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Abstract: Entity Attribute Value (EAV) storage model is extensively used to manage healthcare data
in existing systems, however it lacks search efficiency. This study examines an entity attribute value
style modeling approach for standardized Electronic Health Records (EHRs) database. It sustains
qualities of EAV (i.e., handling sparseness and frequent schema evolution) and provides better
performance for queries in comparison to EAV. It is termed as the Two Dimensional Entity Attribute
Value (2D EAV) model. Support for ad-hoc queries is provided through a user interface for better
user-interaction. 2D EAV focuses on how to handle template-centric queries as well as other health
query scenarios. 2D EAV is analyzed (in terms of minimum non-null density) to make a judgment
about the adoption of 2D EAV over n-ary storage model of RDBMS. The primary aim of current
research is to handle sparseness, frequent schema evolution, and efficient query support altogether for
standardized EHRs. 2D EAV will benefit data administrators to handle standardized heterogeneous
data that demands high search efficiency. It will also benefit both skilled and semi-skilled database
users (such as, doctors, nurses, and patients) by providing a global semantic interoperable mechanism
of data retrieval.

Keywords: entity attribute value model; Electronic Health Records (EHRs); standardization;
archetype based EHRs

1. Introduction

Efficient data management and faster access procedures are essential for healthcare application.
Healthcare data management poses various challenges in terms of sparseness (high percentage of
null values), frequent evolution (changes in schema, and thus, changes in corresponding healthcare
application) and quick data access.

• Sparseness: Among the vast dimensions (attributes) of healthcare domain, only few are active
for a patient [1]. For example, a patient with fever might not undergo any blood test, and thus,
the corresponding attributes will contain null (sparse) values.

• Frequent Evolution: With time, medical knowledge evolves. This results in new diagnosis parameters
for providing more accurate decisions. For example, a few years back, four-dimensional (4D)
ultrasound technology had been introduced that assisted in a better understanding of the fetus.
This requires changes in existing database schema (and thus, changes in corresponding healthcare
application) for accommodating the new knowledge in terms of attributes/parameters to be recorded
and presented to the user on demand.

• Quick Data Access: Data extraction can be for a specific patient or for a population. When patient
data or population is extracted, target data can be characterized as rows and columns of a
relational model, respectively. Extracting patient data instantly is highly demanded in healthcare
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domain as it can lead to life loss. Whereas, population queries need not be answered in real
time [1]. But, irrespective of the type of query, faster data access is always appreciable.

RDBMS follow the n-ary storage model (NSM) approach, in which a table consists of ‘n’ columns
(one per attribute) [2]. A typical normalized relational database follows good ER design policy.
A sparse table can be divided into multiple non-sparse normalized tables with a good ER design.
However, a frequent evolution of schema in a good ER scenario is very expensive and seeks the
involvement of a schema designer for changes in the schema. Changes in schema can be the addition of
an attribute, deletion of an attribute or data type modification corresponding to an attribute. Addition
of an attribute is the most expensive operation that might result in the creation of new tables and
corresponding relationships. The existing data is then moved to the newly defined tables. In addition,
every time that the schema is modified, the information system built on the underlying schema needs
to be modified accordingly and retested for flawless operation.

In relational database literature, various data storage models (such as, entity attribute value
model [3], decomposed storage model [4], wide table [5], and interpreted storage [6]) have been
proposed for storing sparse datasets. Healthcare domain persisted data into various databases (such as
XML, Node+Path, archetype relational mapping, and dynamic tables) based on these data storage
models as well [1,7–10]. The Entity Attribute Value (EAV) model is observed to be the most widely
adopted storage model in clinical systems [11]. The EAV [1] model has a fixed schema structure
consisting of three columns, referred to as Entity, Attribute, and Value. The ‘Entity’ column will
store the contents of the primary key, the ‘Attribute’ column will store the name of the attribute,
and the ‘Value’ column will store the data value. For each non-null entry (except primary key entries)
in the relational table, one row in the EAV table is constructed. Thus, EAV stores only non-null
values. Also, EAV model enhances flexibility by allowing any number of attributes to be added by just
specifying its name in the ‘Attribute’ column. This enables no changes in schema and the underlying
information system.

Existing research [1,11–13] in healthcare/biomedical, as well as other domains, such as
e-commerce [3] and semantic web [14], strongly favors EAV. EAV was first employed in the TMR
(The Medical Record) system [15] and the HELP Clinical Data Repository [16–18]. The presence of
a single ‘value’ column in EAV hinders the ability to use multiple data types. Thus, to deal with
heterogeneity, the open-source TrialDB clinical study data management system [19,20] explored
the use of multiple EAV tables (one table for each data type). Further, EAV has been extended to
incorporate relationships among various medical concepts through the EAV/CR framework [21].
Yale’s SenseLab [22,23] used the EAV/CR framework to build a publicly accessible neuroscience
database. EAV is also utilized by Oracle’s health sciences division in its commercial systems
ClinTrial [24] and Oracle Clinical [25], for modeling clinical data attributes. Nowadays, many
commercial applications utilize various aspects of EAV internally, including Oracle Designer [26]
(for ER modeling), and Kalido [27] (for data warehousing and master data management).

A good ER design may result in thousands of tables. For example, in the clinical domain,
hundreds to thousands of relational tables (one corresponding to one form) need to be generated [11].
Intermountain Healthcare’s enterprise data warehouse involves 9000 tables and 10 terabytes of
data [11,28]. Rows in tables (corresponding to a good ER design) may vary from few to thousands or
millions in number. However, visually, tables with huge number of rows are emphasized equally to
the tables with few rows. The tables with few rows are suitable candidates for EAV representation.
For example, in ontology modelling environment, categories (classes) must often be created on the fly,
and some classes are often eliminated in subsequent cycles of prototyping [29]. This situation is best
candidate for EAV that can accommodate changes in classes without schema change.

Primarily, current research is focused on faster data retrieval and complex ad-hoc query support
in addition to the characteristics (handling sparseness and frequent evolution) of EAV model.
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• Faster data retrieval: Besides the extensive adaptability of EAV in the healthcare domain, EAV lacks
search efficiency. For data extraction, an exhaustive scan of EAV tables is required, which adds
a delay in processing the output. Thus, this research paper proposes an entity attribute value
style modeling approach for standardized Electronic Health Record (EHR) databases. The new
storage model proposed is termed as Two Dimensional Entity Attribute Value Model (2D EAV)
that extends the EAV to provide faster accessibility for patient-specific and population queries in
comparison to EAV. 2D EAV uses a mixture of the EAV model and the NSM of RDBMS to produce
a generic storage system that stores only non-sparse data and can accommodate new knowledge
with a better access speed.

• Complex ad-hoc query support: EAV database is complemented with metadata to store all schema
related details. EAV model represents the physical structure (i.e., how data is actually stored on disk)
and the metadata associated with it depicts the logical structure (i.e., how data is visible to end users).
However, in the healthcare domain, end users (such as, doctors, nurses, patients, and pharmacists)
need not require any knowledge about the physical and/or logical structure of data. Moreover,
every user is not aware of SQL. Even if a user is aware of SQL, the query corresponding to EAV will
be highly complex and error-prone [1]. Thus, a Graphical User Interface (GUI) must be provided
to the medical domain user for accessing Electronic Health Records (EHRs) that are stored in the
database of a healthcare application. Current research provides a GUI corresponding to 2D EAV
storage system. The GUI generates the SQL query corresponding to ad-hoc queries on fly, such as
query that is constructed by desktop resident query tools, to extract the desired information without
any prior knowledge about the underlying schema (2D EAV in our case) provided to the proposed
GUI as an input.

Healthcare domain demands for frequent unambiguous exchange of data for better medical
assistance to patients. Semantic interoperability and standardized data representation are crucial
tasks in the management of modern clinical trials [30]. Many standards (such as openEHR [31],
ISO13606 [32–34], and HL7 [35]) are making guidelines for standardized EHRs. The dual model
approach [36], has been introduced in the Synapses project [37] and adopted by the openEHR standard.
The openEHR project has developed clinical model-driven architecture for future-proof interoperable
EHRs systems [38] and can be harmonized with other standards [39]. In this study, we adopt a dual
model approach for standardization of EHRs. It divides the framework of defining medical concepts
electronically into two levels that segregate knowledge from information, as shown in Figure 1.

The reason behind adopting a dual model approach is the need for flexibility in adding new
medical concepts without modifying the existing system. Level 1 in the dual model approach is
referred to as the Reference Model (RM) [33,36], which defines the basic building blocks (such as data
types and data structures) of various medical concepts. Level 2, referred to as the Archetype model
(AM) [36], makes use of the information defined in RM to produce complete knowledge regarding
a medical concept (in the form of online available deliverables known as an archetype in openEHR
paradigm). AM applies constraints on the information that is provided in RM to build archetypes.

