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Abstract: Feature selection is a useful tool for identifying which features, or attributes, of a dataset
cause or explain the phenomena that the dataset describes, and improving the efficiency and accuracy
of learning algorithms for discovering such phenomena. Consequently, feature selection has been
studied intensively in machine learning research. However, while feature selection algorithms that
exhibit excellent accuracy have been developed, they are seldom used for analysis of high-dimensional
data because high-dimensional data usually include too many instances and features, which make
traditional feature selection algorithms inefficient. To eliminate this limitation, we tried to improve the
run-time performance of two of the most accurate feature selection algorithms known in the literature.
The result is two accurate and fast algorithms, namely SCWC and SLCC. Multiple experiments with
real social media datasets have demonstrated that our algorithms improve the performance of their
original algorithms remarkably. For example, we have two datasets, one with 15,568 instances and
15,741 features, and another with 200,569 instances and 99,672 features. SCWC performed feature
selection on these datasets in 1.4 seconds and in 405 seconds, respectively. In addition, SLCC has
turned out to be as fast as SCWC on average. This is a remarkable improvement because it is estimated
that the original algorithms would need several hours to dozens of days to process the same datasets.
In addition, we introduce a fast implementation of our algorithms: SCWC does not require any
adjusting parameter, while SLCC requires a threshold parameter, which we can use to control the
number of features that the algorithm selects.

Keywords: feature selection; consistency; high-dimensional data; scalability

1. Introduction

Accurate and fast feature selection is a useful tool of data analysis. In particular, feature selection
on categorical data is important in real world applications. Features, or attributes, and, in particular,
features to specify class labels, which represent the phenomena to explain, and/or the targets to
predict are often categorical. In this paper, we propose two new feature selection algorithms that are
as accurate as, and drastically faster than, any other methods represented in the literature. In fact,
our algorithms are the first accurate feature selection algorithms that scale well to big data.

The importance of feature selection can be demonstrated with an example. Figure 1 depicts the
result of clustering tweets posted to Twitter during two different one-hour windows on the day of the
Great East Japan Earthquake, which hit Japan at 2:46 p.m. on 11 March 2011 and inflicted catastrophic
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damage. Figure 1a plots 97,977 authors who posted 351,491 tweets in total between 2:00 p.m. and
3:00 p.m. on the day of the quake (the quake occurred in the midst of this period of time), while
Figure 1b plots 161,853 authors who posted 978,155 tweets between 3:00 p.m. and 4:00 p.m. To plot,
we used word-count-based distances between authors and a multidimensional scaling algorithm.
Moreover, we grouped the authors into different groups using the k-means clustering algorithm based
on the same distances. Dot colors visualize that clustering. We observe a big change in clustering
between the hour during which the quake occurred, and the hour after the quake.

(a) (b)

Figure 1. Clustering of twitter data. (a) tweets between 2:00 p.m. and 3:00 p.m. of 11 March. The quake
hit Japan at 2:46 p.m., and 97,977 authors who posted 351,491 tweets in total are plotted; (b) tweets
between 3:00 p.m. and 4:00 p.m. of 11 March. Furthermore, 161,853 authors who posted 978,155 tweets
in total are plotted.

Two questions naturally arise: first, what do the clusters mean? Second, what causes the change
from Figure 1a to Figure 1b? Answering these questions requires a method for selecting words that
best characterize each cluster; in other words, a method for feature selection.

To illustrate, we construct two datasets, one for the timeframe represented in Figure 1a and one
for the time-frame represented in Figure 1b, called dataset A and dataset B, respectively. Each dataset
consists of a word count vector for each author that reflects all words in all of their tweets. Dataset A
has 73,543 unique words, and dataset B has 71,345 unique words, so datasets A and B have 73,543 and
71,345 features, respectively. In addition, each author was given a class label reflecting the category he
or she was assigned to from the k-means clustering process.

It was our goal to select a relatively small number of features (words) that were relevant to class
labels. We say that a set of features is relevant to class labels, if the values of the features uniquely
determine class labels with high likelihood. Table 1 depicts an example of a dataset for explanation.
F1, . . . , F5 are features, and the symbol C denotes a variable to represent class labels. The feature F5,
for example, is totally irrelevant to class labels. In fact, we have four instances with F5 = 0, and a half
of them have the class label 0, while the other half have the class label 1. The same holds true for the
case of F5 = 1. Therefore, F5 cannot explain class labels at all and is useless to predict class labels.
In fact, predicting class labels based on F5 has the same success probability as guessing them by tossing
a fair coin (the Bayesian risk of F5 to C is 0.5, which is the theoretical worst). On the other hand, F1 is
more relevant than F5 because the values of F1 explain 75% of the class labels, and, in other words,
the prediction based on F1 will be right with a probability of 0.75 (that is, the Bayesian risk is 0.25).

The relevance of individual features can be estimated using statistical measures such as
mutual information, symmetrical uncertainty, Bayesian risk and Matthew’s correlation coefficients.
For example, at the bottom row of Table 1, the mutual information score I(Fi, C) of each feature Fi to
class labels is described. We see that F1 is more relevant than F5, since I(F1, C) > I(F5, C).

To our knowledge, the most common method deployed in big data analysis to select features that
characterize class labels is to select features that show higher relevance in some statistical measure.
For example, in the example of Table 1, F1 and F2 will be selected to explain class labels.
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However, when we look into the dataset of Table 1 more closely, we understand that F1 and F2

cannot determine class labels uniquely. In fact, we have two instances with F1 = F2 = 1, whose class
labels are 0 and 1. On the other hand, F4 and F5 as a combination uniquely determine the class labels
by the formula of C = F1 ⊕ F2, where ⊕ denotes the addition modulo two. Therefore, the traditional
method based on relevance scores of individual features misses the right answer.

Table 1. An example dataset.

F1 F2 F3 F4 F5 C

1 0 1 1 1 0
1 1 0 0 0 0
0 0 0 1 1 0
1 0 1 0 0 0
1 1 1 1 0 1
0 1 0 1 0 1
0 1 0 0 1 1
0 0 0 0 1 1

0.189 0.189 0.049 0.000 0.000 I(Fi, C)

This problem is well known as the problem of feature interaction in feature selection research.
Feature selection has been intensively studied in machine learning research. The literature describes
a class of feature selection algorithms that can solve this problem, referred to as consistency-based
feature selection (for example, [1–5]).

Figure 2 shows the result of feature selection using one of the consistency-based algorithms,
namely, CWC (Combination of Weakest Components) [5]. The dataset used was one generated
in the aforementioned way from the tweets of the day when the quake hit Japan and includes
161,425 instances (authors) and 38,822 features (words). The figure shows not only the 40 words
selected but also their scores and ranks measured by the symmetrical uncertainty (in parentheses).

Figure 2. An example result of feature selection by CWC: Word (Score, Rank). Scores and ranks
are measured by the symmetrical uncertainty. The Japanese words in this figure are translated as
“emergency” (9), “networks” (11), “utilize” (13”, “favor” (15), “bath” (18), “great tsunami warning” (19),
“place” (24), “phone” (26), “evacuation” (28), “absolute” (32), “all” (34), “possible” (37), “information”
(39), “like” (40), “preparation” (41), “Miyagi” (42), “possibility” (45), “thing” (52), “Hanshin Great
Quake” (55), “notification” (62), “over” (63), “disaster mail telephone” (65), “friend” (71), “as if” (72),
“coast” (73), “safety” (74), “tsunami” (75), “Chu-Etsu Quake” (106), “television” (112), “Ibaraki” (115),
“shock of earthquake” (119), “worry” (125), “Mr.”, “Mrs.” or “Ms.” (141), “earthquake intensity” (146)
and “seem” (167). The numbers within parentheses indicate the ranks of the words.

This result contains two interesting findings. First, the word ranked 141th is translated as “Mr.”,
“Mrs.”, or “Ms.”, which is a polite form of address in Japanese. This form of address is common in
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Japanese writing, so it seems odd that the word would identify a cluster of authors well. In fact,
the relevance of the word is as low as 0.028. However, if we understand the nature of CWC, we can
guess that the word must interact with other features to determine which cluster the author falls inside.
In fact, it turns out that the word interacts with the 125th-ranked word, “worry“. Hence, we realize
that a portion of those tweets must have been asking about the safety of someone who was not an
author’s family member—in other words, someone who the author would have addressed with the
polite form of their name.

The second interesting finding is that the words with the highest relevance to class labels have
not been selected. For example, the word that means “quake” was ranked at the top but not selected.
This is because the word was likely to be used in the tweets with other selected words such as words
that translated to “tsunami alert” (ranked 19th), “the Hanshin quake” (55th), “fire” (66th), “tsunami”
(75th) and “the Chu-Etsu quake” (106th), so that CWC judged the word “quake” to be redundant
once the co-occurring words had been selected. Our interpretation is that these co-occurring words
represent the contexts in which the word “quake” was used, and selecting these words gave us more
information than selecting “quake”, which is too general in this case.

