 by mutual information obtained by filter method;

xd
new(t) =


xd

r (t), i f xd
r (t) == xd

NB(t) and rand > ε1
∼ xd

r (t), i f xd
r (t) == xd

NB(t) and rand ≤ ε1
0, i f xd

r (t) 6= xd
NB(t) and rand > εd

2
1, i f xd

r (t) 6= xd
NB(t) and rand ≤ εd

2

;

End for

// Particle replacement:

If n− f old− cost
(→

Xnew(t)
)
< n− f old− cost

(→
Xr(t)

)
→
Xr(t + 1) =

→
Xnew(t);

Else
→
Xr(t + 1) =

→
Xr(t);

End if

t = t + 1;
End while

Output: The best solution found.

4. Theoretical Convergence Analysis of EFR-ESO Algorithm

In this section, we present the theoretical convergence analysis of the EFR-ESO algorithm based
on probability theory. Therefore, we first present the definition of convergence to a global optimum
solution, then demonstrate that any feasible solution in the search space can be generated by the
EFR-ESO algorithm with a positive probability, and finally prove the global convergence of EFR-ESO
algorithm. Denote x∗ to be a global optimum solution of problem, the global convergence of EFR-ESO
algorithm can be defined as follows:
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Definition 1. Let {
→
X(t), t = 1, 2, . . .} be the sequence of populations in EFR-ESO in each iteration,

where
→
X(t) = {

→
X1(t), . . . ,

→
XN(t)} is the population in iteration t. It is said that the EFR-ESO algorithm

converges to the global optimum solution x∗, if and only if [44]:

lim
t→∞

Pr{x∗ ∈
→
X(t)} = 1. (5)

Lemma 1. For 0 < ε1 < 1 and 0 < ε2 < 1, the EFR-ESO algorithm can generate any feasible solution in each
iteration with a probability greater than zero.

Proof. Without loss of generality, we consider the process of generation xd
new(t), which is the dth bit

of offspring solution generated at the iteration t + 1. It is shown that for 0 < ε1 < 1 and 0 < εd
2 < 1,

Pr{xd
new(t) = 0} and Pr{xd

new(t) = 1} are greater than zero. Denote xd
r (t) to be the dth bit found by the

randomly-selected particle at iteration t and xd
NB(t) to be the dth bit found by the nearest-better particle

in the swarm at iteration t. Based on Equation (3), there are three different cases to be investigated:

• If xd
r (t) 6= xd

NB(t), then Pr{xd
new(t) = 0} = 1− εd

2 > 0 and Pr{xd
new(t) = 1} = εd

2 > 0.
• If xd

r (t) = xd
NB(t) = 1, then Pr{xd

new(t) = 1} = ε1 > 0 and Pr{xd
new(t) = 0} = 1− ε1 > 0.

• If xd
r (t) = xd

NB(t) = 0, then Pr{xd
new(t) = 0} = ε1 > 0 and Pr{xd

new(t) = 1} = 1− ε1 > 0.

Note that because the bit xd
new(t) is independently generated in the EFR-ESO algorithm, the above

cases are satisfied for each solution and each dimension. In conclusion, in each iteration EFR-ESO
algorithm can generate any feasible solution of search space S = {0, 1}n with a probability greater
than zero. �

Theorem 1. For 0 < ε1 < 1 and 0 < εd
2 < 1 the EFR-ESO algorithm converges in probability to the global

optimum solution x∗.

Proof. Lemma 1 shows that there exists a probability p > 0 for generating any feasible solution of
search space S = {0, 1}n in each iteration. Since the global optimum solution x∗ itself is a feasible
solution in S = {0, 1}n, we know that there exists a probability p > 0 for generating it. Thus, there exists
a probability q = 1− p < 1 for not generating x∗ in each iteration, so:

lim
t→∞

Pr{x∗ ∈
→
X(t)} = 1− lim

t→∞
Pr{x∗ /∈

→
X(t)} = 1− lim

t→∞
qt = 1. (6)

�

5. Experimental Study

In this section, we evaluate the effectiveness of the proposed EFR-ESO algorithm on the
high-dimensional feature subset selection problem in terms of both the error rate of the classification
and minimizing the number of features. In the following, we first describe the properties of the selected
standard benchmarks with and experimental settings. Then, the experimental results of the EFR-ESO
algorithm and other several feature subset selection algorithms are described and compared.