Medical concepts are presented in the form of archetypes. An archetype constitutes all knowledge
regarding one medical concept, such as the various attributes that are included in a given medical
concept, their data types, their range, and any other constraints [34,36]. For example, the Body
Weight archetype constitutes two attributes, termed as ‘Weight’ and ‘Comment’, whose data types
are ‘Quantity’ (quantifiable) and ‘Text’ (textual), respectively. An archetype may logically include
other archetypes, and/or a specialization of another archetype. Thus, they are flexible and vary
in form. In terms of scope, they are general-purpose, reusable and composable [40]. The openEHR
archetypes are freely available for download from a standard online library such as Clinical Knowledge
Manager (CKM) [41]. Archetypes also provide links to standard terminologies such as SNOMED-CT
(Systematized Nomenclature of Medicine Clinical Terms) [42] to avoid any ambiguity of terms.
An archetype is authored after a rigorous review process that involves a team constituting clinical
experts and information technology experts [41]. For each attribute in an archetype, a maximum
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possible occurrence is defined. Thus, an attribute can be optional or mandatory. Different healthcare
organizations can tailor their needs by inheriting the information stored in AM (in the form of
archetypes) through the use of templates [36]. For example, a gynecology department will have
a template designed using archetypes that are related to pregnancy, menstruation, and other
women-specific diseases. This study has made use of various templates to collect standardized EHRs
data for experimentation. The current research aims to reduce the delay in accessing the standardized
EHRs data.Information 2017, 9, 2 4 of 30 
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1.1. Related Studeis

Sparseness in medical domain is attributed towards the different procedures and processes being
followed by distinguished healthcare providers. For example, a blood pressure (archetype) constitutes
of five attributes- systolic, diastolic, mean arterial, pulse pressure, and comment. A doctor in one
hospital may record blood pressure in terms of systolic and diastolic pressure, whereas another doctor
may record blood pressure in terms of mean arterial pressure. Moreover, there are many situations
where all the parameters are not recorded for a particular medical scenario. Thus, sparseness is
introduced. Many approaches have been suggested to handle data efficiently as follows:

1. NoSQL systems have been introduced to overcome limitations of Relational Database
Management Systems (RDBMS) (See the next following Section 1.1.1).

2. In the healthcare domain, dual model approach opens a new path for handling data to make
a stable system that can capture future knowledge without making changes in the existing
application (See the next following Section 1.1.2).

3. Various storage approaches over existing RDBMS are suggested to make the system compatible
with future evolution and/or to avoid sparseness (see the next following Section 1.1.3).

1.1.1. Why Not Nosql?

NoSQL databases are gaining popularity as a storage option for highly sparse and frequently
evolving data. NoSQL systems are aimed at providing schema-less support for data storage to
attain flexibility. However, to attain flexibility abandoning schema entirely is not a good option [43].
Nandkarni stated that NoSQL database (such as Cassandra) came to same conclusion and introduced
CQL for schema definition and data manipulation for productivity of developers.
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For data analysis, most of the NoSQL databases leverage Hadoop MapReduce functionality.
This takes user away from standard SQL, which renders a large number of SQL based third party
analytical tools that are present in market (such as IBM Cognos, Tableau, SAP Business Objects,
and Microstrategy) unusable [44]. Also, several systems (such as Hadapt, Hive, and Impala) that
provide an SQL interface to the data residing in Hadoop require an external schema definition from the
user to enable data analytics via SQL. In addition, some of NoSQL systems (such as Apache Cassandra)
have introduced their own SQL-like query languages (such as Apache Cassandra introduced CQL) to
provide a more user friendly and easier learning environment to developers (that are in practice of
using SQL). Providing SQL-like query language enables schema definition at logical level. This schema
support helps in building a constrained storage system to avoid incorrect data.

In order to utilize the capabilities of RDBMS, such as transactional support, storage-integrated
access-control, read-write concurrency control, statistics gathering, and cost-based query optimization
capabilities, authors choose RDBMS for building the proposed storage system. In addition, NewSQL
system [45] also favors to maintain ACID properties, which is inherently provided in RDBMS. However,
NSM is expensive to evolve [3,5,7–10], and is restricted up to a certain limit to avoid disk page
overflow [46]. To attain the flexibility offered by NoSQL, we have adopted an approach similar to
key-value approach (of NoSQL) i.e., EAV on RDBMS. In addition, a query builder is provided to
make user free from the burden of writing complex queries, and thus, interact with the proposed
system flawlessly.

1.1.2. Storage of openEHR Standard Based Data

There are three openEHR based approaches. These are compared in Table 1.

Table 1. openEHR based persistence approaches.

Persistence
Approach Modeling Level Advantage Limitation

Object Relational
Model (ORM) [7] Reference Model

Simple process of creating
tables for classes defined in
RM. Also, stable in nature

since, RM is stable.

Deep hierarchy present in
openEHR RM structure

complicates the ORM scenario.

XML, JSON,
& Node+Path (using

BLOB) [8]
Reference Model BLOB is used to denote the

hierarchy in form of path.

Complicated paths that consume
more space as well as cause delay

in data access.

Archetype Relational
Mapping (ARM) [9] Archetype

One relational table
is created corresponding

to one archetype.

Schema evolution requires efforts
from schema designer to modify

schema and thus, changes in
application code.

The first approach, Object Relational Mapping (ORM) provides a set of relational tables that
can capture details of any object defined in healthcare domain. However, the ORM approach gets
complicated as levels of hierarchy increases [7]. Since RM describes a deep hierarchy, ORM is not well
suited for storing standard based health records. The second approach suggests capturing knowledge
about hierarchy (path) in a BLOB (binary large objects). Various storage approaches, such as XML and
JSON, exploit BLOB to store openEHR complaint data. One of the approaches utilizing BLOB in an
RDBMS is Node+Path [8]. Node+Path approach is similar to EAV; both use semantic paths as attribute
names. Wang et al. [9] suggest an Archetype Relation Mapping (ARM) approach as an optimization
of ORM. It proposes to use one NSM table per archetype, with some additional metadata tables to
support schema evolution. Each archetype is mapped to one relational table using a defined set of
mapping rules.
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1.1.3. Storage Approaches in RDBMS for Sparse Dataset

To deal with sparseness, many efforts are done at the physical layer [5,47,48], as well as the logical
layer [1,10] of RDBMS. Various storage approaches suggested in RDBMS literature are detailed in the
following subsections.

• Physical Level Modification

Beckmann et al. [5] proposed a modification of physical layer (termed as interpreted attribute
storage format) of row oriented RDBMS. It replaced the fixed length tuple by variable length tuple
storing non-null attribute-value pairs and associated length. This approach provides efficient storage
but degrades the performance of population queries (due to variable length tuples).

Microsoft included ‘Sparse Column’ [47] functionality in SQL Server 2008 and later versions to
mitigate the effect of sparseness. However, ‘Sparse Column’ falls short in following:

1. ‘Sparse Column’ functionality is not applicable to many data types that are quite common
nowadays, such as ‘String’, ‘Timestamp’, and ‘Geometry’, etc.

2. No constraints can be applied to ‘Sparse Columns’.
3. No data compression is possible for ‘Sparse Columns’.
4. Copying data from one machine to another will result in a loss of the ‘Sparse

Column’ functionality.

In addition to ‘Sparse Column’, Microsoft introduced column store index [49] in SQL Server 2012
and later version to enhance the performance of population queries. Also, many columnar RDBMS are
incorporating various compression techniques to handle sparseness [48]. However, a little space is
wasted even after compression. For example, null bitmap reserves one bit for each null value.

Existing solutions (discussed in this sub-section) deal well with sparseness and also enhance the
performance of queries, but falls short in case of schema evolution.

As discussed before, with evolving schema, the schema designer needs to redesign the ER for
incorporating newly evolved attributes. With a new good ER design, corresponding changes must
be reflected to the database schema, as well as the application. This incurs extra cost and the loss
of stability. Therefore, it has been suggested to adopt a generic schema for storing standardized
EHRs [12,13] when considering frequent schema evolution.

Partition across (PAX) [50] divide the n-ary table into multiple pages and each page is vertically
partitioned in cache. This enables the improvement in search efficiency of OLTP queries by keeping
whole tuple in cache. Simultaneously, OLAP performance is improved since spatial locality of attribute
data is improved by vertically partitioning.

Another approach, termed as fractured mirror [51], provides two disk images of same dataset.
Each disk image has two same fragments of the dataset, but distinct physical organization. For instance,
Disk 1 will save fragment 1 as n-ary table and fragment 2 as vertically partitioned dataset. Whereas,
Disk 2 will save fragment 1 as per vertically partitioned dataset and fragment 2 as n-ary table.
Depending upon the type of query (OLTP or OLAP), the best organization is chosen by the optimizer.

HYRISE [52] also works in the direction of providing efficient storage mechanism. It provides
a storage hybrid architecture that inherits advantages of NSM and vertical partitioning. It creates
variable length partitions of the whole database. Each partition can be stored either as n-ary table or
vertically partitioned table as per the underlying requirements. If attributes are accessed frequently,
the choice of storage should be vertical partitioning, such as in case of OLAP queries. For accessing
row specific data (OLTP scenario), NSM is opted.

Pinnecke et al. [53] has presented a survey of various storage approaches, including PAX, fractured
mirrors, and HYRISE, which do not deal with sparseness; however, they provide storage with improved
search efficiency.

• Logical Level Modification
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EAV is a widely adopted logical level approach. However, search inefficiency of EAV demands
for other storage models, or enhancement to existing EAV structure. An alternate approach for
storing sparse dataset is to create one binary table corresponding to each attribute of a relational
table [10,54]. The first column of the binary table contains primary key and the second column
defines the corresponding attribute. It improves the performance of population queries. However, the
performances of patient-specific queries worsen. Patient specific queries extract entity specific data
that needs to be scanned in all the binary tables of database irrespective of the fact that only a few
binary tables are applicable for underlying entity.

