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Abstract: In the rough-set field, the objective of attribute reduction is to regulate the variations of
measures by reducing redundant data attributes. However, most of the previous concepts of attribute
reductions were designed by one and only one measure, which indicates that the obtained reduct may
fail to meet the constraints given by other measures. In addition, the widely used heuristic algorithm
for computing a reduct requires to scan all samples in data, and then time consumption may be too
high to be accepted if the size of the data is too large. To alleviate these problems, a framework of
attribute reduction based on multiple criteria with sample selection is proposed in this paper. Firstly,
cluster centroids are derived from data, and then samples that are far away from the cluster centroids
can be selected. This step completes the process of sample selection for reducing data size. Secondly,
multiple criteria-based attribute reduction was designed, and the heuristic algorithm was used over
the selected samples for computing reduct in terms of multiple criteria. Finally, the experimental
results over 12 UCI datasets show that the reducts obtained by our framework not only satisfy the
constraints given by multiple criteria, but also provide better classification performance and less
time consumption.
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1. Introduction

Rough sets [1,2], firstly proposed by Pawlak, have been demonstrated to be useful in data
mining [3,4], artificial intelligence [5], decision analysis [6,7], and so on. As one of the important
strategies of feature selection, attribute reduction in rough-set theory plays a key role, since it provides
us with clear semantic explanations of the selected attributes. Those semantic explanations can be
reflected by constraints in terms of the considered measures, such as approximation quality and
conditional entropy. For example, Hu et al. [8] have studied uncertainty measures related to fuzzy
rough sets, and then further explored approximation quality-based attribute reduction; Dai et al. [9–11]
investigated attribute reduction with respect to several types conditional entropies; Wang et al. [12]
not only proposed a conditional discrimination index for overcoming the limitations of conditional
entropies, but also provided the corresponding approach to attribute reduction.

It must be noted that most of the previous results about attribute reduction are based on the
consideration of a single measure. For example, if attribute reduction is designed to preserve the
approximation quality, then intuitively it may not perform well in learning tasks. This is mainly because
that approximation quality is only a measure of uncertainty, which is slightly related to, for example,
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classification, clustering, or regression. From this point of view, multiple criteria determined by
different measures should be emphasized in attribute reduction.

Generally speaking, if the definition of attribute reduction is given, then the immediate problem
is to find the reduct. In the field of rough sets, widely accepted strategies for finding reducts include
the exhaustive and heuristic algorithms. Although the former can be used to derive all reducts, it is
not suitable for practical applications because of huge computational complexity. Different from the
exhaustive algorithm, the heuristic algorithm can be realized by a greedy searching strategy, which has
been favored by most researchers thanks to its speed advantage.

Nevertheless, it is worth noting that the process of the heuristic algorithm is still based on scanning
all samples in the data. For example, to generate the binary relation that characterizes the similarity
between any two samples, all data samples must be taken into account. However, time consumption
may fail to satisfy practical applications with the sharply increasing of the size of dataset. In order
to tackle this problem, various attribute-reduction algorithms have been proposed that intended
to utilize sample selection to reduce the dataset and simultaneously maintain the performance of
the classification accuracy. Angiulli et al. [13] proposed the Fast Condensed Nearest Neighbor,
which attempt to remove surplus samples and reduce the dataset. Li et al. [14] presented a critical
pattern selection algorithm by considering local geometrical and statistical information. This algorithm
selected both border and edge patterns from the dataset. Nicolia et al. [15] proposed a sample selection
algorithm dealing with the class-imbalance problem. Lin et al. [16] proposed an approach for detecting
the representative samples from large datasets. Zhai et al. [17,18] have analyzed the algorithms
above and proposed the sample selection approaches that aim to achieve the same performance
of a machine-learning algorithm as the whole dataset is used. Zhang et al. [19] proposed a fuzzy
rough set-based information entropy for sample selection in a mixed dataset. Xu et al. [20] have
applied the sample selection technique to multilabel feature selection for reducing time consumption.
Following these results, sample selection may be feasible and effective.

From the above discussions, the motivation of this paper was to design a new framework
of attribute reduction that considers both multiple criteria in the definition of attribute reduction
and sample selection in the process of finding reducts. Firstly, sample selection was executed,
which aims to decrease the number of samples. Immediately, lower time consumption may be
achieved, mainly because the size of the data has been reduced. Secondly, the multicriteria strategy
that considers at least two measures was designed. Finally, the voting mechanism was used to select
the candidate attribute in each iteration, and then the multiple criteria reduct with sample selection
was obtained. Our approach can not only guarantee that the derived reduct satisfies the constrains in
terms of different measures, but also make the ensemble selection [5,21] of attributes possible.