5.1. Dataset Properties and Experimental Settings

To evaluate the numerical performance of proposed EFR-ESO algorithm, we performed some
experiments on 14 standard high-dimensional datasets, namely, Movement, Musk, Arrhythmia,
Madelon, Isolet5, InterAd, Acq, Earn, Melanoma, Lung, Alt, Function, Subcell, and Crohen.
The first eight datasets were obtained from UCI repository of Machine Learning databases [45],
the next two datasets were obtained from the gene expression omnibus (GEO) [46]. Alt, Function,
and Subcell datasets were obtained from [47], and the Crohen dataset was obtained from [48].
The properties of these datasets are listed in Table 1. For each dataset, we use 70% samples in the
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dataset as training data, and the rest for testing. The selection of training and test sets is randomized,
while the original ratio of the class distribution is preserved in both sets.

Table 1. Dataset properties.

Dataset No. of Features No. of Instances No. of Calsses

Movement 90 360 15
Musk 167 6598 2

Arrhythmia 279 452 16
Madelon 500 2600 2

Isolet5 617 1559 26
Melanoma 864 57 2

Lung 866 36 2
InterAd 1588 3279 2

Alt 2112 4157 2
Function 2708 3907 2
Subcell 4031 7977 2

Acq 7495 12,897 2
Earn 9499 12,897 2

Crohen 22,283 127 3

In the comparison, nine algorithms are implemented and tested on MATLAB 2015b
(Natick, MA, USA), all based on the well-known k-NN classifier with k = 5. In all comparisons,
the standard GA, the Competitive Swarm Optimization (CSO) algorithm [18], the standard PSO,
four variants of PSO proposed by Xue’s for bi-objective feature subset selection [23] (Xue1-PSO,
Xue2-PSO, Xue3-PSO, and Xue4-PSO), and the Principal Component Analysis (PCA) [6] are compared
with the proposed algorithm (EFR-ESO). Based on Xue et al., the major difference between Xue’s
algorithms is the number of features selected in the initial swarm, while Xue1-PSO uses the normal
initialization method where approximately half of the features are chosen in each particle; Xue2-PSO
applies a small initialization method in which only about 10% of the features are chosen in each
particle; Xue3-PSO applies a heavy initialization method in which more than half (about 2/3) of the
features are chosen in each particle; and Xue4-PSO applies a combined initialization in which a
majority (about 2/3) of the particles are initialized with the small initialization method, while the
remaining particles of swarm are initialized with the heavy initialization method. Another important
difference between Xue’s algorithms and canonical PSO-based algorithms is that, in Xue’s algorithm,
the threshold parameter λ is set to 0.6, while this parameter is set to 0.5 as the threshold parameter in
canonical PSO.

The population or swarm size is set to 100 for all meta-heuristic algorithms, and the maximal
number of fitness evaluation is set to 20,000. Other parameters of the feature subset selection algorithms
are: w in the PSO is set to 0.7298, both c1 and c2 in the PSO are set to 1.49618, φ in the CSO is set to
0.1, and ε1(0) in the proposed algorithm is set to 0.1. The particles in all algorithms are randomly
initialized and the threshold parameter λ = 0.5 is used for both CSO and PSO, while λ = 0.6 is used for
Xue’s algorithms. The variance covered in PCA-based feature subset selection is set to 0.95. To obtain
statistical results, each algorithm is run 100 times independently.

5.2. Results and Comparisons

Although there are several criteria for assessing the quality of a classifier, the main goal
of a classifier is to improve the generalization capability, which means a high accuracy or low
misclassification rate on unseen data. Therefore, here we are going to obtain the average error
rate or misclassification rate of all the compared feature subset selection algorithms. The generated
results by all feature subset selection algorithms are presented in Table 2. We also apply the statistical
Wilcoxon rank sum test [49] to compare the results of EFR-ESO algorithm and other compared
algorithms for feature subset selection. The result is also listed in Table 2, where the symbols “+”, “≈”,
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and “−” represent that other methods are statistically inferior to, equal to, or superior to the EFR-ESO
algorithm, respectively.