Sparse dataset exhibits a special characteristic that entities are likely to have the same subset of
non-null attributes [46]. The elements of this subset are termed as co-occurring attributes. To improve
the performance of patient specific queries, a better approach (than constructing binary tables) is to
group co-occurring attributes in one relational table. Information regarding co-occurring attributes
needs to be discovered beforehand. Clustering algorithms, such as K-Nearest Neighbor can be applied
to identify co-occurring attributes. Baumgartner et al. [55] presented an efficient technique, termed as
SURFING (subspaces relevant for clustering), which identifies cluster based on relevance. Relevance
is identified based on interestingness of a subspace using the k-nearest neighbor distances of the
objects. Irrespective of the efficiency of clustering algorithm, as the schema evolves, the co-occurring
attributes may also evolve, which in turn, may require rebuilding of an application built on the previous
schema (as in case of good ER design). Current research also considers co-occurring attributes for
the partitioning of data in different tables. However, partitions in the proposed approach follow EAV
model and information regarding co-occurring attributes are extracted from the openEHR archetype
definition (as detailed in next section).

• Wide Table Approach

Besides physical level and logical level modifications, a popular RDBMS approach is to store
a large number of entities belonging to the same entity set in one wide table [4]. This approach
relies on the compression techniques that are offered at physical layer by the underlying columnar
RDBMS. The wide table approach eliminates the involvement of a schema designer as schema evolves.
However, schema evolution is still expensive as modifications need to be reflected in the corresponding
information system. Another point of concern related with wide table is querying dataset involving a
huge number of attributes, since the user cannot remember thousands of attributes that are involved
in the dataset. Moreover, a drop-down menu is not an efficient option because scrolling thousands
of attributes do not seem to be a feasible solution. Thus, Chu et al. [4] proposed a keyword search
mechanism to provide the user with potential desired attribute set. Keyword searching [56] is good as
the user does not need to remember all the attributes. However, it is not always possible to retrieve
only desired attributes (additional attributes are also extracted with matching keyword).

• Materialized Views

Materialized views [57] are very advantageous for storing results of queries to avoid long running
calculations every time that a query is executed. At the physical storage level, materialized views
behave like indexes. It is easy to add attributes to an NSM table without making changes to the
materialized views. As long as the users access data through views, the relationships between the
tables can be changed without disrupting queries. Thus, a good ER can be followed and the underlying
tables that are physically stored in the database do not need to be sparse. Views can provide an
efficient solution in situations where underlying queries are static (not changed). However, in the
healthcare domain, parameters (attributes) evolve frequently. The newly evolved parameters need to be
accommodated in an existing database and must be inquired to reflect patients’ situation. Thus, having
a static view cannot resolve the issue of frequent evolution.
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1.1.4. Performing Analytical Operations

Databases are designed to support two categories of operations, i.e., transactional (that usually
demands patient specific data) and analytical (that requires population data). A popular tool, termed
as Informatics for Integrating Biology and the Beside (i2b2), uses EAV for the purpose of data storage
to perform analytical queries [58]. I2b2 is a self-service tool that has been designed (and becoming a de
facto standard) specifically for patients’ cohort identification. It allows to perform a population-wide
search to identify the amount of patient existing as per a study-specific criteria for feasibility analysis
of the underlying study [58]. To provide functionality of cohort identification and feasibility analysis,
i2b2 performs analytical operations on population data. However, it lacks support for querying data
related to specific patient. The system proposed in current research (termed as 2D EAV) supports
extraction of patient specific, as well as population, data with a better speed than that of EAV.

I2b2 implements an EAV based star schema that enables integration of healthcare data from
disparate sources. However, the use of EAV in i2b2 hinders constraint definition, and thus, i2b2 is
completely dependent upon the individual contributing systems for the implication of constraints [59].
In contrast, openEHR provides a dual layer modelling approach that segregates the information
(in reference model) from knowledge (in archetype model). Archetypes define data quality constraints
to be placed on the individual system and the content of record entries [40]. Individual systems can
use openEHR archetypes for implementing constraint definitions. This constrained dataset can be
migrated to i2b2 for patients’ cohort identification. Haarbrandt et al. [60] proposed an approach to
automate the process of populating i2b2 clinical data warehouse with openEHR complaint dataset.
In future, authors will try to export 2D EAV complaint data to i2b2 (by following a similar approach as
suggested by Haarbrandt et al.) for further enhancing the capabilities of 2D EAV.

1.2. Objective of This Research

Objectives of current research are to provide (1) better access speed; (2) adherence to standards;
(3) capability to accommodate new knowledge without modifying existing schema and information
system; (4) less storage with no sparseness; and, (5) ease of ad-hoc query. Current research aims to
build an EAV style modeling approach, termed as 2D EAV, that can be used for storage of highly sparse
and evolving data belonging to healthcare as well as other domains.

2. Method

Our study proposes a modified entity attribute value storage model named 2D EAV. It is especially
designed for storing heterogeneous and archetype-based data. In addition to the capabilities of EAV,
such as handling sparseness, generic structure, and frequent schema evolution, 2D EAV also enhances
searching and querying capabilities with support for querying data related to the desired templates.

2.1. Design and Implementation of 2D EAV

Foundations of 2D EAV lies in partitioning data stored in a single EAV table into multiple EAV
tables using two dimensions. The parameters chosen for partitioning are data semantics, improving
spatial locality of co-occurring attributes and different types of data. The first dimension chosen is
archetype (based on data semantics and improving spatial locality), and the second dimension chosen
is data type (based on storing heterogeneous data). Hence, the name 2D EAV.

Partitioning based on data semantics plays an important role in improving search efficiency [61].
Thus, 2D EAV utilizes the data semantics of medical concepts that are defined in an archetype to
create partitions of data. Knowledge representation of clinical concepts is through archetypes that
enable semantic interoperability of heterogeneous systems [40]. Another motive behind choosing
archetype as a dimension for partitioning is improving spatial locality of co-occurring attributes [46].
Archetype corresponds to the parameters that belong to the underlying medical concept (which tends
to be recorded together, i.e., co-occurring attributes). Thus, partitioning based on archetypes enables
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presence of co-occurring data in one table. Adoption of archetypes eliminate the overhead of applying
clustering algorithms for extracting co-occurring attributes details.

openEHR follows a rigorous archetype definition process thus an archetype is considered as an
authenticated standard definition of a medical concept [41]. Any evolution in knowledge is released
as a versioned archetype. Thus, changes in existing co-occurring group of attributes can be handled
through 2D EAV without making any changes (or rebuilding) in the schema and existing healthcare
application. Detail about version handling in 2D EAV is explained in Section 4.3.

2D EAV segregates the data based on data types (the second dimension) to support heterogeneity.
In the absence of partitioning based on data types, multiple value columns corresponding to different
data types (such as, value_int, value_text, value_boolean) are required in each archetype table. In such
a scenario, only one value column will contain the entry and all of the others will be null, resulting in
sparseness. This motivated us to partition the archetype table corresponding to data types (followed
by the Value column of underlying tables).

Let A be an archetype with attributes of three distinct data types, i.e., DT1, DT2, and DT3. The set
of attributes (say, with elements a1, a2 . . . , a8) of A is divided into three subsets corresponding to three
distinct data types (DT1, DT2, and DT3).

At1 = {a1, a2, a3}
At2 = {a4, a5, a6, a7}
At3 = {a8}

Each attribute subset is mapped to one Archetype table, as shown in Figure 2.
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For example, blood pressure archetype constitutes five attributes, with two distinct data types, i.e.,
‘Quantity’ (four attributes) and ‘Text’ (one attribute). Thus, two archetype tables are defined. In this
example, the first archetype table (corresponding to ‘Quantity’ data type) contains four attributes only.
The second archetype table contains one attribute (corresponding to ‘Text’ data type) only. The process
is repeated for all archetypes involved in building the database of healthcare application.

2D EAV segregates the data based on data types (the second dimension) to support heterogeneity.
In absence of partitioning based on data types, multiple value columns corresponding to different data
types are required in each archetype table. In such a scenario, only one value column will contain the entry
and all of the others will be null, resulting in sparseness. This motivated us to partition archetype table
corresponding to data types (as reflected in Value column of underlying tables). Presently, we consider
only four basic data types for the purpose of demonstration: Integer, String, Real, and Boolean. The set of
data types can be enhanced by simply adding tables that are related to the desired data types.

Each archetype table is uniquely termed as a concatenated string of Archetype_ID, an underscore
(“_”), and its corresponding Data_Type. openEHR provides a unique identification code to each
archetype. However, this unique code is a long string that consumes more space (when stored
repeatedly) and introduces a delay in data processing (needs to be de-serialized at time of access).
Thus, for 2D EAV, the long string identification code allotted by openEHR is mapped to a new unique
identification code through a mapping table. This mapped code serves as Archetype_ID.

Following a generic approach (EAV) for each archetype table, facilitates the addition of any
number of attributes to existing information system, and the freedom from sparseness. As new
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archetypes are added to the archetype repository, schema evolves automatically in 2D EAV storage
system and requires no amendments to the definition of existing information system.