Thus, the consistency-based algorithms do not simply select features with higher relevance;
instead, they give us knowledge that we cannot obtain from selection based on the relevance of
individual features. In spite of these advantages, however, consistency-based feature selection is
seldom used in big data analysis. Consistency-based algorithms require heavy computation and the
amount of computation increases as the size of data increases so greatly as to make application to large
data sets unfeasible.

This paper’s contribution is to improve the run-time performance of two consistency-based
algorithms that are known the most accurate, namely CWC and LCC (Linear Consistency Constrained
feature selection) [4]. We introduce two algorithms that perform well on big data: SCWC and SLCC.
They always select the same features as CWC and LCC, respectively, and, therefore, perform with the
same accuracy. SLCC accepts a threshold parameter to control the number of features to select and has
turned out to be as fast as SCWC on average in our experiments.

2. Feature Selection on Categorical Data in Machine Learning Research

In this section, we give a brief review of feature selection research focusing on categorical data.
The literature describes three broad approaches: filter, wrapper and embedded. Filter approaches aim
to select features based on the intrinsic properties of datasets leveraging statistics and information
theory, while wrapper and embedded approaches aim to optimize the performance of particular
classification algorithms. We are interested in the filter approach in this paper. We first introduce
a legacy feature selection framework and identify two problems in that framework. Then, we introduce
the consistency-based approach to solve these problems. For convenience, we will describe a feature
or a feature set that is relevant to class labels simply as relevant.

2.1. The Legacy Framework: Sum of Relevance (SR)

In the legacy and fundamental framework of feature selection, which underlies most of the known
practical feature selection algorithms, we use sum-of-relevance (SR) functions to evaluate collective
relevance of feature sets.

Sum of relevance
Computing the sum of relevance of individual features is an efficient method for estimating the
collective relevance.

For example, let I(F, C) denote the mutual information of an individual feature F and the class
variable C. To be specific, I(F, C) is defined by
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I(F, C) = ∑
x,y

Pr[F = x, C = y] log
Pr[F = x, C = y]

Pr[F = x]Pr[C = y]
.

The values of x and y are selected from the sample spaces of F and C. It is well known
that, the larger I(F, C) is, the more tightly F and C correlate with each other. If we do not
know the population distribution Pr, we use the empirical distribution derived from a dataset.
The sum-of-relevance for a feature set {F1, . . . , Fn} based on I is determined by

SR(F1, . . . , Fn) =
n

∑
i=1

I(Fi, C),

and estimates the collective relevance of {F1, . . . , Fn}.
The principle of SR-based feature selection is to find a good balance to the trade-off between the

SR value of and the number of features to select. This can be achieved efficiently by computing
the relevance of individual features and sorting the features with respect to the computed relevance
scores. For example, Table 1 shows a dataset, and we see the relevance of each feature measured
by the mutual information at the bottom row. Since I(F1, C) = I(F2, C) ≈ 0.13, I(F3, C) ≈ 0.03 and
I(F4, C) = I(F5, C) = 0 hold, if the requirement is to select two features that maximize the SR value,
the best choice is definitely F1 and F2. If the requirement is to select the smallest feature set whose
SR value is no smaller than 0.25, the answer should be F1 and F2 as well. As a substitute for mutual
information, we can use the Bayesian risk, the symmetrical uncertainty and Matthews correlation
coefficients, for example.

RELIEF-F [6] is a well-known example of a feature selection algorithm that relies only on SR
functions. For the underlying relevance function, RELIEF-F uses a distance-based randomized function.
Since computing this distance-based relevance function requires relatively heavy computation,
RELIEF-F is not very fast, but, in general, the simple SR-based feature selection scales and can be
applied to high-dimensional data.

2.2. The Problem of Redundancy

The simple SR-based feature selection has, however, two important problems that will harm the
collective relevance of selected features. One of them is the problem caused by internal correlation,
which is also known as the problem of redundancy. The problem is described as follows.

Problem of redundancy
Feature selection by SR may select features that are highly mutually correlated, and such high
internal correlation definitely decreases the collective relevance of the features.

The dataset of Table 2 is obtained by adding the feature F6 to the dataset of Table 1. Eventually,
F6 is a copy of F1, and, hence, I(F6, C) = I(F1, C) ≈ 1.3 holds. To select two features that maximize the
SR value, we have three answer candidates this time, that is, {F1, F2}, {F1, F6} and {F2, F6}. Among the
candidates, {F1, F6} is clearly a wrong answer, since its joint relevance has no gain over the individual
relevance of F1 and F6.

This thought experiment inspires us to pay attention to the internal correlation among features.
If the internal correlation among features is greater, the features include more redundancy when
they determine classes. For example, if we use mutual information to evaluate internal correlation,
the internal correlation of {F1, F2} is computed to be I(F1, F2) = 0, that is, F1 and F2 are independent
of each other. On the other hand, the internal correlation of {F1, F6} is I(F1, F6) = H(F1) ≈ 0.68.
Therefore, the set of {F1, F6} includes more redundancy than {F1, F2}, and, hence, we should select
{F1, F2} rather than {F1, F6}. The principle of minimizing redundancy (MR) is to design feature selection
algorithms so that they avoid selecting features that have high internal correlation.
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The algorithm of mRMR (Minimum Redundancy and Maximum Relevance) [7] is a well-known
greedy forward selection algorithm that maximizes the sum of relevance (SR) with respect to the
mutual information and minimizes the internal redundancy determined by

IC(F1, . . . , Fn) =
1
n2

n

∑
i=1

n

∑
j=1

I(Fi, Fj).

FCBF (Fast Correlation-Based Filter) [8] and CFS (Correlation-based Feature Selection) [9] are also
known to be based on the principle of minimizing redundancy.

Although the principle of minimizing redundancy definitely improves the actual collective relevance
of features to select, it cannot solve the other problem of the SR framework, which we state next.

Table 2. An example dataset.

F1 F2 F3 F4 F5 F6 C

1 0 1 1 1 1 0
1 1 0 0 0 1 0
0 0 0 1 1 0 0
1 0 1 0 0 1 0
1 1 1 1 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 0 1
0 0 0 0 1 0 1

0.189 0.189 0.049 0.000 0.000 0.189 I(Fi, C)

2.3. The Problem of Feature Interaction

We start with describing the problem.

Problem of feature interaction
Feature selection by SR may miss features if their individual relevance is low but they show high
collective relevance by interacting one another.

For the datasets of Tables 1 and 2, F4 and F5 determine the class C by the formula of C = F4 ⊕ F5,
where ⊕ denotes the addition modulo two, and, hence, their collective relevance is the highest.
Nevertheless, the sum of relevance for {F4, F5} is zero, and, hence, the feature selection algorithms that
we saw in Sections 2.1 and 2.2 have no chance to select {F4, F5}.

This problem is explained by interaction among features: when more than one features that
individually show only low relevance exhibit high collective relevance, we say that the features
interact with each other. As shown in the example above, neither the SR principle nor the MR principle
can incorporate feature interaction into the results of feature selection.

The literature provides two approaches to solve this problem: rule-based, and consistency-based.
We will define these approaches here.

FRFS (FOIL Rule based Feature subset Selection) [10] is a characteristic example of a rule-based
feature selection algorithm. The algorithm first extracts events of feature interaction from a dataset
as frequent rules. Each rule is in the form of ( f1, . . . , fk) ⇒ c such that the antecedent f1, . . . , fk are
feature values and the consequent c is a class label. FRFS can perform the rule extraction efficiently
by leveraging First Order Inductive Learner (FOIL) [11]. However, it is still too slow to apply to big
data analysis.
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2.4. Consistency-Based Feature Selection

The consistency-based approach solves the problem of feature interaction by leveraging consistency
measures. A consistency measure is a function that takes sets of features as input rather than individual
features. Furthermore, a consistency measure is a function that represents collective irrelevance of the
feature set input, and, hence, the smaller a value of a consistency measure is, the more relevant the
input feature set is.

Moreover, a consistency measure is required to have the determinacy property: its measurement is
zero, if, and only if, the input feature set uniquely determines classes.

Definition 1. A feature set of a dataset is consistent, if, and only if, it uniquely determines classes, that is, any
two instances of the dataset that are identical with respective to the values of the features of the feature set have
the identical class label as well.

Hence, a consistency measure function returns the value zero, if, and only if, its input is a
consistent feature set. An important example of the consistency measure is the Bayesian risk, also
known as the inconsistency rate [2]:

Br(F1, . . . , Fn) = 1− ∑
x1,...,xn

max
y

Pr[F1 = x1, . . . , Fn = xn, C = y].

