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Abstract: A new requirement for the manufacturing companies in Industry 4.0 is to be flexible with
respect to changes in demands, requiring them to react rapidly and efficiently on the production
capacities. Together with the trend to use Service-Oriented Architectures (SOA), this requirement
induces a need for agile collaboration among supply chain partners, but also between different
divisions or branches of the same company. In order to address this collaboration challenge,
we propose a novel pragmatic approach for the process analysis, implementation and execution.
This is achieved through sets of semantic annotations of business process models encoded into BPMN
2.0 extensions. Building blocks for such manufacturing processes are the individual available services,
which are also semantically annotated according to the Everything-as-a-Service (XaaS) principles and
stored into a common marketplace. The optimization of such manufacturing processes combines
pattern-based semantic composition of services with their non-functional aspects. This is achieved by
means of Quality-of-Service (QoS)-based Constraint Optimization Problem (COP) solving, resulting
in an automatic implementation of service-based manufacturing processes. The produced solution
is mapped back to the BPMN 2.0 standard formalism by means of the introduced extension
elements, fully detailing the enactable optimal process service plan produced. This approach allows
enacting a process instance, using just-in-time service leasing, allocation of resources and dynamic
replanning in the case of failures. This proposition provides the best compromise between external
visibility, control and flexibility. In this way, it provides an optimal approach for business process
models’ implementation, with a full service-oriented taste, by implementing user-defined QoS
metrics, just-in-time execution and basic dynamic repairing capabilities. This paper presents the
described approach and the technical architecture and depicts one initial industrial application in the
manufacturing domain of aluminum forging for bicycle hull body forming, where the advantages
stemming from the main capabilities of this approach are sketched.

Keywords: Industry 4.0; XaaS; SemSOA; business process optimization; scalable cloud service
deployment; process service plan just-in-time adaptation; BPMN partial fault tolerance
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1. Introduction

As every other aspect of everyday life, also the manufacturing domain is strongly influenced by
innovations in Information and Communication Technologies (ICT) [1,2]. Companies need to react
flexibly to changing demands to remain competitive in a dynamic market [3]. The impact of ICT in
this domain is broadly known as Industry 4.0 and ranges from the application of artificial intelligence
in robot-assisted production to the usage of Internet of Things (IoT) devices, always connected and
controllable just-in-time [4].

Traditionally, a Process Model (PM) is designed by the expert to represent in a standard language,
such as the Business Process Model Notation (BPMN), an abstract representation of the modus operandi
and the set of operations adoptable to achieve the expected goal. These elements basically translate
into a set of flow objects to represent events (such as start, intermediate and stop), activities (practical
elementary actions, called task) and gateways (conditions, or events, based on adaptation of the
path, representing decision points). A particular instantiation of the PM, based on the relevant
set of variables and conditions, takes the name of Process Instance (PI). To transform a PI into
an enactable model, it is necessary to associate each task T with one or more services available
to allow its execution in the physical world, achieving in this way its expected goal. Each service
(or combination of them) used in this way is called the grounding service for the task T. The set
of evaluated gateways and of provided grounding services for a full PI is known as the Process
Service Plan (PSP). An additional requirement to support a full enactability of the PSP by an execution
environment is the existence of a contextual environment to be used for service deployment, plus the
presence of the variables’ bindings amongst the set of grounding services, to support the exchange of
all the information required for a correct service instantiation. During the process execution, meaning
the ordered instantiation of the grounding services, a process registry, also known as a PSP log or
execution log, is created by the RunTimeexecution environment and used to track the operations
performed and their outcomes. Whenever one or more of the grounding services in a PSP become,
temporarily or definitively, unavailable, we define this as a “broken” PSP. This situation requires
a dynamic adaption to support the process execution completion, by providing an alternative set of
available grounding services for the tasks that are lacking, using also the information provided by the
PSP log.

There are multiple preconditions for allowing Industry 4.0 real-world applications; for instance,
the need to define the domain formally in terms of ontological knowledge, the demand to give
formalized representations of the executable services and the requirement of independence between
business process models, their instantiation in the current context and the available services usable
by the executed models. This calls for supporting tools that can provide an effective composition of
services in the context of Everything-as-a-Service (XaaS) and Service-Oriented Architecture (SOA)
systems, together with their Semantic variant, named SemSOA.

Along the same line, manufacturing business processes have to be designed and executed in
a more dynamic production context, thus creating the need for adaptation and optimization at design
time, as well as at runtime [5]. As a consequence, the design of process models for business applications
has to go further than what the BPMN standard can support, as it needs to comprise representations
for functional and non-functional requirements. This exceeds what can be specified in traditional
Business Process Modeling (BPM) systems, which does not include semantic representations of product
models and manufacturing services, as well as Key Performance Indicator (KPI) requirements and
Quality-of-Service (QoS) aspects. Moreover, effective supporting tools need to be able to provide
reliable model optimization to achieve the best executable PSP for business processes. Eventually,
the provided PSPs should be designed to support a runtime incremental re-planning effectively,
in case an included service is temporarily failing or becomes unavailable. Additionally, a sustainable
approach requires just-in-time service leasing, their elastic deployment on request into the cloud,
their monitoring and billing.
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Due to the unavailability of solutions to tackle these issues in an integrated way [6], we developed
a set of components whose cooperation can pragmatically solve the presented points. Starting from
the ontology necessary for the domain and business cases’ description and reasoning, as well as the
wrapping of services into their semantic characterization, the approach should be able to select the set of
compliant services, available to implement the tasks. Subsequently, it should support the composition
of functionally-correct PSPs based on semantic annotations, while optimizing their non-functional
aspects formalized in terms of a Constrained Optimization Problem (COP). The resulting complete PSP
is encoded back into specifically-developed BPMN 2.0 extensions. This approach partially bridges the
gap between models and executable plans and provides at the same time the best variable assignments
to optimize the outcome of the execution. Regarding the availability of the optimal PSP, a pragmatic
tool for manufacturing in Industry 4.0 should provide an execution environment able to efficiently
deploy the services grounded on the cloud, control them and react to eventual failure, with a smart
re-planning policy.

The rest of the paper is organized as follows: In Section 2, the related work is presented,
then Section 3 describes the set of components envisioned and developed in the CREMA framework;
while Section 4 introduces an exemplary test case in the manufacturing domain. This includes a short
overview of the scenario, followed by Section 5, with a brief description of the role of each of the
components in this context. Then, Section 6 gives some initial thoughts about the modifications
that were required to achieve our demonstrator and the extendability of the presented use case
towards a pragmatic approach for Industry 4.0 in manufacturing. The conclusions are eventually
given in Section 7.

2. Related Work

Multiple different domains are affected by our proposed approach. This section gives a brief
overview of their current status, in particular with respect to the following themes: SOA and its
semantic variant used for service matching and composition; the XaaS approach; business process
optimization by user-defined KPI and QoS metrics; PSP composition, including variable bindings and
optimal configuration; elastic process execution in the cloud; aspects of fault tolerance in business
processes’ realization; and deployment of container-based software as a supporting solution for
heterogeneous services’ enactment.

A semantic service (also known as semantic web service) is an approach to support the automatic
interpretation of the service functions for service-based systems or intelligent agents [7]. Its central idea
is to use standardized annotations to conceal the functional and non-functional semantics from software
agents defined for different tasks, not only in a machine-readable way, but also machine-interpretable.
In order to achieve this interoperability between heterogeneous components and to allow them to
consider any semantic service they can encounter, the semantics should be defined using concepts
and rules coming from a shared ontology. The ontology itself needs to be formally defined adopting
a widespread format, such as one of the W3C standard languages, OWL2 or RDFS. Applications
and agents are consequently in the position to be able to rely on these well-founded formal semantic
annotations for their service interpretation, with the final aim of discovering required services with
the indicated high-precision or being able to plan a complex task by composing elementary services
in an automated way. There are a number of currently notable frameworks for semantic service
description, each one of them with some advantages and some limitations. Examples of them are
OWL-S, WSML, the W3C standard SA-WSDL and USDL.