Partitioning of data into multiple tables (as per 2D EAV) results in many tables. Archetypes are
advantageous because 10–20 basic archetypes are sufficient to build the core of a health application [62–64].
Around 100 archetypes can constitute a primary care electronic health record [63,64]. Similarly, around
2000 archetypes can constitute hospital EHRs, as compared to more than 400,000 active concepts in
SNOMED CT [42]. So, the resultant 2D EAV storage can have thousands of tables. However, the data
that needs to be accessed will be limited to a few tables. This happens because a patient data recordings
will generally correspond to 10–20 basic archetypes (as required to build the core of a health application).
Other recorded parameters (if any) will contain a null value (not stored in EAV).

In simple EAV, an exhaustive search to complete data might be required for extracting desired
data. In contrast, 2D EAV restricts the search for desired data to the tables containing it. To enable this
restriction, 2D EAV is complemented with metadata support as two tables, namely: Master table and
Template table (as shown in Figure 3).
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The Master table features four columns: ID, Patient_ID, Session, and Template_ID. The Template
table features five columns: Template_ID, Archetype_ID, Data_Type, Attribute_ID, and Attribute_Name.
2D EAV stores a single EAV table as a collection of disjoint EAV partitions. Each partition (termed as
Archetype table) corresponds to a distinct data type attributes of an archetype. Various archetype tables
features three columns: ID, Attribute_ID, and Value.

• Master Table: The Master table is designed with the aim of uniquely identifying a patient’s
admittance to the hospital. The Master table follows the relational approach, since it stores data
that contains no null values and have a fixed schema. ID column is the primary key of the Master
table that stores auto-generated sequential numbers to identify each entry in the Master table
uniquely. Patient_ID is unique for a particular patient, but it cannot serve as a candidate key in a
Master table since a patient can have multiple admittances to a hospital, and thus, many entries
in the Master table. Session is recorded to support a temporal behavior of standardized EHRs.
Each entry in the Session column consists of a date (using ddmmyyyy format) followed by time
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(hhmm), at which the underlying data is stored in the database. Template_ID reserves the ID of
the template through which the data is stored in the database.

• Template Table: Every organization customizes their template as per their needs using Template
Designer [65]. To identify each template uniquely, the Template_ID is maintained as it is. The Template
table follows the EAV approach. However, the ‘Attribute’ column (of the EAV model) is defined using
two columns (Archetype_ID and Data_Type) in the Template table to account for the fact that the EAV
storage model is divided into two dimensions (archetype and data type). Each archetype constitutes of
a set of attributes. To identify the particular attribute that belongs to a defined template, Attribute_ID
is used. Attribute_Name specifies the name of the attribute corresponding to Attribute_ID.

Indexing aids in faster access of data. The ID column in a Master table serves as a primary key.
To deal with queries that enquire about data related to some specific patient or template, a search
on Patient_ID and Template_ID is performed (explained in the next following Section 2.2). As a
result, two indexes (i.e., on Patient_ID and Template_ID) are created for the Master Table to facilitate
faster data access. The Template table and Archetype tables have no single column primary key.
A combination of Template_ID, Archetype_ID, and Attribute_ID forms a primary key for the Template
table, whereas a combination of ID and Attribute_ID defines the primary key for every Archetype
table. To facilitate faster execution of queries (elaborated on in the next following Section 2.2) that
enquire about data related to some specific template, archetype, and attribute, three indexes (i.e.,
on Template_ID, Attribute_ID, and Archetype_ID) are defined for the Template table. Finally, the index
for an ID attribute is defined for every Archetype table for rapid data access. In the absence of
indexing, the whole table needs to be searched, which adds a time delay in accessing the required data.
These indexes are managed by the DBMS through SQL (CREATE INDEX) command.

Building a 2D EAV storage system corresponding to various archetypes in an archetype repository
requires to follow below listed steps.

• For each data type (of elements) in an archetype, we construct one EAV table (known as Archetype
table). If a new version of an archetype is released with some new data type, a new table can
be accommodated in the existing architecture; otherwise, existing tables can capture newer
version elements.

• Basic data items represented by the archetype basic data type are mapped to the corresponding
equivalent data type of the underlying RDBMS. Single-valued and Multi-valued attributes can be
easily captured in the same Archetype table since, one row of Archetype table corresponds to one
data entry.

• In case of a multi-valued attribute, a combination of ID, Attribute_ID, and Value defines the
primary key for the underlying Archetype tables. Otherwise, the combination of ID, Attribute_ID
serves as the primary key for the various Archetype table.

• ID is the primary key in Master table (metadata of 2D EAV). ID column in each Archetype table is
declared as the foreign key that refers to ID column of Master table.

• Use of ID enables unique identification of each data instance. For rapid access, ID column of each
Archetype table is indexed.

• An archetype can inherit knowledge from existing archetypes (as inheritance in Templates).
This type of inheritance is maintained through a special attribute type, termed as Archetype
slot. Archetype slot is supported in 2D EAV through metadata, i.e., Template table. A template
derives knowledge from archetypes. A detail of archetypes participating in a template is stored in
‘Template’ table. All of the archetype slots are viewed as embedded within the same archetype.
Thus, all of the details are stored within ‘Template’ table.

• Collection data items (such as CLUSTER, ITEM_TREE, ITEM_LIST) [36] are considered to be
embedded within the archetype. Collection data items are flattened to store corresponding data.
Thus, Archetype tables storing data can also hold collection data items (viewed as flattened).
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• Aggregation relationship is supported in 2D EAV through metadata, i.e., template table. A template
derives knowledge from archetypes. A detail of archetypes participating in a template is stored in
‘Template’ table. All the relationships of participating archetypes to other archetypes are viewed as
embedded within the same template. Thus, all details are stored within ‘Template’ table.

• Each Archetype table is termed as a concatenated string of archetype name, an underscore and
the underlying data type.

• openEHR defines a semantic path for each attribute within an archetype. This path provides a
mechanism to uniquely identify an attribute within an archetype. In 2D EAV, each attribute of an
archetype is mapped to a unique code through a manually designed mapping table. The use of
attribute codes in place of long semantic paths help in achieving a better readability and saving
storage space. Set of codes can be replicated for some other archetype. The use of replicated codes
does not create any problem since the codes are unique within an archetype, and 2D EAV uses the
combination of Archetype_ID and Attribute_ID to identify an element.

2.2. Evaluation of Performance

To give an abstract view to the user, our study proposes a query builder that interacts with metadata
tables to dynamically present the user with the options to enquire data based on archetypes that are stored
in archetype repository. A query builder is supported as an end user query interface. Users of this query
interface can work without having any knowledge of the underlying query language. The presence of a
query interface supports naive users. A blueprint of the query interface is shown in Figure 4.
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Figure 4. A Blueprint of query interface for the Two Dimensional Entity Attribute Value (2D EAV)
storage system.

The upper portion implements the PROJECTION operation and the lower portion implements
the SELECTION operation of relational algebra. The projection part provides the list of all the possible
attributes of the EHRs. The attribute list is categorized based on medical concepts (archetypes)
that are used in building healthcare application. Users can easily add or remove attributes of a
choice for projection in output. The selection part enables the user to specify various criteria’s
for data to be presented as output. Selection criteria are categorized into five categories: namely
patient-centric queries, attribute-centric queries, archetype-centric queries, template-centric queries,
and hybrid queries.
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Our query builder provides a potential solution to keyword search and drop-down menu. It can
deal with thousands of attributes through the use of two drop down menus. It utilizes the co-occurring
attributes information provided in archetypes. The first drop down menu lists various medical concepts
(archetypes). Based on the item selection in the first menu, the second drop down menu is populated
with the attributes list defined in the underlying archetype. Items in one drop down menu scale to an
average of 10–50 attributes.

• Patient-Centric Query

Based on Patient_ID, Session, ID, and Template_ID (there may be multiple instances in the case of
unknown Session), the ID of various encounters can be retrieved from the Master table. For each ID
retrieved from the Master table, a search is performed in the Template table for matching Template_ID.
Using Template_ID, a list of archetypes, underlying attributes, and data types can be extracted from the
Template table.

Templates being used by a unit are very limited in number. For example, an eye care hospital
will customize a template using eye-specific archetypes. Similarly, a cancer hospital will build a
template using archetypes, such as, lung cancer, breast cancer, and other cancer related archetypes.
Thus, the time to access template details from the Template table will be negligible. By concatenating
Archetype_ID, an underscore (‘_’), and Data_Type, a particular Archetype EAV table can be identified,
where a search for the ID (from the Master table) and Attribute_ID (from the Template table) can be
done for the desired value. This approach reduces searching time by a magnitude of ‘n’ (i.e., the total
number of archetypes participating in EHRs) relative to an EAV approach. To search an element in
EAV, an exhaustive search within the whole database is done. In contrast, for 2D EAV only the nth
portion (sometimes even less) of the data (for patient specific queries) is searched.

• Attribute-Centric Query

Performing analytics (through population queries) demand attribute specific extraction. Using an
attribute name (Attribute_Name), details related to attribute, such as its unique identification code
(Attribute_ID), archetype identity (Archetype_ID), and data type (Data_Type) can be retrieved from
the Template table. Using Archetype_ID and Data_Type, a particular Archetype EAV table can be
identified where a search for the Attribute_ID can be done for the matching values. Adopting this
approach reduces the time to search an attribute-centric query (for population queries) by a magnitude
of ‘n’ (i.e., the total number of archetypes participating in EHRs), for the same reason as above.