The variable xi moves in the sample space of Fi, while the variable y moves in the sample space
of C. It is evident that the Bayesian risk is non-negative, and determinacy follows from

∑
x1,...,xn

max
y

Pr[F1 = x1, . . . , Fn = xn, C = y] ≤ ∑
x1,...,xn

Pr[F1 = x1, . . . , Fn = xn] = 1.

Another important example of the consistency measure is the binary consistency measure, defined
as follows:

Bn(F1, . . . , Fn) =

{
0, if {F1, . . . , Fn} is consistent;

1, otherwise.

FOCUS [1], the first consistency-based algorithms in the literature, performs an exhaustive search
to find the smallest feature set {F1, . . . , Fn} with Bn(F1, . . . , Fn) = 0.

Apparently, FOCUS cannot be practically fast. In general, consistency-based feature selection has
problems in time-efficiency because of the broadness of the search space. In fact, the search space
should be the power set of the entire set of features, and its size is an exponential function of the
number of features.

Problem of consistency measures
When N features describe a dataset, the number of the possible input to a consistency measure
is as large as 2N .

The monotonicity property of consistency measures helps to solve this problem. The Bayesian
risk, for example, has this property: if F ⊆ G, Br(F ) ≥ Br(G) holds, where F and G are feature
subsets of a dataset. Almost all of the known consistency measures such as the binary consistency
measure and the conditional entropy H(C | F ) = H(C)− I(F , C) have this property as well. In [5],
the consistency measure is formally defined as a non-negative function that has the determinacy and
monotonicity properties.

Although some of the algorithms in the literature such as ABB (Automatic Branch and Bound) [2]
took advantage of the monotonicity property to narrow their search space, the real breakthrough
was yielded by Zhao and Liu in their algorithm INTERACT [3]. INTERACT uses the combination
of the sum-of-relevance function based on the symmetrical uncertainty and the Bayesian risk.
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The symmetrical uncertainty is a harmonic mean of the ratios of I(F, C)/H(F) and I(F, C)/H(C)
and hence turns out to be

SU(F; C) =
2I(F, C)

H(F) + H(C)
.

The basic idea of INTERACT is to narrow down the search space boldly and to take SR values of
the symmetrical uncertainty into account to cover the caused decrease of relevance. Although the
search space of INTERACT is very narrow, the combination of the SR function and the consistency
measure keeps the accuracy performance good. LCC [4] improves INTERACT and can exhibit better
accuracy. Although INTERACT and LCC are much faster than previous consistency-based algorithms
described in the literature, they are not fast enough to apply to large datasets with thousands of
instances and features.

CWC [5] is a further improvement and replaces the Bayesian risk with the binary consistency
measure, which can be computed faster. CWC is reported to be about 50 times faster than INTERACT

and LCC on average. In fact, CWC performs feature selection for a dataset with 800 instances and
100,000 features in 544 s, while LCC does it in 13,906 s. Although the improvement was remarkable,
CWC is not fast enough to apply to big data analysis.

2.5. Summary

Figure 3 summarizes the progress of feature selection in the literature. The legacy framework
of sum-of-relevance (SR) has the problems of redundancy and feature interaction. The principle of
minimizing redundancy (MR) in combination with SR solves the problem of redundancy and provides
practical algorithms such as mRMR. Furthermore, using consistency measures (CM) solves the problem
of feature interaction, but is time-consuming because complete (exhaustive) search (CS) is necessary.
On the other hand, the combination of SR and CM allows linear search (LS) and improves the low
time-efficiency of the consistency-based feature selection dramatically. In particular, CWC is the fastest
and the most accurate consistency-based algorithm and is comparable with FRFS, which is rule-based.
Nevertheless, CWC or FRFS does not scale well for big data analysis.

Data

Big Data

Large

Small

Low Accuracy High

Problem of
redundancy

Problem of
Interaction

SR

Relief-F

SR+MR

FCBF

CFS
mRMR

FOCUS

CWC

LCC
Interact

SLCC
SCWC

FRFS

SR+CM+BS

SR+CM+LS

CM+CS

Figure 3. Progress of feature selection.
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3. SCWC and SLCC

SCWC and SLCC improve the time efficiency of CWC and LCC significantly. The letter “s” of SCWC

and SLCC represents “scalable”, “swift” and “superb”.

3.1. The Algorithms

We start by explaining the CWC algorithm. Figure 1 depicts the algorithm. Given a dataset
described by a feature set {F1, . . . , FN}, CWC aims to output a minimal consistent subset S ⊆ {F1, . . . , FN}.

Definition 2. A minimal consistent subset S satisfies Bn(S) = 0 and Bn(T) > 0 for any proper subset T ⊂ S.

Achieving this goal is, however, impossible if Bn(F1, . . . , FN) > 0 holds, since Bn(S) ≥
Bn(F1, . . . , FN) > 0 always holds by the monotonicity property of Bn. Therefore, the preliminary
step of CWC is to remove the cause of Bn(F1, . . . , FN) > 0. To be specific, if Bn(F1, . . . , FN) > 0, there
exists at least one inconsistent pair of instances, which are identical with respect to the feature values
but with different class labels. The process of denoising is thus to modify the original dataset so that it
includes no inconsistent pairs. To denoise, we have two approaches as follows:

1. We can add a dummy feature F̂ to {F1, . . . , FN} and can assign a value of F̂ to an instance so that,
if the instance is not included in any inconsistent pair, the assigned value is zero; otherwise,
the assigned value is determined depending on the class label of the instance.

2. We can eliminate at least a part of the instances that are included in inconsistent pairs.

Although both of the approaches can result in Bn(F1, . . . , FN) = 0, the former seems better
because useful information may be lost by eliminating instances. Fortunately, high-dimensional data
usually have the property of Bn(F1, . . . , FN) = 0 from the beginning since N is very large. When
Bn(F1, . . . , FN) = 0, denoising is benign and does nothing.

On the other hand, to incorporate sum-of-relevance into consistency-based feature selection,
we sort features in the incremental order of their symmetrical uncertainty scores, that is, we renumber
Fis so that SU(Fi) ≤ SU(Fj) if i < j. The symmetrical uncertainty, however, is not the mandatory
choice, and we can use any measure to evaluate relevance of an individual feature so that, the greater
a value of the measure is, the more relevant the feature is. For example, we can replace the symmetrical
uncertainty with the mutual information I(F, C).

CWC deploys a backward elimination approach: it first sets a variable S to the entire set {F1, . . . , FN}
and then investigates whether each Fi can be eliminated from S without violating the condition of
Bn(S) = 0. That is, S is updated by S = S \ {Fi}, if, and only if, Bn(S \ {Fi}) = 0. Hence, CWC continues
to eliminate features until S becomes a minimal consistent subset. Algorithm 1 describes the algorithm
of CWC.

The order of investigating Fi is the incremental order of i, and, hence, the incremental order of
SU(Fi). Since Fi is more likely to be eliminated than Fj with i < j, we see that CWC stochastically
outputs minimal consistent subsets with higher sum-of-relevance scores.

Algorithm 1 The algorithm of CWC [5]

Require: A dataset described by {F1, . . . , FN} with Bn(F1, . . . , FN) = 0.
Ensure: A minimal consistent subset S ⊆ {F1, . . . , FN}.

1: Sort F1, . . . , FN in the incremental order of SU(Fi; C).
2: Let S = {F1, . . . , FN}.
3: for i = 1, . . . , N do
4: if Bn(S \ {Fi}) = 0 then
5: update S by S = S \ {Fi}.
6: end if
7: end for
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To improve the time efficiency of CWC, we restate the algorithm of CWC as follows. To illustrate,
let S0 be a snapshot of S immediately after CWC has selected Fk. In the next step, CWC investigates
whether Bn(S0 \ {Fk+1}) = 0 holds. If so, CWC investigates whether Bn(S0 \ {Fk+1, Fk+2}) = 0 holds.
CWC continues the same procedure, until it finds F̀ with Bn(S0 \ {Fk+1, Fk+2, . . . , F̀ }) > 0. This time,
CWC does not eliminate F̀ . S is set to S0 \ {Fk+1, Fk+2, . . . , F̀ −1}, and CWC investigate F̀ +1 next. Thus,
to find F̀ to be selected, CWC solves the problem to find ` such that

` = min{i | i ∈ {k + 1, . . . , N}, Bn(S \ {Fk+1, . . . , Fi}) > 0}.