Another important paradigm at the foundation of the present work is the so-called
everything-as-a-service [8]. It represents an abstraction layer over the actual resources, wrapping
them into well-defined public interfaces to support every possible operation, such as search, selection
and invocation. On top of this, a XaaS approach clearly separates the service concrete instantiation
from its semantic published description, guaranteeing a complete separation of the model and the
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service-based plan implementing it. For these reasons, this paradigm is widely adopted in the field of
cloud computing infrastructure.

The archetype of the semantic service-oriented architecture, by composing the semantic aspects
and the XaaS, is applicable also to the manufacturing domain, allowing specialized process models’
consideration. In this way, it is possible to adopt a proper procedure for semantic service discovery,
selection and composition planning, resulting in the creation of a fully-automatic implementation
based on the available semantic services.

The key idea is to enable automated understanding of task requirements and services by providing
semantic descriptions in a standardized machine-understandable way by using formal ontological
definitions [7], for example in OWL2 (W3C standard: https://www.w3.org/TR/owl2-overview/).
In [9], the authors proposed SBPM, a framework to combine Semantic web services and BPM to
overcome the problem of automated understanding of processes by machines in a dynamic business
environment. Similarly, the authors of [10] proposed sBPMN, which integrates semantic technologies
and BPMN to overcome the obvious gap between an abstract representation of process models and
actual executable descriptions in BPEL. The work in [11] follows the same track with the proposal
of BPMO, an ontology, which is partly based on sBPMN, while [12] took sBPMN as the basis for
the Maestro tool, which implements the realization of semantically-annotated business tasks with
concrete services by means of automatic discovery and composition. In [13], a reference architecture
for semSOA in BPM was proposed, which aims to address the representation discrepancy of business
expertise and IT knowledge by making use of semantic web technologies. All of these proposals
rely on formalization different from (although based on) BPMN or do not aim for a full integration
from a formalism point of view. In the work [14], the authors proposed an approach that uses BPMN
extensions to add semantic annotations for automatic composition of process service plans and to
verify their soundness, but this approach does not consider QoS-aware or runtime optimization.
Adopting a similar approach, our demonstrator proposes a set of BPMN extensions that not only
enable interoperability by offering process model composition, task service selection and process
execution, but also provides a way to represent the best values to optimize the QoS and the quality
values achieved.

Our optimized PSP creation component applies state of the art semantic service selection
technologies [15] to implement annotated process tasks. Non-functional criteria, often referred to
as QoS (e.g., costs, execution time, availability), can additionally be considered to find matching
services in terms of functional and non-functional requirements [16,17]. Here, optimality with respect
to the non-functional QoS specifications is achieved at the process model level by solving (non)linear
multi-objective COP (muCOP) as an integrated follow-up to the pattern-based composition.

Most existing approaches to PSP composition do not cover the combination of functional
(semantic) aspects and non-functional (QoS-aware) optimization. For example, [12,18] considered
functional semantic annotations to implement business processes by means of a service
composition plan.

The work in [19] provided a survey giving an overview of existing approaches and initiatives
in this direction and highlighted research questions. Integrated functional and non-functional
optimizations have rarely been considered, with the notable exception of [20]. While composition
typically includes the computation of possible data flows, our proposed approach additionally
finds optimal service variable assignments that are also required for executing the resulting plans.
This is a feature not yet considered by existing work. Moreover, our PSP computation component is
equipped to perform re-optimization of PSPs at runtime upon request, which is also a novel feature.
Finally, our optimization component employs the means of RDF stream processing to react to service
changes (non-functional QoS aspects) reported by the service registry. This information can be used to
trigger optimizations pro-actively if the RDF stream engine identifies that a previously computed PSP
is affected.

https://www.w3.org/TR/owl2-overview/
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Another area of recent innovation is the one of micro-services, which stems from the very diffused
service abstraction. Here, many innovations arose in the last few years, such as all the family of
techniques for container-based deployment [21]: Docker (https://www.docker.com), rkt (short for
CoreOS’s Rocket: https://coreos.com/rkt/) or LXC (Linux Containers: https://linuxcontainers.org/).
They represents virtual machines (VM), but in contrast with the historical ones, they are lightweight,
devoted to bundling together every requirement for a service, allowing a zero-configuration on
deployment. This means all the software and operating system dependencies and all the service
configurations are already contained and pre-built. Despite the original scope of lightweight VMs
for the micro-service domain [22], not much time passed before their usefulness was appreciated in
other domains, such as legacy services’ integration [23]. In our scenario, Docker is used to facilitate
the integration of heterogeneous services into business processes. An additional feature that makes
containers a natural choice in cases where the execution is on-demand is the better startup performance
coupled with a lower resource footprint, in comparison to established virtual machines [24].

Not too much research was devoted till now to exploring the theme of elastic process
execution [25]: here are the most relevant publications, in this respect. ViePEP (Vienna Platform
for Elastic Processes) is an eBPMS (elastic Business Process Management System) created to fuse
traditional process engine functionality with a cloud controller [26,27]. This means that relying on
cloud resources, this solution allows executing software-based processes and instantiating process
tasks on them. Additionally, ViePEP offers the possibility to optimize the service enactment by
using in the most cost-effective way the readily obtainable cloud resources, respecting the predefined
Service Level Agreements (SLAs) [28]. ViePEP is based, in common with our approach, on software
utilities to represent the execution elements of a process task, but does not offer any feature for the
automatic selection and composition of the existing services. Consequently, our solution emphasizes
the capabilities for matching and composition of automatic service and, in a failure case, of process
optimization at runtime.

Juhnke et al. [29] provided another similar work: to provide process tasks’ enactment, they used
on-demand VM cloud-based computational resources. Anyway, they relied instead on a BPEL-based
process representation. Our solution is instead based on BPMN v2.0 extensions, and this supports the
interpretation simplification of the executable process service plans.

Other works that adopt VMs to implement the process tasks composing business processes on
cloud resources were Wei and Blake [30], Bessai et al. [31] and Cai et al. [32]. However, each of them
lacked automatic service selection capabilities. This aspect could generate an issue during the process
execution, as in the case of a necessary reconfiguration for service unavailability, it lacks the minimum
level of flexibility necessary to support runtime dynamic optimization, in an automated fashion.

Another relevant area for the current work is the so-called “cloud manufacturing”. An example
of work in this areas is from Chen et al. [33], where they introduced a novel cloud manufacturing
framework with an auto-scaling capability. The main differences with our work start with their
approach of transforming single-user manufacturing functions into multiple contemporary usage
cloud services, where we rely on semSOA to abstract from the underlying rooting function into
a semantic rich service. Secondly, in the work of Chen, the optimality was obtained in terms of the
minimal number of VMs required to confine the average service time to lower than a predefined
threshold. This is much more inflexible than our approach, where the user can define any objective
function for the optimization problem. Obviously, this flexibility comes at a cost, in this case the
need for the user to understand clearly and coherently formulate the COP and the computation time
required by our solution to provide an optimal solution.

3. CREMA: Towards Industry 4.0 for Manufacturing

The objective of this work is to provide a pragmatic solution for implementing an Industry 4.0
approach in the manufacturing domain. This is based on the smart process composition supported by
the usage of semantic services, together with the possibility to optimize the service plan through a novel

https://www.docker.com
https://coreos.com/rkt/
https://linuxcontainers.org/
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definition of requirements and objectives. That is facilitated by an ad-hoc developed COP language
for defining QoS-based functions, which can be embedded into BPMN extensions. As a dynamic
and just-in-time adaptation to the frequently-changing execution context and service availability,
the proposed approach provides an adaptive instances execution, by automatically dealing with
“broken” PSPs and repairing them seamlessly using services, or a combination of them.