• Archetype-Centric Query

There may be a scenario that needs to access attributes corresponding to an archetype (rather
than individual attributes) for the purpose of analytics. In such a scenario, population queries are
performed seeking details of all attributes corresponding to an archetype.

Irrespective of data type, all of the tables that are related to a particular archetype can be accessed
instantly. The time complexity for accessing data related to an archetype is O(1) (i.e., a constant time)
in the 2D EAV approach, which is quite fast. EAV approach scans the whole table to extract archetype
specific rows, as exhibited in our previous research study [66].

• Template-Centric Query

Template centric is another scenario for performing analytics where data to be analyzed is entered
using an underlying template. The Template_ID can be used in population query to identify a list of
archetypes, their corresponding attributes, data types from the Template table, and ID from the Master
table (for identifying the patients’ list). Knowing ID is necessary since attributes that are related to one
template can also participate in another template. To distinguish between the entries made through
both templates, ID should be known. Using Archetype_ID and Data_Type, a particular Archetype
table can be identified, where a search for the ID (from the Master table) and Attribute_ID (from the
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Template table) can be done for the corresponding values. To the best of our knowledge, no approach
has been proposed for template-centric queries till date.

• Hybrid Queries

There are many scenarios where queries are not only patient-centric, attribute-centric,
archetype-centric, or template-centric; rather, any possible combination of the four categories defined
above may apply. Specifying a hybrid query for data storedm as per the 2D EAV approach, imposes
multiple conditions. The multiple conditions must be logically connected through some logical
operator (‘AND’/‘OR’). The selection part can be used to specify a combination of a maximum of four
(patient-, attribute-, archetype-, and template-related) conditions that are conjoined logically with each
other via ‘AND’. To specify more conditions, the “ADD MORE CONDITIONS” button can be used
flexibly whenever required. The “ADD MORE CONDITIONS” button stores the current conditions
specified in various input boxes in the system, and let the user specify the next condition in the same
selection part. Each combination of conditions specified in one selection part is considered to be one
sub-query by the query builder. Various sub-queries are connected logically through ‘AND’/’OR’
operator. Queries are executed using Algorithm given in Appendix A. The complete query support
enables adherence of 2D EAV to data model definition (See Appendix B).

• Sparseness Evaluation

Applicability of 2D EAV in domains other than healthcare can be considered whenever a generic
schema is required to deal with frequent evolution and a huge amount of sparseness.

As the amount of sparseness increases, the 2D EAV storage system performs more efficiently.
The analysis is done considering the worst case scenario, where a single table is accommodating all
of the attributes without any compression (rather than having a normalized structure). This analysis
provides a rough estimation of the worst case scenario for 2D EAV in terms of minimum non-null density.
In a real scenario, the non-null density should be much larger than evaluated here. A real time scenario
that is suitable for 2D EAV is CNET product directory [67], for which recorded sparseness is 99.6%.

Let Atot be the total number of attributes, R be the total number of entities (rows in the relational
table), and Ann be the average number of non-null entries per row.

â The total number of entries in the Relational table, Tr = R × Atot.
â The total number of entries in the Archetype table, Ta = 3 × (R × Ann − R) (as there are three

entries corresponding to each non-null entry except the Patient_ID).
â The total number of entries in the Master table, Tm = R × 4 (four entries corresponding to one

row of the relational table).
â The total number of entries in the Template table is negligible, since the number of templates

used is much smaller.

To adopt the 2D EAV storage system over the NSM approach, total entries in 2D EAV should be
less than the total entries in the relational table.

So, Tr >Tm + Ta

R × Atot > R × 4 + 3 × (R × Ann − R)
Atot > 4 + 3 × (Ann − 1)
Atot > 3 × Ann − 1
Atot > 3 × Ann (neglecting −1 since 3 × Ann >> 1)

Thus, the average number of non-null entries per row should be less than one third of the total
attributes in the system, i.e., a minimum of 67% sparseness is appreciable. This analysis helps in the
elimination of scenario where 2D EAV should not be adopted.
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2.3. Environment

Our experiments compare performance of 2D EAV versus popular NoSQL solutions and basic
EAV system for extracting standardized EHRs under various clinical query scenarios.

• Hardware and Software Configuration

All of the experiments are executed on a pair of 2.66 GHz dual-core Intel Xeon processors,
with 16 GB RAM running Windows 8. Java version 1.8 has been used for implementation purpose.
Query builder builds a SQL statement to be executed on 2D EAV.

• Dataset Collection

In total, 2.1 million records have been collected in accordance with the relational approach from
three different sources, such as two private clinics, the UCI machine learning repository (Liver Disorder
and Thyroid) [68,69], and self-synthesized, using knowledge that is available from reliable resources
and internet (such as, if systolic pressure ranges between 120 to 139 and diastolic pressure ranges
between 80 to 89, then the patient may have prehypertension [70]) for two medical concepts: namely,
blood pressure and heart pulse. Data related to clerical tasks are not provided through Sources #1
and #2 due to ethical and security issues related to EHRs. Therefore, to facilitate the experiments,
clerical data has been synthesized to simulate a realistic scenario. For the standardization of collected
data, five openEHR archetypes (Clerking, Blood Pressure, Pulse, Thyroid, and Liver) have been
adopted (See Appendix C).

• Storage Variants

We evaluated the performance of 2D EAV versus two alternatives: a system using the basic EAV
model and MongoDB. Comparison of 2D EAV to NSM of RDBMS (following a good ER design) is not
considered because the primary aim of this research is to provide a solution to sparseness, frequent
evolution, faster query access, and ad-hoc query support altogether. Performance and adoption of
2D EAV in comparison to NSM is purely dependent upon the amount of sparseness in the dataset
and frequent evolving nature of the underlying information system. To predict about the worst case
scenario of 2D EAV in comparison to NSM, we performed an analysis in the previous section.

(1) 2D EAV: Our experiment version of 2D EAV is built on the top of PostgreSQL version 9.5,
and our installation preserves the default configuration parameters. The query builder has been
implanted using Java SE Development Kit 8. For 2D EAV, one Master table, one Template table,
and 10 Archetype tables have been constructed. Among the 10 Archetypes tables, 2 tables (one real
for QUANTITY and one string for TEXT) per archetype are included. Basic archetype data types
can be mapped to SQL data types using the mapping rules suggested by Wang et al. [9].

(2) EAV: The standard EAV model has been extended for experiments to accommodate heterogeneity
(through columns ‘Value_Real’, and ‘Value_String’), temporal behavior (through column ‘Session’)
and support for template-centric queries (through columns ‘Template_ID’, and Archetype_ID).
Thus, one EAV table is constituted by six columns (Patient_ID, Template_ID, Archetype_ID,
Attribute_ID, Value_Real, Value_String, and Session). For query support of EAV, one metadata
table (See Appendix D) consists of four columns (Archetype_ID, Attribute_ID, Attribute_Name,
and Data_Type). Indexes are defined on Patient_ID Template_ID, and Archetype_ID columns
(for the EAV table), and on Archetype_ID column (for the metadata table) for faster execution of
queries. EAV system is built also built on the top of PostgreSQL version 9.5.

(3) MongoDB: The most popular NoSQL database system as per db ranking system is MongoDB [71].
It provides same flexibility as EAV. Hundreds of well-known production systems uses
MongoDB [72]. It is a document oriented NoSQL database that inherently store data as key-value
pairs (key being the combination of Entity and Attribute). Thus, we choose MonogoDB to evaluate
the performance of proposed approach i.e., 2D EAV. The default configuration parameters of
MongoDB has been preserved during experimentation.
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• Queries Formulated

In total, forty queries have been formulated for experiments while considering eight query
scenarios in the health domain (five different queries per scenario). The eight query scenarios are
(1) Patient-centric only; (2) Attribute-centric only; (3) Archetype-centric only; (4) Template-centric only;
(5) Hybrid (Any 2); (6) Hybrid (Any 3); (7) Hybrid (All 4); and (8) Hybrid (2 Same) (for complete query
set See Appendix E). ‘Any 2’ and ‘Any 3’ considers permutation/combination of any group of two
or three criteria among patient, attribute, archetype, and template, respectively. The ‘All 4’ category
considers permutation of patient, attribute, archetype, or template criteria. The ‘2 Same’ category
identifies the combination of patient, attribute, archetype, or template with itself. Queries for 2D EAV
are executed using query builder by passing the desired parameters. Equivalent SQL queries (for EAV)
and query operations (for MongoDB) has been composed manually to perform experiment. A sample
set of query formulated for 2D EAV (SQL build by query builder), EAV, and MongoDB is given in
Appendix F.

3. Result

3.1. Efficiency of Storage

Transformation of the collected 2.1 million relational records in EAV to 2D EAV structure produced
12.9 million records. Table 2 presents the load time and storage acquired by various storage variants.
2D EAV loads data faster than MongoDB and EAV. Although EAV and 2D EAV has been implemented
on the top of PostgreSQL, they took different load time since the size of EAV dataset is larger than
the size of 2D EAV dataset. Reason behind the larger size of EAV is the presence of multiple ‘Value’
columns (for different data types). However, the load time for EAV will get reduced if we partition
the EAV table, as per data type. MongoDB converts the dataset into BSON objects. Thus, there is
an increase in the overall load time, in case of MongoDB. Whereas, storage has been observed to be
smallest in case of MongoDB.

Table 2. Load time and storage acquired by various storage variants.