To solve the problem, CWC relies on linear search.
On the other hand, the idea of improving CWC is obtained by looking at the same problem

from a different direction. By the monotonicity property of Bn, Bn(S0 \ {Fk+1, Fk+2, . . . , Fi}) ≥ Bn(S0 \
{Fk+1, Fk+2, . . . , F̀ }) > 0 holds for any i ≥ `, and, therefore, the formula

`− 1 = max{i | i ∈ {k + 1, . . . , N}, Bn(S \ {Fk+1, . . . , Fi}) = 0}

also characterizes `.
This characterization of ` indicates that we can take advantage of binary search instead of linear

search to find ` (Algorithm 2). Since the average time complexity of the binary search is O(log(N− k)),
we can expect significant improvement compared with the time complexity of O(N− k) of the linear
search used in CWC. Algorithm 3 depicts our improved algorithm, SCWC.

Algorithm 2 Binary search to find `

Require: S ⊆ {F1, . . . , FN} and k ∈ {1, . . . , N− 1} such that S ⊇ {Fk, . . . , FN} and Bn(S) = 0.
Ensure: ` ∈ {k + 1, . . . , N} such that ` = arg min{Bn(S \ {Fk+1, . . . , Fi}) > 0 | i = k + 1, . . . , N}.

1: if Bn(S \ {Fk+1, . . . , FN}) = 0 then
2: ` = None. . No such ` exists.
3: else
4: Let low, high, mid = k, N,

⌈
low+high

2

⌉
.

5: repeat
6: if Bn(S \ {Fk+1, . . . , Fmid) > 0 then
7: Let high = mid.
8: else
9: Let low = mid.

10: end if
11: Let mid =

⌈
low+high

2

⌉
.

12: until mid = high holds.
13: ` = high.
14: end if

In addition, Algorithm 4 depicts the algorithm of LCC [4]. In contrast to CWC, LCC accepts
a threshold parameter δ ≥ 0. The parameter determines the strictness of its elimination criteria.
The greater δ is, the looser the criteria is, and, therefore, the smaller features LCC selects.

There are two major differences between LCC and CWC: first, LCC does not require that the
entire feature set {F1, . . . , FN} is consistent. Therefore, denoization to make Bn(F1, . . . , FN) = 0 is
not necessary. Secondly, the elimination criteria of Bn(S \ {Fi}) = 0 of CWC is replaced with Br(S \
{Fi}) ≤ δ. By the determinacy property, Br(S \ {Fi}) = 0, if, and only if, Bn(S \ {Fi}) = 0. Hence,
with δ = Br(F1, . . . , FN) = 0, LCC selects the same features as CWC does.
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Algorithm 3 The algorithm of SCWC

Require: A dataset described by {F1, . . . , FN} with Bn(F1, . . . , FN) = 0.
Ensure: A minimal consistent subset S ⊆ {F1, . . . , FN}.

1: Sort F1, . . . , FN in the incremental order of SU(Fi; C).
2: Let S = {F1, . . . , FN}.
3: Let k = 0.
4: repeat
5: Find ` = arg min{Bn(S \ {Fk+1, . . . , Fi}) > 0 | i = k + 1, . . . , N} by binary search.
6: if ` does not exist then
7: Let ` = N + 1.
8: end if
9: Update S by S = S \ {Fk+1 . . . F̀ −1}.

10: Let k = `.
11: until k ≥ N holds.

Algorithm 4 The algorithm of LCC [4]

Require: A dataset described by {F1, . . . , FN} and a non-negative threshold δ.
Ensure: A minimal δ-consistent subset S ⊆ {F1, . . . , FN}.

1: Sort F1, . . . , FN in the incremental order of SU(Fi; C).
2: Let S = {F1, . . . , FN}.
3: for i = 1, . . . , N do
4: if Br(S \ {Fi}) ≤ δ then
5: update S by S = S \ {Fi}.
6: end if
7: end for

Since the Bayesian risk has the monotonicity property as well, bi = Br(S \ {Fk+1, . . . , Fi}) compose
an increasing progression, and, hence, we can find ` such that

` = min{i | i ∈ {k + 1, . . . , N}, Br(S \ {Fk+1, . . . , Fi}) > δ}
= 1+max{i | i ∈ {k + 1, . . . , N}, Br(S \ {Fk+1, . . . , Fi}) ≤ δ}

very efficiently by means of binary search. Algorithm 5 describes the improved algorithm of SLCC

based on binary search.

Algorithm 5 The algorithm of SLCC

Require: A finite dataset and a non-negative threshold δ.
Ensure: A minimal δ-consistent subset S ⊆ {F1, . . . , FN}.

1: Sort F1, . . . , FN in the incremental order of SU(Fi; C).
2: Let S = {F1, . . . , FN}.
3: Let k = 0.
4: repeat
5: Find ` = arg min{Br(S \ {Fk+1, . . . , Fi}) > δ | i = k + 1, . . . , N} by binary search.
6: if ` does not exist then
7: Let ` = N + 1.
8: end if
9: Update S by S = S \ {Fk+1 . . . F̀ −1}. Let k = `.

10: until k ≥ N holds.
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3.2. Complexity Analysis

When NF and NI denote the number of features and instances of a dataset, the average time
complexity of CWC is estimated by O(NFNI(NF + log NI)) [12]. The first term O(N2

FNI) represents
the feature selection computation, while the second term O(NFNI log NI) shows the instance sorting
process. In [12], it is shown that sorting instances at the initial stage of the algorithm is highly
effective for investigating Bn(S \ {Fi}) = 0 efficiently (see also Section 6.1). Since SCWC improves the
time-efficiency of selecting features by replacing the linear search of CWC with binary search, we can
estimate its time complexity by O(NFNI(log NF + log NI)). By the same analysis, we can conclude that
the same estimate of time complexity applies to SLCC.

We have verified this estimate of time complexity through experiments using high-dimensional
datasets described in Table 3, whose dimensions vary from 15,741 to 38,822. Figure 4 plots the
experimental results: the x-axis represents NFNI(log NF + log NI), while the y-axis represents run-time
of SCWC in milliseconds. We observe that the plots are approximately aligned along a straight line,
and, hence, can conclude that the aforementioned estimate is right.

Table 3. Run-time of SCWC when applied to real high-dimensional data.

# of Instances # of Features Run-Time (ms) # of Instances # of Features Run-Time (ms)
15,568 15,741 2529 93,862 97,261 189,018
16,319 17,221 3682 103,063 103,063 233,562
22,540 21,667 2064 108,715 106,808 247,292
22,540 21,684 3547 142,811 102,083 310,531
23,036 19,723 7378 150,402 37,610 49,303
26,319 17,221 2576 150,517 37,601 54,149
34,125 29,367 12,189 155,244 37,659 47,497
37,057 26,938 12,062 161,425 38,822 72,298
44,471 30,828 55,581 179,765 99,930 367,125
44,812 32,721 21,191 183,978 100,622 401,111
45,284 34,123 7500 184,108 99,588 458,469
48,348 35,056 8873 185,325 100,466 391,873
52,400 39,570 26,770 187,929 98,562 403,179
64,193 48,810 7017 195,736 99,339 461,130
71,814 49,974 41,089 195,887 99,419 394,033
90,797 94,707 162,052 200,569 99,672 405,803

Figure 4. A relationship between NF NI(log NF + log NI) (the x-axis) and run-time of SCWC (the y-axis).

4. Comparison of Feature Selection Algorithms

We compare SCWC and SLCC with four benchmark algorithms, namely, FRFS, CFS, RELIEF-F
and FCBF, with respect to the accuracy, the run-time and the number of features selected. FRFS [10]
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is a rule-based algorithm, while CFS [9], RELIEF-F [13] and FCBF [8] are sum-of-relevance-based
algorithms. In addition, CFS and RELIEF-F are designed to avoid redundant selection of features.

4.1. Datasets to Use

For the comparison, we use 15 relatively large datasets, since the benchmark algorithms are not
fast enough to apply to really high-dimensional datasets such as those described in Table 3. Table 4
describes the datasets, and Figure 5 plots the number of features NF (x-axis) and the number of
instances NI (y-axis) of each dataset.

To make the comparison fair, ten of the datasets are chosen from the feature selection challenges
of Neural Information Processing Systems (NIPS) 2003 [14] and World Congress on Computational
Intelligence (WCCI) 2006 [15]. The datasets of NIPS 2003 emphasize the largeness of the feature
number NF, while those of WCCI 2006 do the instance number NI . The remaining five datasets are
retrieved from the University of California, Irvine (UCI) repository of machine learning databases [16].

Table 4. Attributes of the 15 datasets used in the experiment for comparison of accuracy.