In the following sections, we present each individual component required to implement this
vision: we start by the ontology and its usages (Section 3.1), followed by a short depiction of the helper
UI for the semantic services annotation (Section 3.2). With these two elements in place, it is possible to
define the Process Model (PM) in BPMN, together with the additional elements that define its semantic
meaning, by the usage of an extended BPMN editor (Section 3.3). When the user requires the execution
of the process, an optimized PSP is computed by the system, through semantic service matching and
COP solving on the QoS-defined objective function (Section 3.4). This PSP is then executed by the
runtime environment (Section 3.5). The runtime environment then uses the invocation and controlling
capabilities of the deployment component (Section 3.6), which controls the retrieval, instantiation and
feedback collection of the services on the cloud resources.

3.1. Ontology Exploration, Validation, Extension and Editing

For our solution described in this paper, we propose a reference domain ontology called “CREMA
Data Model, Core module” (in short, CDM-Core) [34], which provides OWL2 descriptions of concepts
from the manufacturing domain. The released version is publicly available under the Creative
Commons license (CC BY-SA 3.0) at https://sourceforge.net/projects/cdm-core/ and concentrates on
hydraulic metal press maintenance and car exhaust production, but for the current work, we designed
an extension to cover the aluminum forging-based injection process. As an example, Figure 1 reports
the OWL representation of the concept “Robot” using an abstract syntax, for readability reasons.

Figure 1. The definition of the concept “Robot” in the developed ontology, represented using the OWL
abstract syntax. Here, the expressive richness of an ontology is evident, by allowing the expression of
complex knowledge. A Robot equips exactly a RobotCell and includes a Controller, plus being completed
by some Tool (of the supported types) and Motor. It performs some Manufacturing_operation.

Additionally, the ontology can be used for creating an enriched version of the industrial data
stream from IoT devices, such as in the case of Figure 2, where a multi-reader device provides a set of
values for a controlled pneumatic circuit. In this particular example, it is possible to see how the raw
(tab separated) input is transformed into an RDF (linked data enabled) fact. Here, the flow concentrates
only on the field marked in red, to show how every single measurement existing in the stream is
transformed. As modifying an ontology is not a simple task, in particular, due to the strict formalism
required, we also developed a very lightweight helper interface [35], to provide minimal support
in this task to domain experts and business-oriented process modelers. This is a very initial effort

https://sourceforge.net/projects/cdm-core/
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towards better sustainability and acceptance of ontologies and formalized domain knowledge as a base
for industrial and business modeling efforts. Figure 3 presents a small extract of its representation
capabilities, showcasing the translation of a CDM-Core segment in RDF/XML syntax (in the small
overlapping window) into a set of graphical objects.

Figure 2. The use of the CDM-Core ontology for a data stream semantic enrichment (RDFication).

Figure 3. Extract of the lightweight web interface for ontology exploration and manipulation. In the
superimposed window, the underlying ontology extract (in RDF/XML syntax) is presented together
with the visual object correspondences, highlighted by colors (function) and numbers.
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3.2. Service and Task Annotation

In order to enable a XaaS abstraction, all services require being wrapped with semantic annotations
of their external behaviors. For this, the W3C recommendation OWL-S [36] is used, which provides
a means for not only Inputs, Outputs, Preconditions and Effects (IOPE) annotations, but also for the
QoS aspect required by the non-functional optimization. QoS aspects are not predefined in OWL-S,
but can be adapted flexibly to the specific use case at hand. Definitions for various QoS aspects
are defined in the CDM-Core ontology (or can be defined based on it in terms of extensions) and
could, for example, represent monetary costs of using a service, operation cycle time of a machine or
accumulated failure probability.

Figure 4 presents the basic UI provided by our architecture for working with service semantic
annotation. In the bottom section, the IOPE annotations are visible, together with the variables’
section, which allows binding environmental variables to the service execution, for runtime usage.
The over-imposed boxes give an impression of a potential instantiation for each semantic annotation
element. Additionally, the round overlay shows the search interface, to support the search and
management of available semantic concepts (and relationship) names from the CDM-Core ontology.
At the moment, no semantic checking of compatibility is performed, as this will heavily overload
the solution.

Figure 4. A screenshot of the service and task annotation tool, with some example sections for the
variables and IOPE annotations. In the round over layer, an example of the search for concepts and the
relationship in the semantic space provided by the CDM-Core ontology.
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3.3. Process Model Composition, Annotation and Parametrization

Once the semantic source for the domain definition has been specified and the semantically-
annotated services have been created, the process models can be created. In order to be able to compose
automatically functionally valid process service plans given a process model, it is necessary that process
tasks be equipped with structured semantic descriptions. Following the SemSOA approach, the IOPE
of tasks are described in terms of formalized ontological domain knowledge.

These are basically BPMN models, enriched by a set of annotations to define the semantic
behaviors of each task, in terms of IOPE. This means that the semantic annotations are embedded
in the BPMN model by making use of extension elements at the task level. At this stage, a default
semantic service can optionally be bound by the process designer, when considered useful as a default
and zero-effort option for the process implementation. Additionally, the editor allows adding variables
that can be used during the process instantiation and exploring the produced XML encoding for the
process model, for debugging purposes with respect to BPMN. Figure 5 presents a screenshot for the
CREMA process model editor, with a simple model for forging the single hull of an aluminum-based
bike frame by injection.

Figure 5. A screenshot of the enriched BPMN editor: on the right side, a designed process model,
and on the left (partially visible), the definition of the associated constrained optimization problem.

3.4. Process Optimization by COP Solving with Semantic Services

To provide a service-based solution, we developed a one-stop process service plan composition
and optimization component for extended BPMN [37]. In order for the proposal to be optimal with
respect to the set of possible functionally valid solutions, it has to make particular choices driven
by non-functional requirements, which are expressed as functions of the QoS measures provided by
the services. Moreover, it computes concrete settings of service input parameter values, which yield
optimal results in terms of the optimization criteria.

This is done by specifying a COP at the process model level, whose solutions dictates what
services to choose from and what parameter settings to use when calling services. The COP formulation
includes information on how to map optimal parameter values to service inputs and service QoS to
COP constants. The outputs produced by the optimization component are PSPs encoded in the original
BPMN itself by making use of BPMN extensions. Besides the optimal services and input values for
calling the services as described above, this also includes possible data flows with parameter bindings
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among services. Such a PSP implementing the process model can then be instantiated at runtime by
a process service plan execution environment.

To achieve this objective, the optimization component follows two steps in a sequential
manner: (a) it performs a pattern-based composition using semantic service selection for all
semantically-annotated process tasks and the computation of possible data flows. Then, it executes
a (b) QoS-aware non-functional optimization by means of COP solving at the process model level.
This second step selects particular services out of sets of functionally-fitting services per tasks
previously identified and provides the optimal settings for service inputs.

This workflow can be applied at design time and runtime (of a process model execution instance).
At design time, the optimization component will be called after a process model has been defined in
order to provide an executable implementation of the model as guidance for the execution environment.
The runtime case appears as soon as a PSP is executed. Additionally, the execution environment can
query back the optimization to provide alternative PSPs in the case of an exception during execution
(e.g., a service becoming unavailable or failing). For this, the plan-enacting tool should not only
provide to the optimization component the PSP it tried to execute, but also the current state of
execution. This includes information on what services have already been executed, how gateways
have been evaluated and what services caused errors during execution.

The aim of this component in the runtime case is then to provide an alternative solution for the
given process instance. That is, it tries to patch the existing PSP and considers the current state of the
world as fixed and not undoable, nevertheless trying to re-implement in an optimal way the part of
the process model still uncovered or not correctly executed.

3.4.1. Constraint Optimization Problem Definition

We defined a context-free grammar COPSE 2 to represent constrained optimization problems by
use of antlr4 (http://www.antlr.org/) (cf. Listing 1). The COP specification starts with the definition
of its type (linear vs. non-linear, single vs. multi-objective, etc.) and continues with the declaration of
the problem class.