S.No. Storage Variant Load Time (Milliseconds) Size (MB)

1 EAV 6462 98.6
2 MongoDB 60,000 28.5
3 2D EAV 5800 63.2

3.2. Performance

The average access time of all test queries (five queries per query scenarios) is considered to
represent the comparative results. The result of the queries executed on 12.9 million records, as per
EAV and 2D EAV (shown in Table 3 and Figure 5), clearly indicates that the 2D EAV approach performs
better than the EAV approach.
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Table 3. Comparing 2D EAV with EAV and MongoDB.

S.No. Query Category
Data Access Time (Milliseconds)

EAV MongoDB 2D EAV

1 Patient Centric 873.8 123.6 60.2
2 Attribute Centric 941.4 274.2 176
3 Archetype Centric 3280 1446 1315.8
4 Template Centric 875.2 168.4 86
5 Hybrid (Any 2) 847 150.4 38
6 Hybrid (Any 3) 1045.8 159.4 43.2
7 Hybrid (All 4) 981.6 121.8 28.4
8 Hybrid (2 Same) 1013.6 299.8 137.4
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Figure 5. Experimental results for time taken to access standardized EHRs.

For predicting the efficiency of 2D EAV with respect to MongoDB and EAV, we analyzed the
results presented in Table 3. We considered the ratio of time taken by MongoDB and EAV to the time
taken 2D EAV as a measure of efficiency. This ratio provides a factor by which 2D EAV performs better
than MongoDB and EAV. Results of the ratio calculated for various categories is presented in Figure 6.
From the results presented in Figure 6, it has been calculated that 2D EAV performs better than
MongoDB and EAV by a factor of 2.5 and 15.3, with a standard deviation of 1.2 and 10.8, respectively.
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Figure 6. Efficiency results of 2D EAV.

To further analyze the performance variation of 2D EAV with respect to EAV, we perform experiments
considering selection and projection operation on the different configurations of datasets. Various dataset
configurations consider different number of tuples (rows) and a different number participating archetypes.
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The two operations (selection and projection) are chosen when considering the fact that dataset is mostly
accessed to perform patient-specific queries (extracting multiple rows i.e., selection) or population oriented
queries (extracting multiple columns i.e., projection). Results of experiments performed are shown in
Figures 7 and 8 (where ‘na’ presents the number of participating archetypes).
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4. Discussion

4.1. Advantages of 2D EAV

1. Faster Data Retrieval: 2D EAV stores data in various partitions and provides metadata to
communicate with these partitions flawlessly. This restricts the search space of desired data to a
few partitions, and thus, improves the speed of data retrieval.

2. Adaptability to Other Domains: In this paper, we highlight the use of 2D EAV specifically for
EHRs; however, an example process of creating an archetype for a subject schedule and for hotels
is discussed in [73]. Once the archetype system is ready, 2D EAV can be easily adopted for the
underlying domain by simply renaming the ‘patient_id’ as ‘entity_id’. All other semantics of
2D EAV will remain unchanged for the desired domain. We have mainly focused on standardized
EHRs due to the availability of archetypes for the healthcare domain, and the need for generic
storage for EHRs.

4.2. Comparison with Other Studies

2D EAV excels other persistence approaches, as detailed below.

• ARM: ARM maps each archetype to a relational table and 2D EAV maps each archetype to a
distinct EAV table that is further categorized based on data type. Loss of stability (since, schema is
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not built using RM) in 2D EAV is compensated with the generic behavior of capturing any future
evolution without modifying the existing system. ARM requires prior knowledge of identification
attributes and frequently enquired data items for building indexing support. ARM also requires
building a separate table for supporting multiple occurrences of collection data structures. 2D EAV
in contrast to ARM requires no prior knowledge of data items. It does not construct separate
tables for multiple occurrences of collection data structure.

• Node+Path (using BLOB): In 2D EAV, unique archetype and attribute names are coded to identify
various hierarchies, rather using BLOB. Thus, it requires reduced storage and provides faster
data access.

• EAV: In contrast to EAV, 2D EAV is focused on improving the access speed of standardized EHRs,
rather than dealing with a complex query structure. It overcomes complex query difficulties
through an efficient user interface.

4.3. Limitations

1. Complexity Due to Multiple Tables

In a real scenario, the number of tables can easily reach hundreds or thousands. Huge number of
tables can cause complexity to the system in terms of managing inter-relationship and costly access
(due to JOINing of multiple tables). However, 2D EAV reduces the complexity in the following ways.

• Managing Inter-relationship: The inter-relationship among the tables is stored in Template table
of 2D EAV. It helps in managing this complexity. Template table defines the set of attributes
corresponding to each template, and thus, inter-related archetypes. For instance, there are ‘m’
hospitals that are involved in the information system; each having their own customized templates
and a template on an average constitutes ‘n’ attributes. Thus, template table will contain ‘m × n’
rows. If a new template is introduced into the existing system with ‘z’ attributes, then ‘z’ rows are
added to existing ‘m × n’ rows of template table giving a total of ‘m × n + z’ rows. In contrast to
ARM approach, 2D EAV handles the introduction of a new table by simply inserting some rows
in the metadata table, eliminating the need of manually defining the inter-relationship of existing
archetypes with a newly introduced archetype.

• Data Accessibility Cost: EHRs are extracted for either clinical purpose or research purpose. A clinical
activity normally involves the extraction of patient specific data to provide care services. Query
interface of 2D EAV produces output in the form of EAV table. The results obtained are visually
more appropriate for doctors due to document-like view of medical records. Thus, resultant
records (following EAV) need not be self-JOINed to be presented in accordance with a relational
approach. When EHRs are used for research objectives (such as finding the effect of some drug
or growth rate of any disease, etc.), epidemiological queries are involved for the extraction of
records. Such queries need not be answered in real time [1], and thus, a delay in data is acceptable.
However, 2D EAV access data more quickly than EAV.

2. Versioning of Archetypes

The management of different versions of the archetypes along time can be envisioned through
metadata tables. 2D EAV is designed when considering templates. 2D EAV stores a unique identification
of each template in a column, termed as Template_ID (in Template table). Also, each entry that is made
in the system is uniquely identified by the ID column (primary key of MASTER table). A combination
of Template_ID and ID helps in uniquely identifying the data that corresponds to a specific version of
the archetype. A template inherits knowledge for one or many archetypes according to local healthcare
application requirement. It is assumed that the template corresponds to a form that is presented to end
user for data entry. Data is thus organized in 2D EAV storage system at the backend. As knowledge
evolves, existing archetypes can be redefined as per the new knowledge. The redefined archetypes are
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released as a new version over existing one. A template might inherit knowledge from the previous or
new version based on the availability of the corresponding archetype in the local archetype repository.
It seems to be impractical that a template inherits knowledge from both previous and new version of
an archetype.

5. Conclusions

The study proposed an EAV style modeling approach, termed 2D EAV. The EAV provides a
generic structure. It deals with sparseness but lacks in supporting heterogeneity, and quick data
access. 2D EAV is an extension of the existing EAV approach that overcomes search inefficiency and
provides a mechanism for enabling a template-centric query. Experiments have been performed based
on various categories of a query (patient-centric queries, attribute-centric queries, archetype-centric
queries, template-centric queries, and hybrid queries). Till date, no other approach has offered support
for template-centric queries. Current research provides a mechanism to retrieve template-oriented
data for standardized EHR databases.

Results illustrate that performance of 2D EAV is enhanced by a factor of 2.5 in case of Mongo DB,
and by a factor of 15.3 in case of EAV. The corresponding standard deviation calculated is 1.2 and 10.8,
respectively. The performance of the 2D EAV in comparison to the NSM approach is dependent upon
the amount of sparseness. We analyze the scenario where 2D EAV is not preferable in terms of non-null
density. The proposed solution will benefit users in handling standard-based heterogeneous data
requiring high search efficiency. A user interface has been developed to support ease of complex
ad-hoc query. It provides various query parameters to the proposed query builder for building a query
corresponding to the desired output. The proposed user interface enables skilled and semi-skilled
database users (such as doctors, nurses, and patients) to query EHRs data without any knowledge of
the underlying storage system and query language. Applicability of 2D EAV can be extended from
standardized EHRs to other domains as well by utilizing a mapping mechanism.