# Dataset # of Features # of Instances Reference

1 ADA 48 4147 [15]
2 ADS 1558 3279 [16]
3 ARCENE 10,000 100 [14]
4 CYLINDER 40 512 [16]
5 DEXTER 20,000 300 [14]
6 DOROTHEA 100,000 800 [14]
7 GINA 970 3153 [15]
8 GISETTE 5000 6000 [14]
9 HIVA 1617 3845 [15]

10 KR-VS-KP 36 3196 [16]
11 MADELON 500 2000 [14]
12 MUSHROOM 22 8124 [16]
13 NOVA 16,969 1754 [15]
14 SPLICE 60 3192 [16]
15 SYLVA 216 13,086 [15]

Figure 5. The fifteen datasets used in the experiment. The blue plots (•) represent the five datasets
used in the feature selection challenge of NIPS 2003 [14], while the red plots (•) do those used in the
challenge of WCCI 2006 [15]. The other five are retrieved from the USI repository [16].
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4.2. Comparison of Accuracy

When the input dataset is described by a consistent feature set, that is, when Bn({F1, . . . , FN}) = 0
holds, SLCC with δ = 0 selects the same features as SCWC does. Hence, we compare the best
the area under an receiver operating characteristic curve (AUC-ROC) scores of SLCC when the
parameter δ varies from 0 to 0.02 at interval of 0.002 with the AUC-ROC scores of the other benchmark
algorithms. In addition, since many of the benchmark algorithms cannot finish feature selection for
the dataset DOROTHEA within a reasonable time allowance, we do not use the dataset for the purpose
of comparison in accuracy.

4.2.1. Method

We generate 10 pairs of training and test data subsets from each dataset of Figure 5 by distributing
the instances to test and training data subsets at random with a ratio of 4:1, and perform the following
for each pair:

(1) We run the feature selection algorithms on the training data subset and then reduce the training
dataset so that the selected features describe the reduced training data subset.

(2) We reduce the test data subset so that the selected features describe the reduced test data subset.
(3) We train three classifiers with the reduced training data subset. The classifiers to use are C

Support Vector Machine with Radial Base Function (RBF-Kernel-C-SVM), Naïve Bayes and C4.5.
Optimal values for the γ and C parameters of the RBF-kernel-C-SVM and the confidence factor
of C4.5 are chosen through grid search with ten-fold cross validation on the reduced training
data subset.

(4) We make the trained classifiers predict class labels for all of the instances of the reduced test data
subset and compute scores of the accuracy measures of AUC-ROC (Area Under Curve of ROC
curve) and F-measure by comparing the obtained prediction and the true class labels.

For SLCC, we run experiments with SLCC changing δ from 0 to 0.02 at interval of 0.002 and select
the best scores.

4.2.2. Results and Analysis

Tables 5–10 describe the result of the comparison. For each combination of a classifier and
an accuracy measure, we see the raw scores of the six feature selection algorithms in the upper rows
and their rankings in the lower rows. Figures 6 and 7 also depict the same information, where SLCC,
FRFS, CFS, RELIEF-F and FCBF are displayed in the colors of blue, orange, gray, yellow and light
blue, respectively.

Remarkably, for all the combinations of classifiers and accuracy measures, SLCC and FRFS

monopolize the first and second places with respect to both of the averaged raw scores and ranks.
Furthermore, SLCC outperforms the others except for the combination of Naïve Bayes and AUC-ROC
with respect to the averaged raw scores. With respect to the averaged ranks, SLCC is ranked top for
the combinations of SVM and AUC-ROC, SVM and F-Score and Naïve Bayes and F-Score, while FRFS

outperforms SLCC for the other three combinations.
Table 11 shows for each feature selection algorithm its averaged scores of AUC-ROC score and

F-measure across the three classifiers and the 15 datasets. We see that SLCC outperforms the other
algorithms for both AUC-ROC and F-Scores. Table 11 also shows the averaged ranks of the feature
selection algorithms across the two accuracy measures, three classifiers and the 14 datasets. SLCC

and FRFS turn out to have the same averaged rank, and they are evidently superior to the other three
benchmark algorithms.

To verify the observed superiority of SLCC and FRFS, we conduct non-parametric multiple
comparison tests following the recommendation by Demšar [17]. To be specific, we have performed
the Friedman test and then the Hommel test. To avoid the type II error of a multiple comparison
test, the tests are conducted only once based on the averaged ranks displayed in Table 11, which are
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computed across all of the combinations of a classifier, an accuracy measures and a dataset. The results
of the tests are described in the left column of Table 11. For the Freedman test, the observed p-value is
extremely small and displayed as 0.00, and, therefore, we reject the null hypothesis and conclude that
there exists a statistically significant difference among the feature selection algorithms. In the Hommel
test, which follows the Friedman test, we use SLCC as a control. The calculated p-values are negligibly
small for CFS, RELIEF-F and FCBF, and, hence, we can conclude that the observed superiority of SLCC

to CFS, RELIEF-F and FCBF is statistically significant. On the other hand, the results of the Hommel
test indicates that SLCC and FRFS are compatible with each other, since the corresponding p-value is as
great as 0.981, which is very close to 1.0.

As a conclusion, to obtain high accuracy, we can recommend to use SLCC and FRFS for feature
selection. To emphasize the difference between these two algorithms, SLCC will perform better when
used with SVM, while FRFS will perform better when used with C4.5.

Table 5. Support Vector Machine (SVM) and the Area Under an Receiver Operating Characteristic
Curve (AUC-ROC). Av. denotes averaged values.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.748 0.910 0.773 0.701 0.862 0.879 0.952 0.652 0.992 0.835 1.00 0.869 0.964 0.973 0.865
FRFS 0.763 0.839 0.604 0.643 0.793 0.956 0.980 0.688 0.941 0.605 1.00 0.894 0.973 0.989 0.833
CFS 0.745 0.895 0.650 0.559 0.855 0.863 0.912 0.600 0.937 0.749 0.990 0.863 0.947 0.888 0.818

RELIEF 0.743 0.873 0.500 0.681 0.706 0.621 0.548 0.641 0.929 0.565 1.00 0.540 0.956 0.952 0.733
FCBF 0.745 0.884 0.582 0.637 0.741 0.817 0.929 0.596 0.937 0.602 0.990 0.816 0.948 0.903 0.795

RANKING

LCC 2.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 1.0 1.0 2.0 2.0 2.0 2.0 1.57
FRFS 1.0 5.0 3.0 3.0 3.0 1.0 1.0 1.0 2.0 3.0 2.0 1.0 1.0 1.0 2.00
CFS 3.5 2.0 2.0 5.0 2.0 3.0 4.0 4.0 3.5 2.0 4.5 3.0 5.0 5.0 3.46

RELIEF 5.0 4.0 5.0 2.0 5.0 5.0 5.0 3.0 5.0 5.0 2.0 5.0 3.0 3.0 4.07
FCBF 3.5 3.0 4.0 4.0 4.0 4.0 3.0 5.0 3.5 4.0 4.5 4.0 4.0 4.0 3.89

Table 6. SVM and F-Score.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.826 0.965 0.756 0.713 0.860 0.879 0.952 0.961 0.992 0.836 10.00 0.902 0.963 0.992 0.900
FRFS 0.848 0.942 0.578 0.651 0.789 0.956 0.980 0.970 0.943 0.605 10.00 0.927 0.973 0.996 0.868
CFS 0.833 0.962 0.624 0.511 0.851 0.863 0.912 0.960 0.939 0.749 0.990 0.900 0.946 0.983 0.859

RELIEF 0.827 0.950 0.373 0.689 0.704 0.545 0.402 0.961 0.927 0.504 10.00 0.651 0.955 0.990 0.748
FCBF 0.836 0.959 0.532 0.643 0.727 0.817 0.929 0.961 0.939 0.602 0.990 0.871 0.947 0.985 0.838

RANKING

LCC 5.0 1.0 1.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 2.0 2.0 2.0 2.0 1.85
FRFS 1.0 5.0 3.0 3.0 3.0 1.0 1.0 1.0 2.0 3.0 2.0 1.0 1.0 1.0 2.00
CFS 3.0 2.0 2.0 5.0 2.0 3.0 4.0 5.0 3.5 2.0 4.5 3.0 5.0 5.0 3.50

RELIEF 4.0 4.0 5.0 2.0 5.0 5.0 5.0 3.0 5.0 5.0 2.0 5.0 3.0 3.0 4.00
FCBF 2.0 3.0 4.0 4.0 4.0 4.0 3.0 3.0 3.5 4.0 4.5 4.0 4.0 4.0 3.64

Table 7. Naïve Bayes and AUC-ROC.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.891 0.933 0.755 0.776 0.910 0.901 0.954 0.769 0.945 0.660 0.999 0.922 0.973 0.997 0.885
FRFS 0.887 0.954 0.640 0.919 0.903 0.906 0.955 0.803 0.965 0.634 0.999 0.930 0.978 0.998 0.891
CFS 0.878 0.942 0.682 0.732 0.952 0.897 0.964 0.732 0.956 0.654 0.992 0.928 0.968 0.989 0.876