In this part, the variables, constants and functions are indicated, while in the last segment,
any complex function can be defined using operators such as MAX, MIN, SUM, PRODUCT and
IF-ELSE. The set of constraints is then defined with respect to the variables, constants and functions
already specified, and the objective function(s) is normally constructed by minimizing one or more
functions (or functions combination). In the case of a multi-objective, it is possible to have many of
them, also in a combined form of a MIN-MAX COP problem.

The COPSE2 grammar also allows mapping back the achieved value to the produced PSP into
a semantic concept. In the second part of the constraint optimization problem definition, the current
problem instance is indicated: after defining the variables’ domain and the value of the constants,
the mapping of variables’ values that give the optimal solution is reported back to semantic concepts
used as the inputs of the services used.

This approach allows the definition of complex aggregates of QoS and environment variables
instead of mere lists of objectives for simple QoS, extending the expressive capability with respect to
the non-functional optimization problem definition. In [38], we showcased how this flexibility can be
useful to represent heterogeneous optimization problems.

http://www.antlr.org/
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Listing 1. antlr4 grammar for Constraint Optimization Problems.

1 grammar COPSE2_meta;
2

3 problem: ’PROBLEM ’ type solver problemclass probleminstance output? ’END PROBLEM ’;
4

5 type: ’TYPE’ Linear Objective ’END TYPE’;
6 Linear: (’linear ’|’nonlinear ’);
7 Objective: (’single ’|’multi’);
8

9 solver: ’SOLVER ’ Solver ’END SOLVER ’;
10 Solver: (’centralized ’|’distributed ’|’both’);
11

12 problemclass: ’CLASS’ variables constants? functions? constraints? objectivefunction+ ’END CLASS ’;
13

14 variables: ’VARIABLES ’ (Identifier|ArrayIdentifier)+ ’END VARIABLES ’;
15 constants: ’CONSTANTS ’ (Identifier|ArrayIdentifier)+ ’END CONSTANTS ’;
16 functions: ’FUNCTIONS ’ function+ ’END FUNCTIONS ’;
17 functionSign: Ident ’(’ identList ’)’;
18 function: functionSign ’=’ (expr|ifexpr);
19

20 Comparison: ’>=’|’<=’|’==’|’!=’|’>’|’<’;
21 Assignment: ’=’;
22 expr: ’-’? term ((’+’|’-’) term)*;
23 term: mterm ((’*’|’/’|’^’) mterm)*;
24 dim: Ident ’.length ’ ;
25

26 loop: (’SUM’|’PRODUCT ’) ’(’ Ident ’,’ (Number|dim) ’,’ (Number|dim) ’,’ expr ’)’;
27

28 mterm: (Ident|ArrayElem|REAL|’(’ expr ’)’|(’MIN’|’MAX’) ’{’ expr (’,’ expr)* ’}’|functionSign|dim|Number|loop);
29

30 ifexpr: ’IF’ expr Comparison (expr|Number) ’THEN’ (expr|ifexpr) ’ELSE’ (expr|ifexpr) ’END IF’;
31

32 constraints: ’CONSTRAINTS ’ constraint+ ’END CONSTRAINTS ’;
33 constraint: expr (Comparison|Assignment) (expr|Identifier|Number);
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34

35 objectivefunction: (’minimize ’|’maximize ’) expr (’->’ URI)?;
36

37 probleminstance: ’INSTANCE ’ variabledomains? constantvalues? ’END INSTANCE ’;
38

39 variabledomains: ’DOMAINS ’ vdomain+ ’END DOMAINS ’;
40 constantvalues: ’VALUES ’ cvalue+ input? ’END VALUES ’;
41

42 input: ’INPUT ’ inputEntry+ ’END INPUT’;
43 inputEntry: Identifier ’<-’ ’(’ Identifier ’,’ URI ’)’;
44 URI: ’http ://’ ([a-zA -Z0 -9/.])+ ’#’ ([a-zA-Z0 -9])+;
45

46 vdomain: (Ident|ArrayIdent) ( Number | ’[’ Number ’,’ Number ’]’ | ’{’ Number (’,’ Number)* ’}’);
47 cvalue: (Ident|ArrayElem) Assignment Number;
48

49 output: ’OUTPUT ’ (valueAssignment|serviceSelection)+ ’END OUTPUT ’;
50 valueAssignment: (Ident|ArrayElem) ’->’ ’(’ Identifier ’,’ URI ’)’;
51 serviceSelection: ArrayIdent ’::’ Ident;
52

53 fragment Letter: [a-zA -Z];
54 fragment ANumber: [0 -9];
55 fragment INF: (’INF’|’-INF’);
56

57 Number: ((’-’? (ANumber+|ANumber* ’.’ ANumber+) (’*’ (’10’|’e’) ’^’ ’-’? ANumber +)?)|INF);
58

59 Ident: Letter (Letter|ANumber|’_’)*;
60 ArrayIdent: Ident ’[]’;
61 ArrayElem: Ident ’[’Ident’]’;
62 identList: Ident (’,’ Ident)*;
63

64 WS: [ \t\r\n]+ -> skip;
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3.4.2. Process Service Plan

The computation of a PSP is presented in Algorithm 1, which uses four helper functions.
The first one is SIM (IOPEA, IOPEB) in Line 10, which is used to compute the similarity between
two IOPE annotations based on a selected measure. Given the semantic description of a task
(IOPEA) and a service (IOPEB) as the input, the adopted measures consider a logic-based signature
plugin match for inputs and outputs and a logic specification plugin for precondition and effects.
These matching filters are inspired by the classical plugin matching of components in software
engineering. While a plugin match is commonly considered near-optimal, we prioritize services
with semantic descriptions, which are logically equivalent with respect to the requested functionality.
A possible ranking of logic-based semantic matching filters is proposed for iSeM, as shown in [39].
Alternative approaches to semantic service selection learn the optimal weighted aggregation of different
types of non-logic-based and logic-based semantic matching filters [40].

Algorithm 1: The pseudocode for the process service plan composition.
Input: PM: semantically annotated BPMN model, S: set of available services
parameter : Simmin: minimal similarity value accepted
Output: PSP: the computed process service plan

1 forall s ∈ S do
2 IOPEs → IOPES;
3 end
4 forall task ∈ PM do
5 task → T;
6 end
7 % Find task service candidates
8 forall t ∈ T do
9 forall s ∈ S do

10 if SIM(IOPEt, IOPEs) >= Simmin then
11 s → CANDIDATESt;
12 end
13 end
14 end
15 % Solve the COP
16 forall t ∈ T do
17 forall s ∈ CANDIDATESt do
18 forall QoS ∈ T do
19 QoS → Parametersst ;
20 end
21 end
22 end
23 Solutions = COPSOLVE(Parameters);
24 % For all the Pareto-optimal solutions, compute a valid data flow
25 forall Solution ∈ Solutions do
26 COMPOSEVARIABLEBINDINGS(Solution) → Plans;
27 end
28 % Return a process service plan using the first solution
29 PSP=MERGEPMWITHSOLUTION(PM, Plans[0]);
30 return PSP;
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A second helper function is the COPsolve (parameters) used in Line 23 for computing the set of
Pareto-optimal solutions of the COP. This is a simple compiler that transforms our COP definition into
a running instance of a JaCoPsolver (http://jacop.osolpro.com/), using the set of parameters given.

The call to ComposeVariableBindings (solution) computes a possible set of variable bindings,
which together define the data flow (Line 26). Bindings are determined by checking the semantic
compatibility of the semantic variable types. This ensures a functionally-meaningful assignment
beyond simple data type compatibility checking. The overall aim of this function is to connect as many
service inputs in the solution with the outputs of services earlier in the execution order determined by
the process model definition. Inputs that cannot be bound in that way are considered environmental
variables. This ensures the direct executability of the computed service plan.