Author Contributions: Shivani Batra and Shelly Sachdeva conceived, formulated and verified the 2D EAV data
model. Shivani Batra, Shelly Sachdeva and Subhash Bhalla analyzed the results, proof read the manuscript
and corrected the manuscript. Shelly Sachdeva and Subhash Bhalla contributed on experience about openEHR
architecture. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Algorithm A1

Input: Master Table (M), Template Table (T), set of Archetype Tables (A), Patient_ID (P), Session (S), set of
Attribute_Name (N) to be projected, Condition (Attribute Name: AN, Operator: OP and Value: V),
Archetype_ID (I) and Template_ID (TI)
Output: EAV table containing enquired data (Tout).
//TEMPI, TEMPTI, TEMPAT, TEMPAR, TEMPTI and TEMPF are temporary tables. Two Variables NameT and
AI for storing name of table and Attribute_ID for AN

(1) For each sub-query follow Step 2 to Step 4
(2) Call FUNCTION IDS to identify list of desired Template_ID.
(3) Call FUNCTION ARCHTAB to identify archetype table that needs to be accessed for required

data extraction.
(4) Call FUNCTION EXTRACT to extract desired records from the archetypes table identified in Step 3.
(5) Following the precedence rules (AND before OR) merge results of sub-queries as INERSECTION for

‘AND’ and UNION for ‘OR’.
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FUNCTION IDS
Input: Patient_ID (P), Session (S) and Template_ID (TI)
Output: List of ID (TEMPI) to be in output and List of Template_ID (TEMPTI).
if (P != NULL) then

if (S != NULL) then
if (TI != NULL) then

foreach record r ε M do
if (r.Patient_ID == P) && (r.Session == S) && (r.Template_ID == TI) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else foreach record r ε M do
if (r.Patient_ID == P) && (r.Session == S) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else if (TI != NULL) then
foreach record r ε M do

if (r.Patient_ID == P) && (r.Template_ID == TI) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else foreach record r ε M do
if (r.Patient_ID == P) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else if (S != NULL) then
if (TI != NULL) then

foreach record r ε M do
if (r.Session == S) && (r.Template_ID == TI) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else foreach record r ε M do
if (r.Session == S) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else if (TI != NULL) then
foreach record r ε M do

if (r.Template_ID == TI) then
APPEND r.ID to TEMPI and r.Template_ID to TEMPTI;

else TEMPI =NULL and TEMPTI =NULL;

FUNCTION ARCHTAB
Input: List of ID (TEMPI) and List of Template ID (TEMPTI).
Output: List of archetype tables containing desired data (TEMPF), Attribute_ID corresponding to attribute in
condition part (AI).
foreach record q ε T do
if (q.Attribute_Name IN N) then
APPEND CONCAT(q.Archetype_ID, “_”, q.data_Type) to TEMPAT;
if (q.Archetype_ID == I) then
APPEND CONCAT(q.Archetype_ID, “_”, q.data_Type) to TEMPAR;
if (q.Template_ID ε TEMPTI) then
APPEND CONCAT(q.Archetype_ID, “_”, q.data_Type) to TEMPT;
if (q.Attribute_Name ==AN) then
NameT = CONCAT(q.Archetype_ID, “_”, q.data_Type) ;

AI = Attribute_ID;
if (TEMPAT != NULL) then

if (TEMPAR != NULL) then
if (TEMPT!= NULL) then
TEMPF = INTERSECTION(TEMPAT, TEMPAR, TEMPT);
else TEMPF = INTERSECTION (TEMPAT , TEMPAR);

else if (TEMPT!= NULL) then
TEMPF = INTERSECTION (TEMPAT, TEMPT);
else TEMPF = TEMPAT ;

else if (TEMPAR != NULL) then
if (TEMPT!= NULL) then

TEMPF = INTERSECTION (TEMPAR, TEMPT);
else TEMPF = TEMPAR;

else if (TEMPT!= NULL) then
TEMPF = TEMPT;

else TEMPF = NULL;
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FUNCTION EXTRACT
Input: List of ID (TEMPI) and List of archetype tables (TEMPF), Attribute_ID (AI)
Output: EAV table containing enquired data (Tout).
if (TEMPI == NULL) then

foreach record u of table name stored in NameT do
if (u.Attribute_ID = AI) && (u.Value OP V) then
APPEND u.ID to TEMPI;

if (TEMPI != NULL) then
if (TEMPF != NULL) then

foreach table X whose name lies IN TEMPF

foreach record s ε X do
if (s.ID IN TEMPI ) && (s.Attribute_ID IN N) then
APPEND s to Tout;

else foreach table X whose name lies IN TEMPF do
foreach record s ε X do

if (s.ID IN TEMPI ) then
APPEND s to Tout;

else if (TEMPF != NULL) then
foreach table X whose name lies IN TEMPF

foreach record s ε X do
if (s.Attribute_ID IN N) then
APPEND s to Tout;

else foreach table X whose name lies IN TEMPF

foreach record s ε X do
APPEND s to Tout;

Appendix B

A data model consists of three components: a set of data structure types, a set of operators or
inference rules, and a set of integrity rules given by Codd. 2D EAV adheres to this definition.

Set of data structures types: Currently, 2D EAV is implemented for four basic data types (Integer,
String, Real, and Boolean) for the purpose of demonstration. The set of data types can be easily
extended by incorporating archetype tables corresponding to a desired data type. 2D EAV being
specifically designed for storing standardized EHRs and is capable of supporting basic data types
defined for archetypes. Basic archetype data types can be mapped to SQL data types using the mapping
rules as shown in Table A1.

Table A1. Archetype basic data types and mapping rules [9].

Data Type Field Field Data Type SQL Type

CodePhrase codeString String NVARCHAR
DvBoolean Value Boolean INTEGER

DvCodedText definingCode CodePhrase #
DvCount magnitude Integer INTEGER

DvDateTime Value String NVARCHAR
DvEHRURI Value URI NVARCHAR
DvIdentifier Id String NVARCHAR

DvMultimedia uri DvURI #
DvProportion precision Integer INTEGER

DvQuantity magnitude Double FLOAT
Units String NVARCHAR

DvText Value String NVARCHAR
DvURI Value URI NVARCHAR

GenricID
Value String NVARCHAR
Name String NVARCHAR

Link Target DvEHRURI #

“#” represents a non-preliminary data type and “NVARCHAR” represents character array of length “N”.
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Set of operators: 2D EAV is well defined for relational algebra operations (SELECT and PROJECT
using Query builder). In addition, 2D EAV exploits the three additional relational algebra operators
(CARTESIAN PRODUCT, UNION and MINUS) available in the underlying RDBMS. To redefine
“CARTESIAN PRODUCT, UNION and MINUS” operators for 2D EAV (that produce result same as in
case of relational model), an equivalent query can be build using tables aliasing and logical operators
(such as, ‘AND’, ‘OR’, and ‘NOT’).

Set of integrity rules: The three most popular integrity rules (entity integrity, domain integrity,
and referential integrity) specified for the conventional relational model are also followed in the case
of 2D EAV.

1. Entity Integrity: Every record stored in the 2D EAV database is uniquely identified by a
combination of ID and Attribute_ID. In other words, the ID and Attribute_ID columns in
Archetype Tables compose a PRIMARY KEY. A primary attribute can never be NULL, since 2D
EAV is built for storing non-null values.

2. Domain Integrity: 2D EAV is defined for archetype based system. Domain constraints are well
defined in archetypes. Any data entered in the system conforms to the semantics of constraints
specified in AM and RM.

3. Referential Integrity: References are made from the Master table to the various Archetype tables,
where the ID column serves as the primary key.

Appendix C. Archetypes Used in Data Collection

Snapshots of various archetypes (only the data part) being used for data collection are shown
in Figure A1.

Various attributes contributing to different archetypes are as follows:

• Four TEXT attributes, eleven QUANTITY attributes, one MULTIMEDIA attribute, and two CLUSTERS
are present in openEHR openEHR-EHRs-OBSERVATION.lab_test-liver_function.v1archetype.

• Four TEXT attributes, six QUANTITY attributes, one MULTIMEDIA attribute, and two CLUSTERS
are present in openEHR-EHRs-OBSERVATION.lab_test-thyroid.v1 archetype.

• One TEXT attribute, and four QUANTITY attributes are present in openEHR-EHRs-OBSERVATION.
blood_pressure.v1 archetype.

• Five TEXT attributes, and one QUANTITY attribute is present in openEHR-EHRs-OBSERVATION.
pulse.v1 archetype.

• Six TEXT attributes, and one COMPOSITION attribute (containing 3 TEXT attributes) is present
in openEHR-EHRs-OBSERVATION.soap_clerking8.v8 archetype.

Authors are not considering (for liver and thyroid archetype) multimedia representation attributes
and cluster attributes (specimen detail and per-result annotation) due to non-availability of multimedia
data and device information in the dataset collected.
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Appendix D. Modified EAV for Experimentation

The EAV schema (consisting of three columns: Entity, Attribute and Value) is extended as shown
in Figure A2. The change to the basic EAV approach is done to accommodate heterogeneity (through
columns ‘Value_Real’, and ‘Value_String’), temporal behavior (through column ‘Session’) and support
for template-centric queries (through columns ‘Template_ID’, and Archetype_ID). Corresponding to
the modified EAV schema, the metadata table is also updated (as shown in Figure A2).
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Table A2. Query set for experiment.