Table 2. Average error rate.

Dataset EFR-ESO GA CSO PSO Xue1-PSO Xue2-PSO Xue3-PSO Xue4-PSO PCA

Movement 0.1918 0.2861 + 0.2345 + 0.2798 + 0.2846 + 0.2897 + 0.2827 + 0.2853 + 0.2556 +

(0.0267) (0.0399) (0.0398) (0.0401) (0.0387) (0.0436) (0.0395) (0.0301)
Musk 0.0012 0.0039 + 0.0010 ≈ 0.0038 + 0.0031 + 0.0017 ≈ 0.0034 + 0.0014 ≈ 0.0028 +

(0.0010) (0.0018) (0.0008) (0.0021) (0.0017) (0.0016) (0.0015) (0.0012)
Arrhythmia 0.2991 0.4466 + 0.3222 + 0.4051 + 0.4071 + 0.3484 + 0.4095 + 0.3483 + 0.4491 +

(0.0203) (0.0071) (0.0203) (0.0217) (0.0223) (0.0312) (0.0238) (0.0254)
Madelon 0.1253 0.4244 + 0.1545 + 0.4105 + 0.4062 + 0.2712 + 0.4087 + 0.3673 + 0.4812 +

(0.0203) (0.0246) (0.0343) (0.0177) (0.0207) (0.1043) (0.0214) (0.0942)
Isolet5 0.1386 0.1866 + 0.1401≈ 0.1872 + 0.1853 + 0.1910 + 0.1901 + 0.1803 + 0.4359 +

(0.0113) (0.0110) (0.0105) (0.0115) (0.0136) (0.0142) (0.0178) (0.0162)
Melanoma 0.1948 0.2981 + 0.2350 + 0.3173 + 0.3154 + 0.2920 + 0.3064 + 0.2796 + 0.3721 +

(0.0192) (0.0296) (0.0284) (0.0342) (0.0491) (0.0301) (0.0429) (0.0307)
Lung 0.2139 0.3312 + 0.2607 + 0.3515 + 0.3603 + 0.3249 + 0.3618 + 0.3242 + 0.3965 +

(0.0207) (0.0393) (0.0236) (0.0442) (0.0490) (0.0405) (0.0506) (0.0345)
InterAd 0.0251 0.0405 + 0.0291 + 0.0408 + 0.0397 + 0.0395 + 0.0426 + 0.0483 + 0.0685 +

(0.0035) (0.0069) (0.0052) (0.0074) (0.0053) (0.0048) (0.0073) (0.0074)
Alt 0.1224 0.4018 + 0.1647 + 0.4239 + 0.3904 + 0.3727 + 0.4183 + 0.3572 + 0.4215 +

(0.0135) (0.0461) (0.0206) (0.0490) (0.0474) (0.0422) (0.0445) (0.0403)
Function 0.2248 0.4259 + 0.2303 ≈ 0.4379 + 0.4063 + 0.4403 + 0.4262 + 0.3712 + 0.4539 +

(0.0196) (0.0492) (0.0216) (0.0504) (0.0471) (0.0513) (0.0473) (0.0395)
Subcell 0.1650 0.2943 + 0.2071 + 0.2516 + 0.2628 + 0.2816 + 0.2970 + 0.2731 + 0.3604 +

(0.0179) (0.0408) (0.0249) (0.0325) (0.0385) (0.0401) (0.0468) (0.0374)
Acq 0.1025 0.2743 + 0.1626 + 0.2708 + 0.2519 + 0.2873 + 0.2917 + 0.2495 + 0.3572 +

(0.0137) (0.0399) (0.0203) (0.0352) (0.0371) (0.0408) (0.0439) (0.0375)
Earn 0.0742 0.2902 + 0.1164 + 0.2663 + 0.2836 + 0.2647 + 0.3082 + 0.3125 + 0.3928 +

(0.0127) (0.0375) (0.0195) (0.0347) (0.0358) (0.0317) (0.0429) (0.0491)
Crohen 0.1329 0.3265 + 0.1951 + 0.3329 + 0.3014 + 0.3417 + 0.2943 + 0.2758 + 0.4175 +

(0.0179) (0.0360) (0.0268) (0.0407) (0.0342) (0.0381) (0.0325) (0.0351)
Better - 14 11 14 14 13 14 13 14
Worse - 0 0 0 0 0 0 0 0
Similar - 0 3 0 0 1 0 1 0

The symbols “+”, “≈”, and “−” represent that other methods are statistically inferior to, equal to, or superior to the
EFR-ESO algorithm, respectively.