Please note that the pseudocode leaves out details on the handling of gateways and different
possible execution paths through the process model for parallel execution and choices. Without
loss of generality, the different paths can be considered additional options for generating PSPs, each
indicating other gateway decisions and a valid data flow given this decision. The component is able to
handle parallel (AND), choice (OR) and exclusive (XOR) gateways. While the AND gateway opens up
independent parallel paths and is easy to handle, the XOR and OR gateways result in n and n! possible
alternative execution paths, thus widening the problem space significantly. Structurally, however,
all these options are handled in an analogous way to what was explained.

Eventually, MergePMwithSolution (PM,Plan) takes care of adding the full metadata section into
the original process model to create an executable PSP. This happens at Line 29.

Functional optimization (services’ selection): The first step for creating a PSP is to select all
the possible candidates functionally valid for each task. We rely on functionally equivalent exact or
on plugin matches [41] that are limited to direct subclass relationships. This way, all PSPs’ logical
properties (in terms of IOPE) are conserved with respect to the given PM.

This step creates for each task a set of candidates, either a simple or composed service. In fact,
the selection of their best composition is left for the non-functional optimization, based on the COP
solution. Only after this additional phase, the actual service implementation in the returned PSP
is complete.

Non-functional optimization (optimal services composition): Amongst all the possible
combinations of services of the candidate pools of the process tasks, the best (or Pareto-optimal
in the case of a multi-objective problem) option is chosen as part of the overall solution. This implies
solving the COP problem associated with the PM, such as the example in Listing 2, by minimizing the
function TotalCost(X). For an introduction to the BPMN extensions defined in CREMA and used by
our components, we refer the reader to [42].

3.4.3. Optimality of the Produced Solutions

The produced service plan, together with its variables’ bindings and contextual optimal settings,
is consequently optimal with respect to both the functional and non-functional aspects of the process
model. In fact, it implements each task present in the model with a single, or a composition of, semantic
service, which are equivalent or compatible (plugin) with the task annotations. This guarantees its
functional optimality at the global level, as all the semantic description are respected, fulfilling in
this way the global IOPE footprint and the internal variable chaining requirements. Anyway, at this
level, is possible to have completely equivalent plans, for example implementing the same tasks with
alternative equivalent services, but with different QoS parameters.

At the non-functional layer, instead, the optimality is translated into two planes: initially,
the best performing service amongst the potential alternatives for each task to be really executed
(considering also the already performed services and the gateway branches, in case of runtime
replanning) is discovered based on the COP formulation. Secondly, using the set of services identified,
the bindings of produced outputs and required inputs in subsequent services are semantically
determined, and the assignment of the best parameters for contextual variables in the execution

http://jacop.osolpro.com/
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environment is decided. This produces a well-defined, non-dominated, value for the optimization
function, which is communicated to the user, for reference and validation.

3.4.4. The Optimization Facility in CREMA

Based on the SOA approach, the optimization facility is a JAVA-based software implemented
as a RESTful service. Figure 6 depicts its basic components and the interactions it requires
for a fully-functional process enterprise execution platform, such as the one that the CREMA
solution provides.

Figure 6. The optimization component in the context of a fully-fledged BPM and execution architecture.

To achieve this objective, during the CREMA project, a set of functions was designed and
implemented: they allow asking for an integrated composition and optimization (meaning, considering
both the functional and non-functional requirements specified in the input BPMN) or separately, in the
case when (a) the user is interested only in a functionally valid plan or (b) when a composed plan
already exists that requires being optimized based on the non-functional QoS measures and the
user-defined objective function(s). This is valid both at design time (input is a process model) and
at runtime (input is an instance of the process model, together with the execution log, if available).
For accountability, then, a function to allow the user approval of the computed PSP is provided.
Additionally, it exposes also a set of utility operations, ranging from operations able to retrieve the
ordered list of services found to implement a single task, till capacity for fetching previously computed
PSPs, to support user inspection for alternatives, if of interest.

3.5. Process Service Plan Execution and Contextual Environment Management

Our demonstrator also envisioned a component responsible for the execution of a PSP. It is based
on an affirmed process engine, and its role is to execute process tasks according to the order defined in
the process. As our approach is based on an optimal PSP realization by the optimization component,
the execution follows precisely the service sequence defined in the process service plan. This is our
instantiation of the flexible service selection concept for process tasks’ execution.

This additional facility is bounded to the extension of parsing abilities and deployment capabilities
for a standard process engine. This arises because the communication of the suggested service sequence
and the externalization of the optimal environment initialization required for its implementation
are performed by the optimization component using BPMN extensions; and our approach needs
consequently to implement the logic necessary for considering this additional PSP section at the
process engine level.

Figure 7 shows its main UI, with possible plans to be executed, their creation time (for reference)
and the current number of instances running. Furthermore, from this interface, the human operator can
retrieve information and control the process, by launching, stopping, pausing or resuming instances of it.
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Figure 7. Screenshot of the process execution engine showing the process “ALUCasting die”,
whose instance can be executed.

In case of issues with the process execution, this component is additionally able to capture
this exception automatically, to pause the execution, to invoke the interaction with the optimization
component, to request a new PSP respecting this additional previously unforeseeable constraint
and, then, to continue the execution of the paused process with the updated PSP. For example,
such an exception can happen during the execution of a service, such as in the cases of a hardware
breakdown of a manufacturing machine, a physical resource (e.g., a human operator) already busy
or the unavailability of a service for unplanned maintenance reasons. The possibility of providing
this just-in-time adaptation of the PSP offers an initial fault-tolerance capacity for process execution,
which is a novelty of our approach.

For debugging capabilities and for testing purposes, the component can also enact (once or
repeatedly on an interval base) a process using a manually-defined configuration, as shown in Figure 8.
This supports the human operator in discovering the reason for unexpected outputs or the behaviors
of the process executed.

Figure 8. Screenshot of the process execution engine “enactment configuration” capabilities: here, the
user can launch one time or repeatedly on an interval basis a process, passing an arbitrary number of
contextual variables, to be used as the complement for the process enactment environment.

3.6. Process Deployment in the Cloud and Execution Control

At the lower level of the control chain for process execution sits a service deployment
and execution control facility. This is responsible for the on-demand enactment of services on
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cloud resources. Differently from purely informative business PMs, the manufacturing domain
is characterized by a natural mix of heterogeneous kinds of services. Naturally, there are traditional
software services, such as analysis of values or computation of control conditions, that are naturally
enactable on computational resources.

Typical of this domain, there are also real-world services, such as the one that physically
manipulates the material and semi-finished piece to produce the final outcome of the manufacturing
activity. These can be welding machines, robot arms, manipulators, numerically-controlled machines
(CNC), lubrication systems, and so on. It is necessary to transform them by adding a software-based
representation that works as their digital interface to enable their deployment and control on
cloud resources.

Human-based services are another typical category and can be, for instance, the task of loading
or unloading parts, manipulating the machines, managing an unexpected condition or collecting
information about an environmental condition that is not automatically monitored. For this type of
service to be enactable in a distributed computation environment, it is necessary to design some user
interfaces that act as a human communication vector. This additional interfacing facility allows, on the
one side, providing instruction and input and, on the other end, collecting feedback and information
for reporting back to the execution context.

In order to combine these services, we have designed an abstraction approach called Proxy Service
Wrappers (PSW), which provide a uniform representation of every different kind of service, allowing
their usage as a grounding for process tasks.

The basic foundation of a PSW is a set of requirements that need to be implemented by services
in order to be integrated. Firstly, there is the need to expose two different endpoints for each service:
an endpoint for checking the Availability of the actual service, which should indicate its current
leasability, taking into account all the limitations affecting it (e.g., contemporary usages, stale states
or maintenance operations), and a Start one, which deploys the service using a JSON-encoded input
parameter object. As a precondition, it is possible to call the latter one only under a positive answer
from the former endpoint invocation. As a consequence of a Start endpoint triggering, a PSW starts the
operation for a software-based service, triggers a real-world interaction, e.g., starts a welding process
or signals to a human that he/she can start working on a specific task.