RELIEF 0.870 0.851 0.768 0.715 0.762 0.901 0.938 0.688 0.975 0.572 0.998 0.542 0.979 0.997 0.825
FCBF 0.892 0.937 0.641 0.586 0.858 0.892 0.966 0.717 0.956 0.618 0.992 0.893 0.968 0.989 0.850

RANKING

LCC 2.0 4.0 2.0 2.0 2.0 2.5 4.0 2.0 5.0 1.0 1.5 3.0 3.0 2.5 2.61
FRFS 3.0 1.0 5.0 1.0 3.0 1.0 3.0 1.0 2.0 3.0 1.5 1.0 2.0 1.0 2.00
CFS 4.0 2.0 3.0 3.0 1.0 4.0 2.0 3.0 3.5 2.0 4.5 2.0 4.5 4.5 3.07

RELIEF 5.0 5.0 1.0 4.0 5.0 2.5 5.0 5.0 1.0 5.0 3.0 5.0 1.0 2.5 3.57
FCBF 1.0 3.0 4.0 5.0 4.0 5.0 1.0 4.0 3.5 4.0 4.5 4.0 4.5 4.5 3.71
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Table 8. Naïve Bayes and F-Score.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.832 0.945 0.681 0.588 0.835 0.824 0.888 0.946 0.899 0.629 0.990 0.889 0.919 0.987 0.857
FRFS 0.831 0.804 0.597 0.851 0.776 0.822 0.885 0.964 0.917 0.605 0.977 0.899 0.924 0.979 0.845
CFS 0.789 0.952 0.585 0.622 0.849 0.818 0.901 0.946 0.927 0.612 0.986 0.889 0.912 0.979 0.841

RELIEF 0.772 0.897 0.737 0.660 0.659 0.823 0.873 0.894 0.922 0.501 0.955 0.638 0.927 0.982 0.803
FCBF 0.837 0.948 0.554 0.544 0.724 0.817 0.908 0.951 0.927 0.599 0.986 0.857 0.912 0.981 0.825

RANKING

LCC 2.0 3.0 2.0 4.0 2.0 1.0 3.0 3.5 5.0 1.0 1.0 2.5 3.0 1.0 2.43
FRFS 3.0 5.0 3.0 1.0 3.0 3.0 4.0 1.0 4.0 3.0 4.0 1.0 2.0 4.5 2.96
CFS 4.0 1.0 4.0 3.0 1.0 4.0 2.0 3.5 1.5 2.0 2.5 2.5 4.5 4.5 2.86

RELIEF 5.0 4.0 1.0 2.0 5.0 2.0 5.0 5.0 3.0 5.0 5.0 5.0 1.0 2.0 3.57
FCBF 1.0 2.0 5.0 5.0 4.0 5.0 1.0 2.0 1.5 4.0 2.5 4.0 4.5 3.0 3.18

Table 9. C4.5 and AUC-ROC.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.849 0.915 0.642 0.5 0.832 0.841 0.93 0.685 0.997 0.758 10.00 0.825 0.966 0.985 0.838
FRFS 0.896 0.879 0.617 0.5 0.785 0.901 0.956 0.641 0.979 0.623 10.00 0.886 0.98 0.997 0.831
CFS 0.864 0.923 0.555 0.557 0.783 0.846 0.932 0.633 0.963 0.752 0.993 0.823 0.963 0.944 0.824

RELIEF 0.84 0.895 0.63 0.684 0.74 0.828 0.937 0.664 0.976 0.574 10.00 0.516 0.965 0.986 0.803
FCBF 0.861 0.891 0.612 0.52 0.712 0.834 0.919 0.584 0.963 0.616 0.993 0.767 0.963 0.945 0.787

RANKING

LCC 4.0 2.0 1.0 4.5 1.0 3.0 4.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0 2.25
FRFS 1.0 5.0 3.0 4.5 2.0 1.0 1.0 3.0 2.0 3.0 2.0 1.0 1.0 1.0 2.18
CFS 2.0 1.0 5.0 2.0 3.0 2.0 3.0 4.0 4.5 2.0 4.5 3.0 4.5 5.0 3.25

RELIEF 5.0 3.0 2.0 1.0 4.0 5.0 2.0 2.0 3.0 5.0 2.0 5.0 3.0 2.0 3.14
FCBF 3.0 4.0 4.0 3.0 5.0 4.0 5.0 5.0 4.5 4.0 4.5 4.0 4.5 4.0 4.18

Table 10. C4.5 and F-Score.

Dataset 1 2 3 4 5 7 8 9 10 11 12 13 14 15 Av.

RAW SCORES

LCC 0.831 0.966 0.584 0.414 0.774 0.808 0.908 0.961 0.990 0.712 10.00 0.894 0.956 0.990 0.842
FRFS 0.851 0.955 0.566 0.414 0.748 0.860 0.931 0.965 0.944 0.604 10.00 0.911 0.971 0.993 0.837
CFS 0.837 0.965 0.539 0.433 0.735 0.816 0.915 0.957 0.940 0.710 0.990 0.859 0.950 0.983 0.831

RELIEF 0.818 0.949 0.594 0.587 0.699 0.821 0.922 0.954 0.927 0.501 10.00 0.623 0.956 0.991 0.810
FCBF 0.831 0.954 0.518 0.421 0.666 0.795 0.895 0.953 0.940 0.599 0.990 0.832 0.950 0.986 0.809

RANKING

LCC 3.5 1.0 2.0 4.5 1.0 4.0 4.0 2.0 1.0 1.0 2.0 2.0 2.5 3.0 2.39
FRFS 1.0 3.0 3.0 4.5 2.0 1.0 1.0 1.0 2.0 3.0 2.0 1.0 1.0 1.0 1.89
CFS 2.0 2.0 4.0 2.0 3.0 3.0 3.0 3.0 3.5 2.0 4.5 3.0 4.5 5.0 3.18

RELIEF 5.0 5.0 1.0 1.0 4.0 2.0 2.0 4.0 5.0 5.0 2.0 5.0 2.5 2.0 3.25
FCBF 3.5 4.0 5.0 3.0 5.0 5.0 5.0 5.0 3.5 4.0 4.5 4.0 4.5 4.0 4.29

Figure 6. Cont.



Information 2017, 8, 159 17 of 26

Figure 6. Comparison in accuracy.

Figure 7. Ranking.
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Table 11. Overall comparison of the feature selection algorithms. The scores of the Area Under an
Receiver Operating Characteristic Curve (AUC-ROC) and F-Score are the averaged values across the
three classifiers and the 14 datasets. On the other hand, the averaged ranks are computed across all of
the combinations of classifiers, accuracy measures and datasets. The Friedman and Hommel tests are
conducted based on the averaged ranks computed here.

Average p-Value

AUC-ROC F-Score Rank Friedman Hommel

SLCC 0.862 0.863 20.18 CTRL

FRFS 0.852 0.850 20.18 90.81× 10−1

CFS 0.839 0.843 30.22 0.000 40.37× 10−5

RELIEF-F 0.787 0.787 30.60 10.91× 10−8

FCBF 0.811 0.824 30.82 90.24× 10−11

4.2.3. Accuracy of SLCC for Various δ

Figure 8 shows the results of experiments of performing SLCC changing the value of δ from
0 to 0.02 at interval of 0002: the AUC-ROC scores computed based on the results when using the
RBF-kernel-C-SVM as a classifier for different values of δ are displayed in orange per dataset.

Figure 8. The Area Under an Receiver Operating Characteristic Curve (AUC-ROC) scores and numbers
of features selected by SLCC changing δ from 0.0 to 0.02 at interval of 0.002. The lines and plots in blue
represent feature numbers, while those in orange do AUC-ROC scores.
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For the seven datasets of GINA, GISETTE, HIVA, MUSHROOM, NOVA and SILVA, that is, for almost
half of the datasets investigated, the AUC-ROC score reaches the maximum when δ = 0. On the
other hand, we should note that the results for KR-VS-KP and MADELON show steep drop-offs of the
AUC-ROC score at δ = 0. Since SLCC outputs the same results as SCWC does in most of cases when
δ = 0, these results imply a clever way to use SCWC and SLCC: we can try SCWC first and then apply
SLCC if good results are not obtained from SCWC.

Figure 8 also includes plots of the numbers of features selected (plots and lines in blue). In theory,
running SLCC with a greater δ will results in selection of a smaller number of features. The results of
the experiments support this only except for GINA.

4.3. Time-Efficiency

Table 12 describes the experimental results of the run-time performance of SLCC, SCWC, FRFS,
CFS, RELIEF-F, FCBF, LCC, CWC and INTERACT. The feature selection algorithm of INTERACT was not
used for the comparison in accuracy, since it was shown in [12] that LCC always outperform INTERACT

with respect to accuracy. In the experiment, we use six datasets out of the 15 datasets described in
Table 4. These six datasets need a relatively long time to perform feature selection and are appropriate
for the purpose of comparing the time-efficiency of feature selection algorithms. Furthermore, we use
a Mac Book Pro (2016, Apple Inc., Cupertino, CA, USA) with Quad Core i7 2.5 GHz processor and
8 GB memory. The threshold parameter δ for SLCC and LCC is set to 0.01.