Type # Query Description
Pa

ti
en

t-
ce

nt
ri

c

Q1 List records of patient with Patient_ID 1004
Q2 List records of patient with Patient_ID 924
Q3 List records of patient with Patient_ID 14306
Q4 List records of patient with Patient_ID 14
Q5 List records of patient with Patient_ID 5126

A
tt

ri
bu

te
-

ce
nt

ri
c

Q6 List all stored values of systolic pressure
Q7 List all stored values of diastolic pressure
Q8 List all stored values of Total Thyroxine
Q9 List all stored values of T4 loaded uptake

Q10 List all stored values of Albumin

A
rc

he
ty

pe
-

ce
nt

ri
c

Q11 List all blood pressure archetype records
Q12 List all liver archetype records
Q13 List all thyroid archetype records
Q14 List all liver and thyroid archetype records
Q15 List all blood pressure and liver archetype records

Te
m

pl
at

e-
ce

nt
ri

c

Q16 List all records having Template_ID 18
Q17 List all records having Template_ID 25
Q18 List all records having Template_ID 1
Q19 List all records having Template_ID 13
Q20 List all records having Template_ID 8

H
yb

ri
d

(P
at

ie
nt

+
A

tt
ri

bu
te

) Q21 List Thyroid stimulating hormone of the patient with Patient_ID 927
Q22 List Systolic pressure of the patient with Patient_ID 15003
Q23 List Diastolic pressure of the patient with Patient_ID 14969
Q24 List Alkaline Phosphatase of the patient with Patient_ID 5
Q25 List Test Name of the patient with Patient_ID 556

H
yb

ri
d

(P
at

ie
nt

+
A

rc
he

ty
pe

+
Te

m
pl

at
e)

Q26 List all Blood Pressure archetype records of the patient with Patient_ID 14987 and Template 25
Q27 List all Blood Pressure archetype records of the patient with Patient_ID 15384 and Template 25
Q28 List all Thyroid archetype records of the patient with Patient_ID 6209 and Template 10
Q29 List all Liver archetype records of the patient with Patient_ID 590 and Template 1
Q30 List all Liver archetype records of the patient with Patient_ID 561 and Template 3

H
yb

ri
d

(P
at

ie
nt

+
A

tt
ri

bu
te

+
A

rc
he

ty
pe

+
Te

m
pl

at
e)

Q31 List the Alkaline Phosphatase for Template_ID 1, Archetype Liver and Patient_ID 606
Q32 List the Globulins for Template_ID 3, Archetype Liver and Patient_ID 432
Q33 List the Result for Template_ID 17, Archetype Thyroid and Patient_ID 11833
Q34 List the Comment for Template_ID 25, Archetype Blood Pressure and Patient_ID 14938
Q35 List the Comment for Template_ID 25, Archetype Blood Pressure and Patient_ID 15008

H
yb

ri
d

(2
Sa

m
e)

Q36 List the systolic pressure of patients with diastolic pressure >90
Q37 List the systolic and diastolic pressure of patients with comment as Hypotension
Q38 List records belonging to Blood Pressure archetype or Liver archetype
Q39 List records belonging to Template_ID 1 or Template_ID 3
Q40 List records of patients with Patient_ID > 14942 and Patient _ID < 15293

Appendix F. Sample Query Set for Experiment

The sample queries with its equivalent query syntax of NoSQL (i.e., MongoDB in our case) and
SQL (for EAV and 2D EAV) for various query categories used in experimentation is presented in
Table A3.

Table A3. Sample query syntax.

Query
No. MongoDB EAV 2D EAV

Q1 db.mycol.find({“Patient_ID”
:1004})

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV

WHERE Patient_ID = 1004;

SELECT Thyroid_Text.ATTRIBUTE_ID, Thyroid_Text.VALUE
FROM Thyroid_Text WHERE Thyroid_Text.PATIENT_ID IN

(SELECT MasterTable.ID FROM MasterTable WHERE
MasterTable.Patient_ID = 1004) UNION SELECT

Thyroid_Numeric.ATTRIBUTE_ID CAST
(Thyroid_Numeric.VALUEAS character(8)) FROM

Thyroid_Numeric WHERE Thyroid_Numeric.PATIENT_ID IN
(SELECT MasterTable.ID FROM MasterTable WHERE

MasterTable.Patient_ID = 1004);
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Table A3. Cont.

Query
No. MongoDB EAV 2D EAV

Q6 db.mycol.find({},
{“Systolic” :1})

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV,

Metadata WHERE
Attribute_ID =

Metadata.Attribute_ID AND
Metadata.Attribute_Name =

‘Systolic’;

SELECT BP_Numeric.PATIENT_ID,
BP_Numeric.ATTRIBUTE_ID, BP_Numeric.VALUE FROM

BP_Numeric WHERE BP_Numeric.ATTRIBUTE_ID IN (SELECT
TemplateTable.Attribute_ID FROM TemplateTable WHERE

TemplateTable.Attribute_Name = ‘Systolic’);

Q11

db.mycol.find({“TestName”:
“BP”}, {“Systolic” :1,

“Diastolic” :1,
“MeanArterial” :1,
“PulsePressure”:1,
“Comment”:1 })

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV

WHERE Archetype_ID = ‘BP’;

SELECT BP_Numeric.PATIENT_ID,
BP_Numeric.ATTRIBUTE_ID, BP_Numeric.VALUE FROM

BP_Numeric UNION SELECT BP_Text.PATIENT_ID,
BP_Text.ATTRIBUTE_ID, BP_Text.VALUE FROM BP_Text;

Q16

db.mycol.find({TestName
:“‘Thyroid’”}, {“

Patient_ID” :1, “Result” :1
})

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV

WHERE Template_ID = 18;

SELECT Thyroid_Text.PATIENT_ID,
Thyroid_Text.ATTRIBUTE_ID, Thyroid_Text.VALUE FROM

Thyroid_Text WHERE Thyroid_Text.PATIENT_ID IN (SELECT
MasterTable.ID FROM MasterTable WHERE

MasterTable.Template_ID = ‘18′);

Q21

db.mycol.find({“Patient_ID”
: 927}, {“Patient_ID” :1,

“ThyroidStimulaingHormone”
:1 })

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV,

Metadata WHERE
Attribute_ID =

Metadata.Attribute_ID AND
Patient_ID = 927 AND

Metadata.Attribute_Name =
‘Thyroid stimulaing hormone’;

SELECT Thyroid_Numeric.PATIENT_ID,
Thyroid_Numeric.ATTRIBUTE_ID, Thyroid_Numeric.VALUE

FROM Thyroid_Numeric WHERE
Thyroid_Numeric.ATTRIBUTE_ID IN (SELECT

TemplateTable.Attribute_ID FROM TemplateTable WHERE
TemplateTable.Attribute_Name = ‘Thyroid stimulating hormone’)

AND Thyroid_Numeric.PATIENT_ID IN (SELECT
MasterTable.ID FROM MasterTable WHERE

MasterTable.Patient_ID = 927);

Q26

db.mycol.find({“TestName”:
“BP”, “Patient_ID” : 14987},
{“Patient_ID”:1, “Systolic”

:1, “Diastolic” :1,
“Comment”:1 })

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV

WHERE Archetype_ID = ‘BP’
AND Patient_ID = 14987 AND

Template_ID = 25;

SELECT BP_Numeric.PATIENT_ID,
BP_Numeric.ATTRIBUTE_ID, BP_Numeric.VALUE FROM

BP_Numeric WHERE BP_Numeric.PATIENT_ID IN (SELECT
MasterTable.ID FROM MasterTable WHERE

MasterTable.Patient_ID = 14987 AND MasterTable.Template_ID =
‘25′) UNION SELECT BP_Text.PATIENT_ID,

BP_Text.ATTRIBUTE_ID, BP_Text.VALUE FROM BP_Text
WHERE BP_Text.PATIENT_ID IN (SELECT MasterTable.ID
FROM MasterTable WHERE MasterTable.Patient_ID = 14987

AND MasterTable.Template_ID = ‘25′);

Q31

db.mycol.find({“TestName”:
“Liver”, “Patient_ID” :

606},
{“AlkalinePhosphatase”:1})

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV,

Metadata WHERE
Attribute_ID =

Metadata.Attribute_ID AND
Archetype_ID = ‘Liver’ AND

Patient_ID = 601 AND
Template_ID = 1 AND

Metadata.Attribute_Name =
‘Alkaline Phosphatase’;

SELECT Liver_Numeric.PATIENT_ID,
Liver_Numeric.ATTRIBUTE_ID, Liver_Numeric.VALUE FROM

Liver_Numeric WHERE Liver_Numeric.PATIENT_ID IN
(SELECT MasterTable.ID FROM MasterTable WHERE

MasterTable.Patient_ID = 601 AND MasterTable.Template_ID =
‘1′) AND Liver_Numeric.ATTRIBUTE_ID IN (SELECT

TemplateTable.Attribute_ID FROM TemplateTable WHERE
TemplateTable.Attribute_Name = ‘Alkaline Phosphatase’);

Q36 db.mycol.find({“Diastolic”:
{$gt:90}}, {“Systolic” :1})

SELECT Patient_ID,
Attribute_ID, Value_Real,
Value_String FROM EAV,

Metadata WHERE Patient_ID
IN (SELECT Patient_ID FROM

EAV, Metadata WHERE
Attribute_ID =

Metadata.Attribute_ID AND
Metadata.Attribute_Name =

‘Diastolic’ AND Value_Real >
90.00) AND

Attribute_ID =
Metadata.Attribute_ID AND
Metadata.Attribute_Name =

‘Systolic’;

SELECT BP_Numeric.PATIENT_ID,
BP_Numeric.ATTRIBUTE_ID, BP_Numeric.VALUE FROM

BP_Numeric WHERE BP_Numeric.PATIENT_ID IN (SELECT
BP_Numeric.PATIENT_ID FROM BP_Numeric WHERE

BP_Numeric.ATTRIBUTE_ID IN (SELECT
TemplateTable.Attribute_ID FROM TemplateTable WHERE

TemplateTable.Attribute_Name = ‘Diastolic’) AND
BP_Numeric.VALUE > 90) AND BP_Numeric.ATTRIBUTE_ID IN

(SELECT TemplateTable.Attribute_ID FROM TemplateTable
WHERE TemplateTable.Attribute_Name = ‘Systolic’);
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