Secondly, a feedback and control channel is required between the executing PSW and the
controlling component. This means that there is the need for each service to register to an endpoint
to report its status. This can be either the termination of its execution by correct completion (such as
software calculation, or a welding operation accomplishment, or a human indication that the operation
is done) or a report for the occurrence of an error. In the last case, our component can raise an exception,
to signal the process execution engine to start the compensation mechanism, by obtaining a new PSP,
avoiding the failing service.

Eventually, a common technical format for every service is required, to ease their deployment on
cloud resources. As it is currently common practice to use containers [21], we also adopted this model.
Our demonstrator uses the Docker Image format to represent every service grounding. This choice
has the advantages of using an affirmed, widespread technical solution, which is also able to package
all kinds of external resources within the image, supporting in this way our need for packaging
heterogeneous services.

Thanks to this restricted set of three requirements, our system design is capable of integrating
all kinds of services from the manufacturing domain smoothly. Additionally, these conditions are
foundations to provide a real SOA abstraction of the existing manufacturing services.

In Figure 9, the UI of the OSL is shown. It can be used to monitor the status of deployed and
running PSWs (in this case, a single service called “metal injection”) and to stop their execution,
if necessary.
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Figure 9. Screenshot of the OSL showing a deployed and running PSW called “metal injection”,
which is used in the “ALU casting die” process.

4. Demonstrative Application

To showcase the flexibility and usefulness of the proposed approach, we envisioned and designed
a simple PM for the manufacturing process of bicycle bodies. It encompasses the injection of melted
aluminum by all the processes required to prepare the cold-chamber molding machine and to control
and expel the formed piece of hull.

As an initial step, we semantically described the services available to implement the different
tasks in this manufacturing area. Figure 10 presents the results for three selected services, namely S2,
S3 and S4. This figure concentrates only on the semantic aspect, and for this reason, the other metadata
to represent the grounding and the QoS measures for these services are not explicitly depicted.

Figure 11 depicts the BPMN, mainly a linear model composed of 11 tasks, three exclusive gateways
(the first two defining together two alternative subpaths, to include or exclude T2, whether the third is
used to control a condition and repeat T9 as many times as required). Each task is characterized by its
IOPE annotation, as from Figure 5.

Interesting to note here is the fact that there is not always a perfect one-to-one correspondence
between tasks and services, but services can be composed (e.g., S2+3 as the sequential arrangement
of S2 and S3) or can be alternatively used (at least under certain assumption, such as the plugin
compatibility) to implement the same task (e.g., T2 in Figure 11 can be implemented by S4 or by the
composed service S2+3). This is also part of the flexibility provided by a SemSOA approach.
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Figure 10. Some semantic services usable to implement Task 2 of the process model in Figure 11.

Figure 11. A process model for the forging of an aluminum hull for a bike body frame by injection.

In Listing 2, the optimization problem defined using our COP grammar for the PM in Figure 11 is
presented: it starts (Line 2) by indicating the type of problem (linear and single objective), and then,
it defines the variables (Line 5) , an array and two simple variables followed by many constants
(Line 6) in both simple and array form. There are nine functions (Lines 8–16), ranging from a linear
combination of variables (Lines 14–16) to the sum for the X array length between one or more
parameters (Lines 8–10), passing through non-linear operators such as MAX and MIN (Lines 11–13).

Then, the constraints are presented (Lines 19–22): the first one limiting the sum of elements
in X to the value of one (this, together with the domain definition for each entry in the set {0, 1}
allows only one element in the X array to be not null); the second constraint devoted to guarantee
that there is enough production time for the required batch. Then, a constraint on the electricity
consumption is presented to assure it does not exceed the available amount during the production
time; and eventually, one for securing that the marginal revenue level produced by the execution of
the current batch of hulls is satisfactory, both with respect to its dimension and the average quarterly
cash flow. To complete the problem class definition, the objective functions is stated, together with its
association with the semantic concept (Line 24), to allow its reuse in composing the final service plan.
In this case, the objective is to minimize TotalCost(X) for the production.

As presented before, the definition of the current instance of the problem is then given, starting
from the domains of the variables (Line 27) and the values of the constraints (Lines 28, 29). Eventually,
in section “INPUT”, the mappings of semantic concepts (an extract of it is visible in Table 1) in
the PM annotation are used to create the automatic binding of produced output to incoming input
(Lines 31–46), based on the service QoS annotations.
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Listing 2. The Constraint Optimization Problem (COP) associated with the model in Figure 11.

1 PROBLEM
2 TYPE linear single END TYPE
3 SOLVER both END SOLVER
4 CLASS
5 VARIABLES X[] VC Q END VARIABLES
6 CONSTANTS A1 A2 A3 B1 B2 B3 C1 C2 C3 Time[] Electricity [] ManteinTime [] SetupCost [] AmmCost []
7 AcqTime [] Prec[] HoursAvaialble
8 END CONSTANTS
9 FUNCTIONS

10 Setup(T) = SUM(i,1,X.length , X[i] * SetupCost + X[i] * AmmCost[i])
11 ExecTime(T) = SUM(i,1,X.length , X[i] * Time[i])
12 ExecEletricity(T) = SUM(i,1,X.length , X[i] * Electricity[i])
13 ManteinanceTime(T) = MIN{X[i] * ManteinTime[i]}
14 AcquisitionTime(T) = MAX{X[i] * AcqTime[i]}
15 Precision(T) = MIN{X[i] * Prec[i]}
16 AvgTime(T) = A1 * ManteinanceTime(T) + A2 * ExecTime(T) - A3 * Precision(T)
17 ProdCostDirect(T) = B1 * ExecEletricity(T) - B2 * Precision(T) + B3 * Setup(T)
18 TotalCost(T) = C1 * AcquisitionTime(T) + C2 * AvgTime(T) + C3 * ProdCostDirect(T)
19 END FUNCTIONS
20 CONSTRAINTS
21 SUM(i,1,X.length , X[i]) = 1
22 AvgTime(T) <= HoursAvaialble / BatchSize
23 ExecEletricity(T) / BatchSize < MaxElectricity
24 QuaterlyCashFlow / QuaterlyProduction + MinQuaterlyRevenues > ProdCostDirect(T) * BatchSize
25 END CONSTRAINTS
26 minimize TotalCost(X) -> http :// localhost/examples/Ont.owl#Cost
27 END CLASS
28 INSTANCE
29 DOMAINS X[]{0 ,1} VC [120.0 ,1275.0] Q[10.5 ,1000.0] END DOMAINS
30 VALUES A1 = 1.5 A2 = 0.2 A3 = 3 B1 = 7.1 B2 = 12.9 B3 = 1.55 C1 = 4.55 C2 = 7.75 C3 = 9.99
31 HoursAvaialble = ( DeliveryDate - StartProduction ) / WorkingDayHours - DeliveryTime
32 INPUT
33 BatchSize <- (Task_A, http :// localhost/examples/Ont.owl#BatchDimension)
34 MaxElectricity <- (Task_A, http :// localhost/examples/Ont.owl#ElectricitzySupplyCapabilities)
35 DeliveryDate <- (Task_A, http :// localhost/examples/Ont.owl#DeliveryDate)
36 StartProduction <- (Task_A, http :// localhost/examples/Ont.owl#StartProduction)
37 WorkingDayHours <- (Task_A, http :// localhost/examples/Ont.owl#WorkingDayHours)
38 DeliveryTime <- (Task_A, http :// localhost/examples/Ont.owl#DeliveryTime)
39 QuaterlyCashFlow <- (Task_C, http :// localhost/examples/Ont.owl#QuaterlyCashFlow)
40 QuaterlyProduction <- (Task_C, http :// localhost/examples/Ont.owl#QuaterlyProduction)
41 MinQuaterlyRevenues <- (Task_C, http :// localhost/examples/Ont.owl#ExpectedQuaterlyRevenues)
42 Time <- (Task_F, http :// localhost/examples/Ont.owl#ForgingTime)
43 Electricity <- (Task_F, http :// localhost/examples/Ont.owl#ElectricityConsumption)
44 ManteinTime <- (Task_G, http :// localhost/examples/Ont.owl#ManteinanceTime)
45 AcqTime <- (Task_B, http :// localhost/examples/Ont.owl#BlockingServiceTime)
46 Prec <- (Task_F, http :// localhost/examples/Ont.owl#ProductionPrecision)
47 SetupCost <- (Task_C, http :// localhost/examples/Ont.owl#SetupCost)
48 AmmCost <- (Task_C, http :// localhost/examples/Ont.owl#AmmortisationCost)
49 END INPUT
50 END VALUES
51 END INSTANCE
52 OUTPUT
53 VC -> (Task_F, http :// localhost/examples/Ont.owl#VariableCost)
54 Q -> (Task_F, http :// localhost/ontology/fake.owl#Quality)
55 END OUTPUT
56 END PROBLEM