From the result, we see that SLCC and SCWC outperform the others, and they have greatly
improved the performance of CWC and LCC. In particular, the extent of the improvement of SLCC from
LCC is remarkably greater than that of SCWC from CWC. In fact, from Table 12, we see that, even though
there is a significant difference in run-time between LCC and CWC, the run-time performance of SLCC

and SCWC appears comparable with each other. This can be explained as follows: with a greater δ,
SLCC/LCC eliminates more features; in other words, the intervals between adjacent selected features
become wider; this implies that the number of features investigated by binary search decreases, while
the number of features investigated by linear search remains the same; thus, as δ increases, the extent
of improvement by SLCC over LCC becomes more significant.

Table 12. Comparison of run-time (seconds) with relatively large datasets.

Dataset SLCC SCWC FRFS CFS RELIEF-F FCBF LCC CWC INTERACT

DEXTER 0.063 0.12 0.40 35.5 1591.8 2.33 183 54.6 193
DOROTHEA 0.31 0.68 2.3 – – – 13,906 544 14,102

GISETTE 0.75 0.86 11.0 3,978 351 25.2 203 5.21 219
HIVA 0.76 0.42 2.16 932 3.10 3.11 14.9 1.12 15.5
NOVA 0.32 0.33 3.44 – 502 15.5 705 155 749
SYLVA 0.25 0.53 5.56 11.9 11.6 1.95 2.92 0.497 3.25

Results of the Hommel Test

Averaged Rank 1.0 – 2.7 – – – – 2.5 3.8
p-Values CTRL. – 0.025 – – – – 0.044 0.000

The experimental results depicted by Figure 9 supports this discussion. Since LCC relies on linear
search, every feature is evaluated exactly one time regardless of the value of δ. Hence, the run-time
of LCC remains the same even if δ changes. By contrast, as Figure 9 shows, the run-time of SLCC

decreases as δ increases. This is because the number of features selected decreases as δ increases,
and, consequently, SLCC investigates a fewer number of features. When looking at Figure 8 from this
viewpoint, we realize that it is a basic tendency that the number of features selected is a decreasing
function of δ (the dataset of GINA is the only exception).

Table 12 also shows the results of the Hommel test to compare SLCC with FRFS, CWC and
INTERACT, selected from the feature selection algorithms that can finish feature selection within
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a reasonable time allowance for all of the six datasets: FRFS is the fastest of the benchmark algorithms;
CWC is included to show the degree of improvement by SLCC; INTERACT is included because it
is well known as the first consistency-based feature selection algorithm that is practically efficient.
The displayed p-values indicate that the observed superiority of SLCC is statistically significant for
the significance level of 5%. These datasets are, however, significantly smaller in size than the data to
which we intend to apply SLCC and SCWC. We further investigate the efficiency performance of SLCC

and SCWC in the next section.

Figure 9. Relation between the run-time of SLCC and the value of δ. The x-axis represents the value of
δ, while the y-axis does the run-time of SLCC in milliseconds.

5. Performance of SLCC and SCWC for High-Dimensional Data

In this section, we look into both of the accuracy and time-efficiency performance of SLCC and
SCWC when applied to high-dimensional data. We use 26 real datasets studied in social network
analysis, which were described in Section 1 as well. These datasets were generated from the large
volume of tweets sent to Twitter on the day of the Great East Japan Earthquake, which hit Japan at
2:46 p.m. on 11 March 2011 and inflicted catastrophic damage. Each dataset was generated from a
collection of tweets posted during a particular time window of an hour in length and consists of a word
count vector for each author of Twitter that reflects all words in all they sent during that time window.
In addition, each author was given a class label reflecting the category he or she was assigned from the
k-means clustering process. We expect that this annotation represents the extent to which authors are
related to the Great East Japan Earthquake.

Table 13 shows the AUC-ROC scores of C-SVM that run on the features selected by SCWC.
We measured the scores using the method described in Section 4.2.1. Given time constraints, we use
only 18 datasets out of the 26 datasets prepared. We see that the scores are significantly high, and the
features selected well characterize the classes.
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From Table 3, we observe that the run-times of SCWC on the aforementioned 26 datasets range from
1.397 s to 461.130 s, and the average is 170.017 s. Thus, this experiment shows that the time-efficiency
of SCWC is satisfactory enough to apply it to high-dimensional data analysis.

Table 13. AUC-ROC of SCWC when applied to real high-dimensional data.

# of Instances # of Features AUC-ROC # of Instances # of Features AUC-ROC

71,814 49,974 0.993 44,471 30,828 0.986
52,400 39,570 0.976 44,812 32,721 0.985
34,125 29,367 0.991 45,284 34,123 0.955
22,540 21,684 0.986 48,348 35,056 0.995
16,319 17,221 0.938 161,425 38,822 0.988
15,568 15,741 0.976 155,244 37,659 0.937
23,036 19,723 0.963 150,517 37,601 0.990
37,057 26,938 0.971 150,402 37,610 0.988

AVERAGES 67,085 31,540 0.976

For a more precise measurement, we compare SCWC with FRFS. Table 14 shows the results. Since
running FRFS takes much longer, we test only three datasets and use a more powerful computer with
CentOS release 5.11 (The CentOS Project), Intel Xeon X5690 6-Cores 3.47 GHz processor and 192 GB
memory (Santa Clara, CA, USA). Although we tested only a few datasets, the superiority of SCWC to
FRFS is evident: SCWC is more than twenty times faster than FRFS.

Table 14. Run-time of SLCC and FRFS (CentOS release 5.11, Intel Xeon X5690 6-Cores 3.47 GHz,
198 GB memory).

# of Instances # of Features SCWC (s) FRFS (s) Ratio

1 90,797 94,707 121.6 2849.4 23.4
2 83,862 97,261 143.5 3249.8 22.6
3 108,715 104,808 215.4 5891.6 27.3

In addition, we can conclude that SCWC remarkably improves the time-efficiency of CWC.
Running CWC on the smallest dataset with 15,567 instances and 15,741 features in Table 3 requires
several hours to finish feature selection. Based on this, we estimate that it will take up to ten days
to process the largest dataset with 200,569 instances and 99,672 features because we know the time
complexity of CWC is O(NF NI(NF + log NI)). Surprisingly, SCWC has finished feature selection of this
dataset in only 405 s.

Lastly, we investigate how the parameter δ can affect the performance of SLCC. As described in
Section 4.3, with greater δ, SLCC will eliminate more features, and, consequently, the run-time will
decrease. To verify this, we run an experiment with SLCC with the dataset with 161,425 instances and
38,822 features. Figure 10 exhibits plots of the results. In fact, the number of features selected by and
the run-time of SLCC decrease as the threshold δ increases. In addition, we see that, although SLCC

selects the same features as SCWC when δ = 0, the run-time is greater than SCWC. This is because
computing the Bayesian risk (Br) is computationally heavier than computing the binary consistency
measure (Bn). It is also interesting to note that SLCC becomes faster than SCWC for greater thresholds,
and their averaged run-time performance appears comparable.
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(a) Numbers of feature selected by SLCC
with different values for the parameter δ.

(b) Run-time of SLCC in millisecond
with different values for the parameter δ.

Figure 10. The effects of different values upon the threshold parameter δ. The x-axis represents the
value of δ, while the y-axis represents (a) the number of feature selected by and (b) the run-time of
SLCC. The orange lines indicate the corresponding values by SCWC.

6. An Implementation

In this section, we show an implementation of our algorithms, which is also used in the
experiments stated above. The data structure deployed by the implementation is a secret ingredient
that makes the implementation fast. In addition, parallel computation will be possible thanks to the
data structure.

6.1. The Data Structure

We consider the moment when SCWC selected Fk1 , Fk2 , . . . , Fk`−1
in this order and has just decided

to select the feature Fk. We let Fk` = Fk and call the sequence (Fk` , Fk`−1
, . . . , Fk1) a prefix. Note that

k1 < k2 < · · · < k` = k holds. In the next round, Fk+1, Fk+2, . . . , FN are targets of investigation. Hence,
SCWC selects one of Fk+1, Fk+2, . . . , FN , denoted by Fk`+1

, and eliminates all of Fk+1, Fk+2, . . . , Fk`+1−1.
In our implementation of SLCC and SCWC, at this moment, every instance of a dataset is represented

as a vector of values for the sequence of features (Fk` , Fk`−1
, . . . , Fk1 , FN , FN−1, . . . , Fk+2, Fk+1),

a concatenation of the prefix and the target features, and all of the instances are aligned in the
lexicographical order of the feature values.