The experimental results show that the proposed EFR-ESO has a lower or equal statistical
misclassification rate than other compared feature subset selection algorithms on all 14 benchmark
datasets. As seen in Table 2, EFR-ESO statistically overcomes the GA, PSO, Xue1-PSO, Xue3-PSO,
and PCA on all datasets. Additionally, the proposed algorithm, in most cases, statistically generates
better results when compared with other algorithms. Two main reasons for the superiority of the
proposed algorithm can be summarized as follows: First, the EFR-ESO is a binary optimization
algorithm that is very consistent with the feature subset selection problem. Second, the EFR-ESO does
not remove lowly-ranked features from the search process. Therefore, those lowly-ranked features
which could increase the accuracy of learning algorithm have a chance to be selected. Based on the
generated results, PCA is the least effective algorithm. This could be attributed to the fact that the PCA
is sensitive to outliers and noises. In other words, PCA works less efficiently in reducing the accuracy
degradation of class-irrelevant attributes.

The removing of all irrelevant and redundant features to improve the classifier is the second goal
of the feature subset selection problem. Therefore, we also look at the statistical number of chosen
features generated by the compared feature subset selection algorithms. The obtained results are listed
in Table 3. In this comparison, it is visible that the proposed EFR-ESO chooses fewer average features
than most compared algorithms for feature subset selection. The main reason for this superiority is
that the irrelevant features have little chance of being selected, and many of them are not selected
during the search due to their inefficiencies in classification. From Table 3, it is visible that the number
of features chosen by the PSO-based algorithms are proportional to the number of features initialized
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in the first generation. In other words, if we initialize the particles of swarm with a small number of
features, the number of features chosen in the final swarm will be smaller, and vice versa. By contrast,
EFR-ESO is not sensitive to the number of features initialized in the first iteration, which can always
find the near-optimal feature subset regardless the number of features chosen during the particle
initialization phase.

Table 3. Average number of selected features.

Dataset EFR-ESO GA CSO PSO Xue1-PSO Xue2-PSO Xue3-PSO Xue4-PSO PCA

Movement 21.13 43.12 + 48.21 + 41.25 + 43.04 + 23.04 ≈ 51.12 + 40.71 + 10 –

(4.61) (5.20) (6.13) (5.61) (6.14) (6.94) (7.73) (13.94)
Musk 8.66 77.41 + 12.27 + 68.79 + 70.37 + 15.45 + 72.47 + 15.72 + 118 +

(3.92) (6.94) (4.62) (6.54) (6.94) (7.24) (10.37) (5.59)
Arrhythmia 12.45 150.03 + 15.84 + 130.11 + 131.14 + 21.05 + 150.14 + 26.63 + 106 +

(7.12) (12.41) (6.95) (9.37) (12.02) (11.82) (13.73) (26.71)
Madelon 7.19 277.07 + 6.94 ≈ 242.52 + 250.94 + 33.02 + 318.63 + 259.16 + 417 +

(2.03) (16.83) (1.93) (11.70) (14.91) (53.12) (35.72) (110.61)
Isolet5 97.72 281.22 + 135.15 + 301.12 + 309.52 + 191.38 + 361.93 + 365.47 + 175 +

(19.07) (10.05) (31.07) (14.72) (16.07) (40.72) (38.17) (55.13)
Melanoma 15.47 41.65 + 20.52 + 37.93 + 36.13 + 23.18 + 34.92 + 30.44 + 49 +

(8.93) (19.23) (10.29) (21.16) (18.65) (15.75) (16.35) (17.32)
Lung 10.25 35.62 + 14.27 + 30.44 + 29.37 + 17.64 + 28.14 + 24.02 + 35 +