The actual values used for comparing and contrasting services during the optimal PSP
computation come from their QoS annotation, such as in Table 2. The final optional section “OUTPUT”
instructs how to map back the found variables into the variable environment assignments (Lines 51, 52),
which reflects how service input parameters are supposed to be set in order to yield the optimal
objective values and the best level obtainable itself.
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Table 1. The mapping between some QoS to provided semantic concepts, to support semantic type
matching control during service plan generation and service invocation.The links point to publicly
avaialble ontologies, pre–existjng to our work.

QoS Metric Semantic Concept

ExecCost http://localhost/examples/Ont.owl#Running_Cost
AmmCost http://localhost/examples/Ont.owl#Amministrative_Cost
AcqCost http://localhost/examples/Ont.owl#Acquisition_Cost

SetupCost http://localhost/examples/Ont.owl#Setup_Cost
Time http://www.w3.org/2006/time#TimePosition

Electricity http://localhost/examples/CM_ontology.owl#Electric_Power
Precision (ppm) http://purl.oclc.org/NET/ssnx/ssn#Precision
OutcomeRate http://localhost/examples/Ont.owl#Production_Rate
DeliveryDate http://localhost/examples/Ont.owl#DeliveryDate

BatchSize http://www.owl-ontologies.com/mason.owl#batch_run_size
ManteinTime http://www.w3.org/2006/time#Interval

MinQuaterlyRevenues http://localhost/examples/Ont.owl#Expected_Revenues
StartProduction http://www.w3.org/2006/time#TimePosition

AcqTime http://www.w3.org/2006/time#Interval

Table 2. Subset of the QoS measured for the services S2 and S3 (respectively for melting the aluminum
and for filling in the forming machine reservoir chamber till the expected level); and for service
S4, the robotic arm for the automatic refilling of the melted aluminum. These are alternatives to
implementing Task 2 of the process model.

QoS Metric
Value

S2 S3 S4

ExecCost 100 10 8
AmmCost 500 5 95
AcqCost 390 1 10,000

SetupCost 15 19 2390
Time 275 2 65

Electricity 575 15 1223
Precision (ppm) 1000 95 500
OutcomeRate 5 1255 2000

5. Results

At first, we defined the flow of invocation and data exchange at the base of the proposed
demonstrator behavior. Figure 12 depicts the ordered sequence: at first, the user annotates (Step 1) the
services using the provided UI; as a consequence, all the semantic services complete with metadata
about QoS and the executable program, which offers the service (the so-called service grounding),
are stored in a repository (Step 2).

Every dashed line color represents a different type of transferred object: light blue encodes for
Semantic Services (SS), dark yellow for Process Models (PM), whereas green is for Process Service
Plans (PSP). It is important to notice that models, instances and service plans were all encoded as
BPMN v2.0-compliant XML documents, by the usage of extension elements: this allows maintaining
in a single place the different stages of the models and storing them coherently in a unique repository.
As for the notation in this representation, continuous lines represent explicit user actions, whereas
fine dashed connections indicate implicit components’ interaction to provide the service to the
user. In Step 3, the process model is designed, together with the IOPE characterization and all
the metadata required and stored in the central extended BPMN repository (Step 4). This finishes the
preparation, until the moment the user is ready to execute an instance of a defined process model.

http://localhost/examples/Ont.owl#Running_Cost
http://localhost/examples/Ont.owl#Amministrative_Cost
http://localhost/examples/Ont.owl#Acquisition_Cost
http://localhost/examples/Ont.owl#Setup_Cost
http://www.w3.org/2006/time#TimePosition
http://localhost/examples/CM_ontology.owl#Electric_Power
http://purl.oclc.org/NET/ssnx/ssn#Precision
http://localhost/examples/Ont.owl#Production_Rate
http://localhost/examples/Ont.owl#DeliveryDate
http://www.owl-ontologies.com/mason.owl#batch_run_size
http://www.w3.org/2006/time#Interval
http://localhost/examples/Ont.owl#Expected_Revenues
http://www.w3.org/2006/time#TimePosition
http://www.w3.org/2006/time#Interval
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It is important to notice that this approach supports the theoretical separation between the service
annotator, the process model designer and the operator in charge of executing the instance of this
manufacturing process. In Step 5, through the RunTime execution environment, the human operator
launches an instance of the process, causing it to retrieve the model from the repository (Step 6)
and passing it to the optimization component (Step 7). After retrieving the set of available semantic
services (Step 8), the optimization component computes a non-dominated process service plan by
functional composition and non-functional optimization of the related COP definition and returns it to
the RunTime execution component (Step 10). Furthermore, the optimization component stores the
plan in the eBPMN archive facility (Step 9).

Figure 12. The flow of interaction and data exchange between the components of the proposed solution.
The data exchange is as follows: light blue dashed line for Semantic Services (SS), dark yellow for
Process Models (PM) and green for Process Service Plans (PSP). Black continuous arrows indicate user
function call, and black dashed ones pinpoint internal function calls.

The process then continues without user interaction, as the RunTime execution component
analyzes the produced process service plan one service at a time, in the corresponding order for
the process model. Here, the first service, equivalent to T1 in Figure 11, is considered, and the
service metadata are passed in Step 11 to the allocation and service deployment together with
all the environmental and contextual variables and settings necessary for the service. Eventually,
that enactment component retrieves from the repository the full information set of the service (Step 12)
and, after initializing the environment, deploys its grounding in the cloud (Step 13), monitoring it and
collecting the returned value(s). Once the service has finished its task, it is also necessary to dispose of
the deployment wrapper and environment, in order to release the cloud resources used by this service.
If the current service is correctly executed, the allocation and service deployment component interacts
with the RunTime execution to move to the next service used to implement the model, till the full
process service plan is completed, and the UI returns a positive confirmation of the termination to
the user.

Anyway, it is possible that a service is unable to be deployed (such as when it is a physical resource
already in use or out-of-service for unplanned maintenance) or a failure code is returned. Figure 13
represents this case: the first task was terminated correctly by the execution of S1, then the PSP dictated
to use S4 for implementing T2, as this was the best match (amongst the semantically-quasi-equivalent
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alternatives {S2+3, S4} from Figure 10), but the robotic arm used to ground S4 is currently unusable,
making the service failing.

Figure 13. Whenever a requested service became unavailable, the proposed architecture allows for
fast and incremental replanning. Here, service S4’s deployment in the cloud failed (red dashed
arrow), and CREMA proposed to achieve T2 objectives by using the service combination S2 + S3,
which constitutes a semantic equivalent (valid under plugin relaxation) candidate. They are successful
(green dashed arrows), and this fulfills the requirements for T2’s correct execution in the PM.