Figure 11 shows an example. In the example, the prefix is (F5, F3, F2), and the targets in the next
round are F9, F8, F7, F6. For simplicity, we assume that all of the features and the class are binary
variables, which take either 0 or 1 as values. The COUNT column shows the number of instances that
are identical in all of the remaining features (F2, F3, F5, F6, F7, F8 and F9) and the class.

The following are advantages of this data structure. To illustrate, we let

S = {Fk` , Fk`−1
, . . . , Fk1 , FN , FN−1, . . . , Fk+1}.

1. To find inconsistent pairs of instances with respect to S, we only have to compare adjacent vectors
(rows) in the data structure. We say that two instances compose an inconsistent pair with respect
to S, if, and only if, the instances have the same value for every feature in S but are different in
class labels.

2. To evaluate Br(S \ {Fk+1, . . . , Fi}) and Bn(S \ {Fk+1, . . . , Fi}), we only have to evaluate the
measures in the reduced data structure obtained by simply eliminating the columns that
correspond to Fk+1, . . . , Fi. In the reduced data structure, instances are still aligned in the
lexicographical order of values with respect to (Fk` , Fk`−1

, . . . , Fk1 , FN , FN−1, . . . , Fi+2, Fi+1), and,
hence, by investing adjacent vectors (rows), we can evaluate the measures.



Information 2017, 8, 159 23 of 26

3. Assume that the algorithm selects Fk`+1
and eliminates the features Fk+1, Fk+2, . . . , Fk`+1−1.

The necessary update of the data structure can be carried out in time linear to the number
of instances: first, we simply eliminate the columns corresponding to Fk+1, Fk+2, . . . , Fk`+1−1;
in the reduced data structure, instances are aligned in the lexicographical order of values with
respect to (Fk` , Fk`−1

, . . . , Fk1 , FN , FN−1, . . . , Fk`+1
); to update the prefix from (Fk` , Fk`−1

, . . . , Fk1) to
(Fk`+1

, Fk` , . . . , Fk1), we only have to apply the bucket sort with respect to the value of Fk`+1
.

For the example of Figure 11, Bn(F5, F3, F2, F9, F8, F7, F6) = 0 is derived, since no adjacent vectors
are congruent with respect to the features F5, F3, F2, F9, F8, F7, F6.

PREFIX TARGETS
F5 F3 F2 F9 F8 F7 F6 CLASS COUNT

0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 4
0 0 0 0 0 1 1 1 2
0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 1 1 1
0 0 1 0 0 0 0 0 4
0 0 1 0 1 0 0 1 2
1 1 0 0 0 1 1 0 5
1 1 0 0 1 0 1 1 1

Figure 11. An example of data structure.

Next, to evaluate Bn(F5, F3, F2, F9, F8), we temporarily eliminate the columns of F6 and F7. Figure 12
shows the resulting data structure. By investigating adjacent vectors (rows), we see that the first and
second instances are inconsistent with each other with respect to the features F5, F3, F2, F9, F8. Hence,
we have Bn(F5, F3, F2, F9, F8) = 1.

PREFIX TARGETS

F5 F3 F2 F9 F8 F7 F6 CLASS COUNT

0 0 0 0 0 0 1
0 0 0 0 0 1 4
0 0 0 0 0 1 2
0 0 0 1 0 0 1
0 0 0 1 1 1 1
0 0 1 0 0 0 4
0 0 1 0 1 1 2
1 1 0 0 0 0 5
1 1 0 0 1 1 1

Figure 12. Evaluating Bn(F5, F3, F2, F9, F8).

Since we can verify Bn(F5, F3, F2, F9, F8, F7) = 0 by the same means, SCWC selects F7 and eliminates
F6. The left chart of Figure 13 shows the resulting data structure after eliminating F6 (F7 is moved to
the top of the prefix), while the right chart exhibits the result of applying bucket sort according to the
value of F7. We should note that the vectors are aligned in the lexicographical order of the values of
(F7, F5, F3, F2, F9, F8), and the data structure is ready to go to the next round of selection.
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PREFIX TRGT.
F7 F5 F3 F2 F9 F8 CL. CNT.
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 4
1 0 0 0 0 0 1 2
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 4
0 0 0 1 0 1 1 2
1 1 1 0 0 0 0 5
0 1 1 0 0 1 1 1

⇒

PREFIX TRGT.
F7 F5 F3 F2 F9 F8 CL. CNT.
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 4
0 0 0 1 0 1 1 2
0 1 1 0 0 1 1 1
1 0 0 0 0 0 1 4
1 0 0 0 0 0 1 2
1 1 1 0 0 0 0 5

Figure 13. Eliminating F6 and sorting with respect to the value of F7.

6.2. The Program spcwc.jar

Instructions for using this program, namely spcwc.jar, are given in Table 15. The program
contains implementation of both SCWC and SLCC. Using SLCC requires specifying a threshold value,
which should be between Br(F1, . . . , FN) and Br(∅), where F1, . . . , FN are the entire features of a dataset.
Br(∅) is given by

Br(∅) = 1−max
y

Pr[C = y].

SLCC returns the entire set {F1, . . . , FN} when δ < Br(F1, . . . , FN), while it returns the empty set
when δ ≥ Br(∅).

In addition, we may change the measure used to sort features in the first step of SCWC and
SLCC. Different feature selection results can be obtained with different measures. The measure
can be either symmetrical uncertainty (default), mutual information, Bayesian risk, or Matthews
correlation coefficient.

The program also outputs a log file with the extension .log. This log file contains the run-time
record of the program, the features selected, the numbers of instances and features of the dataset input,
and the measurements of individual features in the symmetrical uncertainty, the mutual information,
the Bayesian risk and Matthews correlation coefficient.

The recommended method for using the program is to run it first with only the i option. Features
will be sorted according to their symmetrical uncertainty scores, and, then, SCWC will select features.
If we are not satisfied with the program’s result, we can try other options; for example, we can try
SLCC with optimized threshold values. To obtain optimized threshold, we can take advantage of any
methods for hyper-parameter optimization such as the grid search and the Bayesian optimization [18].

6.3. Parallelization

Another important advantage of the data structure described in Section 6.1 is its suitability for
parallel computing. Since evaluation of the Bayesian risk and the binary consistency measure can be
performed only by investigating whether adjacent instances are inconsistent with each other, we can
partition the entire data structure into multiple partitions and can investigate them in parallel. The data
structure must be partitioned so that two adjacent instances that belong to different partitions are not
congruent with respect to values of the current features because such adjacent instances cannot be
inconsistent.

For example, to evaluate Bn(F5, F3, F2, F9, F8) in Figure 12, we can partition the data structure
of Figure 12 as Figure 14 depicts and investigate the partitions in parallel: Bn(F5, F3, F2, F9, F8) = 0
holds, if, and only if, any of the partitions includes no adjacent instances that are mutually inconsistent.
For example, the first three instances of Figure 12 must belong to the same partition because they have
identical values for the features F5, F3, F2, F9, F8.
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PREFIX TARGETS
F5 F3 F2 F9 F8 F7 F6 CLASS COUNT

0 0 0 0 0 0 1
0 0 0 0 0 1 4 Partition 1
0 0 0 0 0 1 2
0 0 0 1 0 0 1
0 0 0 1 1 1 1 Partition 2
0 0 1 0 0 0 4
0 0 1 0 1 1 2
1 1 0 0 0 0 5 Partition 3
1 1 0 0 1 1 1

Figure 14. An example of data structure.

Table 15. Usage of SPCWC.JAR.

Option Values Description

-i <path> Path to the input attribute-relation file format (arff) file.
-a <algorithm> The feature selection algorithm to use.

cwc Run SCWC (default).
lcc Run SLCC.

-t <number> A threshold value for SLCC.
The value should be in the interval [0,1).
When the value 0 is specified, SCWC will run, even if -a lcc is specified.

-s <measure> A statistical measure to use when sorting features.
su The symmetrical uncertainty will be used (default).
mi The mutual information will be used.
br The Bayesian risk will be used.
mc Matthews correlation coefficient will be used.

7. Conclusions

Feature selection is a useful tool for data analysis, and, in particular, is useful to interpret
phenomena that you find in data. Consequently, feature selection has been studied intensively
in machine learning research, and multiple algorithms that exhibit excellent accuracy have been
developed. Nevertheless, such algorithms are seldom used for analyzing huge data because the
algorithms usually take too much time. In this paper, we have introduced two new feature selection
algorithms, namely SCWC and SLCC, that scale well to huge data. They are based on the algorithms that
exhibited excellent accuracy in the literature and do not harm the accuracy of the original algorithms.
We have also introduced an implementation of our new algorithms and have described a recommended
usage of the implementation.
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