(6.17) (18.52) (13.43) (19.17) (17.44) (21.49) (19.62) (16.71)
InterAd 197.49 845.61 + 267.63 + 755.48 + 763.71 + 388.10 + 892.04 + 928.19 + 286 +

(72.01) (42.02) (92.48) (26.72) (36.68) (83.16) (98.51) (151.26)
Alt 29.62 986.53 + 40.12 + 948.72 + 990.16 + 338.27 + 957.35 + 913.07 + 1204 +

(12.43) (61.49) (15.89) (55.04) (61.82) (36.70) (63.93) (65.19)
Function 32.76 1207.45 + 51.37 + 1049.28 + 1102.70 + 504.56 + 1319.52 + 1174.21 + 1973 +

(15.85) (89.26) (19.42) (84.50) (88.46) (47.91) (95.02) (81.49)
Subcell 40.16 1952.37 + 49.37 + 1775.91 + 2004.94 + 916.68 + 1873.64 + 1804.26 + 2735 +

(15.93) (112.04) (16.30) (109.78) (119.73) (79.83) (118.33) (129.37)
Acq 51.49 3093.46 + 63.92 + 2714.05 + 2993.18 + 1329.41 + 2813.20 + 2951.40 + 4512 +

(21.70) (162.14) (28.03) (150.11) (175.72) (95.37) (152.74) (146.38)
Earn 75.42 4617.25 + 102.17 + 4056.44 + 4713.56 + 2021.52 + 4396.61 + 4301.07 + 6132 +

(23.59) (207.11) (31.54) (195.71) (219.50) (124.13) (197.24) (219.14)
Crohen 118.61 8752.73 + 144.07 + 8126.83 + 7815.91 + 3406.15 + 7916.75 + 8001.25 + 12,740 +

(38.72) (469.52) (45.41) (443.25) (401.49) (194.60) (420.93) (412.48)
Better - 14 13 14 14 13 14 14 13
Worse - 0 0 0 0 0 0 0 1
Similar - 0 1 0 0 1 0 0 0

The symbols “+”, “≈”, and “–” represent that other methods are statistically inferior to, equal to, or superior to the
EFR-ESO algorithm, respectively.

6. Conclusions and Future Work

In this paper, we propose a novel hybrid filter-wrapper algorithm, called Ensemble of Filter-based
Rankers to guide an Epsilon-greedy Swarm Optimizer (EFR-ESO), for solving high-dimensional
feature subset selection. The Epsilon-greedy Swarm Optimizer (ESO) is a novel binary swarm
intelligence algorithm introduced in this paper as a novel wrapper. In each iteration of the ESO,
a particle is randomly selected, then the nearest-better neighbor of this particle in the swarm is found
and, finally, a new particle is created based on these particles using a new epsilon-greedy method.
If the quality of new particle is better than the randomly-selected particle, new particle is replaced
in the swarm, otherwise the new particle is discarded. In the proposed EFR-ESO, we extract the
knowledge about the feature importance by the ensemble of filter-based rankers and then use this
knowledge to weight the feature probabilities in the ESO. Experiments on 14 datasets indicate that the
proposed algorithm has a great performance on high-dimensional feature subset selection in terms of
both the error rate of the classification and minimizing the number of features.

For future research, the proposed algorithm can be studied on other real-world binary
optimization problems, such as the 0/1 knapsack problem, Winner Determination Problem (WDP)
in multi-agent systems, and so on. Additionally, the effectiveness of the proposed algorithm for
solving the multi-objective feature subset selection with the approach of finding the Pareto front can



Information 2017, 8, 152 15 of 17

be investigated. Finally, one can research how to build a new solution in the search space, which can
have an effective control between diversity and convergence.
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35. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey.
ACM Comput. Surv. 2013, 45, 1–35. [CrossRef]

36. Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evolut. Comput.
2017. [CrossRef]

37. Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Trans.
Neural Netw. 1994, 5, 537–550. [CrossRef] [PubMed]

38. Yang, H.; Moody, J. Data visualization and feature selection: New algorithms for non-gaussian data.
In Advances in Neural Information Processing Systems; Walker Road: Beaverton, OR, USA, 1999; pp. 687–693.

39. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: Criteria of max-dependency,
max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]
[PubMed]

40. Jakulin, A. Machine Learning Based on Attribute Interactions. Ph.D. Thesis, University of Ljubljana,
Ljubljana, Slovenia, 2005.

41. Lin, D.; Tang, X. Conditional infomax learning: An integrated framework for feature extraction and fusion.
In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006.

42. Meyer, P.; Bontempi, G. On the use of variable complementarity for feature selection in cancer classification.
In Evolutionary Computation and Machine Learning in Bioinformatics; Springer: Berlin/Heidelberg, Germany,
2006; pp. 91–102.

43. Abbasifard, M.R.; Ghahremani, B.; Naderi, H. A survey on nearest neighbor search methods.
Int. J. Comput. Appl. 2014, 95, 39–52.

44. Chen, Y.; Xie, W.; Zou, X. A binary differential evolution algorithm learning from explored solutions.
Neurocomputing 2015, 149, 1038–1047. [CrossRef]

http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/j.proeng.2012.06.005
http://dx.doi.org/10.1109/TSMCB.2012.2227469
http://www.ncbi.nlm.nih.gov/pubmed/24273143
http://dx.doi.org/10.1002/tee.22226
http://dx.doi.org/10.1016/j.neucom.2016.03.101
http://dx.doi.org/10.1371/journal.pone.0150652
http://www.ncbi.nlm.nih.gov/pubmed/26963715
http://dx.doi.org/10.1016/j.swevo.2017.04.002
http://dx.doi.org/10.1016/j.eswa.2013.09.004
http://dx.doi.org/10.1007/s00500-007-0193-8
http://dx.doi.org/10.1109/TEVC.2016.2606577
http://dx.doi.org/10.1016/j.ins.2013.09.034
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.1016/j.swevo.2017.09.010
http://dx.doi.org/10.1109/72.298224
http://www.ncbi.nlm.nih.gov/pubmed/18267827
http://dx.doi.org/10.1109/TPAMI.2005.159
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://dx.doi.org/10.1016/j.neucom.2014.07.030


Information 2017, 8, 152 17 of 17

45. UCI Repository of Machine Learning Databases. Available online: http://www.ics.uci.edu/mlearn/
MLRepository.html (accessed on 22 September 2017).

46. Gene Expression Omnibus (GEO). Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on
19 October 2017).

47. Mitchell, A.L.; Divoli, A.; Kim, J.H.; Hilario, M.; Selimas, I.; Attwood, T.K. METIS: Multiple extraction
techniques for informative sentences. Bioinformatics 2005, 21, 4196–4197. [CrossRef] [PubMed]

48. Burczynski, M.E.; Peterson, R.L.; Twine, N.C.; Zuberek, K.A.; Brodeur, B.J.; Casciotti, L.; Maganti, V.;
Reddy, P.S.; Strahs, A.; Immermann, F.; et al. Molecular classification of Crohn’s disease and ulcerative colitis
patients using transcriptional profiles in peripheral blood mononuclear cells. J. Mol. Diagn. 2006, 8, 51–61.
[CrossRef] [PubMed]

49. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut. Comput.
2011, 1, 3–18. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html
https://www.ncbi.nlm.nih.gov/geo/
http://dx.doi.org/10.1093/bioinformatics/bti675
http://www.ncbi.nlm.nih.gov/pubmed/16159915
http://dx.doi.org/10.2353/jmoldx.2006.050079
http://www.ncbi.nlm.nih.gov/pubmed/16436634
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	The Proposed Algorithm 
	Solution Representation 
	Nearest-Better Neighborhood 
	Particle Generation by the Epsilon-Greedy Algorithm 
	Ensemble of Filter-Based Rankers to Set the Value of 2  
	Particle Evaluation 
	Particle Replacement 
	Algorithmic Details and Flowchart 

	Theoretical Convergence Analysis of EFR-ESO Algorithm 
	Experimental Study 
	Dataset Properties and Experimental Settings 
	Results and Comparisons 

	Conclusions and Future Work 