The interaction flow follows the same evolution as for the “none failure” case until Step 13.
In Step 14, the service control returns a failure status to the calling component. This triggers
back the RunTime execution environment (Step 15), which collects all the information about the
services correctly executed and the failing ones for the current process (PSP log), and it requests an
alternative PSP (Step 16) via the optimizer. Using the additional knowledge about the execution log
and the services currently available (Step 17), a new functional composition and a new QoS-based
COP resolution are computed. This generates a viable non-dominated PSP, stored (Step 18) and
subsequently returned to the execution component (Step 19), which is then able to resume the process
execution, without the need for aborting the already executed services. This is particularly critical
in the manufacturing domain, as most part of the services is not-idempotent and cannot be repeated
without affecting the final result or generating scrap and defective parts. If there are no possible
services available to implement the process, the user will observe a failure (“broken” PSP). In this
demonstrative case, we suppose there is a combination that can be used as functionally equivalent
for T2, even though it is sub-optimal with respect of the COP objective and the QoS measures for
the services.

After that, the normal iteration is restored between the execution and the deployment component,
using the new PSP, which has an updated grounding for T2, composed by S2 and S3. Each single service
is then individually instantiated: Steps 20 and 25 report the service deployment request; Steps 21
and 26 pinpoint the service details retrieved from the repository; Steps 22 and 27 show the actual
deployment of the service in the complete and correct cloud environment; Steps 23 and 28 signal the
correct completion of the service execution; whereas eventually, Steps 24 and 29 confirm it for the
RunTime execution environment, in order to allow it to proceed with the next service defined by the
PSP. Eventually, when the last service is correctly returned, the execution of the process instance is
done, and the human operator is informed through a message in the UI.
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6. Discussion

In this section, we present our thoughts about the effort and major barriers for the extension of
the presented demonstrative case to general manufacturing-related processes, towards a pragmatic
Industry 4.0-enabled approach in physical production contexts. The analysis is divided following the
presented components of our demonstrator.

As a base, we proposed a basic general domain ontology, and we showcased how it can be
treated and extended to cover the specific sub-domain for a new application. We showed that it is
feasible to implement a semantic wrapper for the service annotation; and that it is possible to use it for
representing whatever type of service (information retrieval or computation, mechanical/operative
tool or robot and human operators) in a XaaS approach. This wrapping capability showed itself
able also to equip the service description with user-defined QoS. These steps are still a considerable
obstacle for process designers, as they are not normally familiar with domain knowledge elicitation
and its formalization. Additionally, the need for defining the semantic and metadata (QoS) wrapper
around all the available service, at the finest granularity possible, is also a big barrier for the adoption
of XaaS in manufacturing. On the positive side, once these demanding and challenging tasks are
done, it normally should not be necessary to repeat them, as they can support every process in the
defined sub-domain. Unfortunately, in reality, both small corrections and, sometimes, big reworks are
occasionally necessary, to better focus on or to correct a misunderstanding in these element settings.

Minimal modifications are necessary on the BPMN editor side, to support the extension in the
standard language for including the COP problem description; the service plan, the data bindings
and the optimal variable assignment; as well as the execution log. We exposed that this is already
enough to support the expected functionalities. Designing extended BPMN models equipped with
COP definition and tasks’ semantic annotations should not be too challenging, once the previous two
steps are internalized. For the rest, these are a standard model following the well-known notation,
and their graphical representation follows the usual aspect familiar to the process designer.

From the point of view of the processes optimization, the main benefits with respect to the existing
approaches are manifold: the first improvement is the business process formulation, as it allows
the full integration of functional service selection and composition with non-functional optimization
based on user-defined QoS and objective functions arbitrarily complex in the COP. This is achieved
through our BPMN extensions and thanks to the development of a grammar for the optimization
problem formalization. Secondly, the produced output, the PSP, is directly enactable by an execution
environment, being a complete plan. This means that it is equipped with all the relevant information:
service assignments, data flow (variable bindings) and optimal variable assignments for initializing
the enactment environment. Eventually, by encoding the computed PSP in an extended BPMN format,
it allows maintaining in a single place the model and plan, together with the variables’ assignment
and the optimality value achieved. This part is completely transparent to the process designer and
the human operator in charge of supervising the process execution, except for the approval of the
proposed service plan, for the responsibility assumption.

Regarding the execution part, thanks to a small interpretation effort for the model/instance
additional fields, the main advantage is the capability of using the optimal PSP and data binding
information, together with the decoupling of the BPMN structure (conditionals and gateways) from
the service deployment, which is delayed and demanded by a specialized component.

Regarding the service execution and control, our specialized component is a complete novelty
in this domain and allows checking the status (availability and leasability) of any service in the
form of a container and to support late deployment on cloud facilities. Furthermore, these last two
components work in the background of the demonstrator, except for the very standard UI they provide
for controlling the process execution and the service deployment, so this should not represent any
barrier for the practical adoption of such an approach in real-world manufacturing industries.
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7. Conclusions

In this work, we presented our innovative pragmatic solution for an Industry 4.0 application in the
manufacturing domain. It is based on formalized domain knowledge and structured service wrapped
with semantic annotation, to provide dynamic and just-in-time process plans. After introducing the
ontology and the service annotation tool, we concentrated on presenting the optimization component,
which composes functionally-correct plans and supports the optimization of non-functional aspects,
in the form of a COP, using as measures generic QoS and supporting user-defined composed objective
functions. Then, we depicted the role of the execution tool and the service deployment facility,
indicating how they make use of the computed optimal process service plan for enacting in the cloud
the actual service grounding, producing in this way the expected results of the model.

To showcase the capabilities of the tool, we applied it to a scenario in the manufacturing domain.
Our tool combination allowed practically transposing a real-world process for aluminum forging by
injection into a fully-functioning Industry 4.0-enabled process. The main point of this demonstrator is
to showcase that it is currently possible to implement an existing structured manufacturing practice
into an optimized ICT-supported process, taking advantage of the flexibility and effectiveness of
dynamic service binding and deployment.

Regarding the extensibility of this demonstrator and the barriers for its adoption, we identified
that they are concentrated mainly in the initial phases of such an approach, namely in the domain
knowledge elicitation, its formalization into an ontology (maybe an extension of our current proposal)
and in the elementary service identification and annotation with semantics and the QoS metrics value.
Fortunately, these complex and highly valuable kick-off activities can be executed once and can be
highly supported by external competence from semantic and SOA experts, maybe in the form of
a consultant for the company’s innovation. For all the other parts of the proposed demonstrator,
despite its minimal coverage of all the possibilities sketched by the Industry 4.0 trends existing in
the literature, we perceive that the modifications will be mainly limited to the ICT infrastructure
and software adopted by the manufacturing enterprise. All the other adjustments needed in the
operative practice of the corporation can be over-compensated by the flexibility and dynamicity
naturally provided by the proposed approach.
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ODERU Optimisation at Design tim e and Run-time component
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Deutsches Forschungszentrum für Künstliche Intelligenz
(German Research Center for Artificial Intelligence)

XaaS Everything as a Service
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SOA Service-Oriented Architecture
semSOA Semantic SOA
OWL2 Web Ontology Language, Release 2
OWL-S OWL Web-Service description
WSDL Web Service Description Language
BPMN Business Process Modeling Notation
BPEL Business Process Execution Language
BPMO Business Process Modeling Ontology
sBPMN Semantic BPMN
IOPE Inputs, Outputs, Preconditions and Effects
QoS Quality-of-Service
COP Constrained Optimization Problem
IoT Internet of Things
PM Process Model
PI Process Instance
PSP Process Service Plan
CREMA Cloud-based Rapid Elastic MAnufacturing
muCOP multi-objective COP
WSML Web Service Modeling Language
SA-WSDL Semantic Annotations for the WSDL and XML Schema
USDL Unified Service Description Language
VM Virtual Machine
SLA Service Level Agreement
CDM CREMA Data Model
antlr ANother Tool for Language Recognition
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