The rest of this paper is organized as follows. First, we review some basic concepts in Section 2.1.
In Section 3, following the limitations of a single measure, a multiple criteria-based attribute reduction
strategy is studied. Then, sample selection and the multiple-criteria strategy are combined to find the
corresponding reduct. In Section 4, the effectiveness of our approach over 12 UCI datasets is analyzed.
We then conclude with some remarks and perspectives for future work in Section 5.

2. Preliminaries

2.1. Neighborhood Relation

Without loss of generality, a decision system can be described as DS =< U, AT ∪ {d} >, in which
universe U is the set of samples, AT is the set of condition attributes, and d is a decision attribute.
Furthermore, ∀x ∈ U, d(x) indicates the label or decision value of sample x, and a(x) denotes the
value of x over condition attribute a where a ∈ AT.
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Given decision system DS, assume that all decision values in DS are discrete, and an
indiscernibility relation [22–24] INDd can be defined as:

INDd = {(x, y) ∈ U ×U : d(x) = d(y)}. (1)

By INDd, we can obtain a partition over the universe, such that

U/INDd = {X1, X2, . . . , Xq}, (2)

i.e., universe U is partitioned into q different decision classes. Therefore, ∀Xi ∈ U/INDd, Xi is referred
to as the i-th decision class in rough-set theory. The decision class that contains the sample x is denoted
by [x]d.

The rough-set objective is to approximate the decision classes by the information given by
condition attributes. Such information can actually be represented by the form of information
granules [25,26] from the viewpoint of granular computing. For instance, the equivalence class
used in traditional rough sets is a typical example of an information granule.

Nevertheless, it should be emphasized that the equivalence classes are only suitable for dealing
with categorical data, while numerical data [27–29] have been seen everywhere in real-world
applications. To fill such a gap, many different types of information granules have been proposed.
As an important information granule used in generalized rough sets, neighborhood has been widely
accepted by researchers. This is mainly because: (1) the construction of neighborhood is based on
the distance that can characterize the similarity between samples with numerical data; (2) different
neighborhood scales can be easily obtained by using different radii, and then a multigranularity
structure is naturally formed. To know what neighborhood is, the concept of neighborhood relation
should be given as follows:

Given a decision system DS, ∀A ⊆ AT, suppose that4A : U ×U ∈ R+ ∪ {0} is the Euclidean
distance function in which R+ is the set of positive real numbers, then 4A(x, y) represents the
Euclidean distance between samples x and y by using the information over condition attributes in A.
Immediately, the neighborhood relation is:

NA = {(x, y) ∈ U ×U : 4A(x, y) ≤ δ}, (3)

in which δ is a given radius such that δ ≥ 0.
Based on neighborhood relation, it is not difficult to obtain the neighborhood of x in terms of A,

such that:
δA(x) = {y ∈ U : 4A(x, y) ≤ δ}. (4)

2.2. Neighborhood Rough Set and Neighborhood Classifier

Given a sample x, to avoid that only the sample x is in the neighborhood of x, which may bring
us the difficulty for classification, Hu et al. [30] have modified the radius such that

δ
′
= min

y∈U−{x}
4A(x, y) + δ ·

(
max

y∈U−{x}
4A(x, y)− min

y∈U−{x}
4A(x, y)

)
. (5)

Following Equation (5), the modified neighborhood of sample x in terms of A is

δ
′
A(x) = {y ∈ U : 4A(x, y) ≤ δ

′}. (6)
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Definition 1. Given decision system DS, ∀A ⊆ AT and ∀Xi ∈ U/INDd, the neighborhood lower and upper
approximations of Xi in terms of A are defined as

Xi A = {x ∈ U : δ
′
A(x) ⊆ Xi}; (7)

Xi A = {x ∈ U : δ
′
A(x) ∩ Xi 6= ∅}. (8)

Pair
[
Xi A, Xi A

]
is referred to as a neighborhood rough set of Xi in terms of A.

The concept of neighborhood can not only be used to construct a rough set, but can also be applied
to design classifier [31]. Let us consider one of the simplest classifiers, i.e., the K Nearest Neighbors
algorithm (KNN), which is effective in many cases. It is a lazy learning method: for a testing sample
to be classified, its K nearest neighbors form a neighborhood of such testing sample, and the voting
mechanism is used to determine the label of the testing sample based on the real labels of all samples
in neighborhood. For more details about KNN algorithm, see references [32–34].

The main thinking of the neighborhood classifier [8] is similar to that of KNN; the difference lies
in the fact that the number of neighbors used in a neighborhood classifier is determined by the radius,
while the number of neighbors used in KNN is specified by experts. Therefore, different samples may
have different numbers of neighbors if a neighborhood classifier is used. The detailed process of the
neighborhood classifier [8] is shown in Algorithm 1, as follows.

Algorithm 1 Neighborhood Classifier (NEC)
Inputs: Decision system DS =< U, AT ∪ {d} >, a testing sample y /∈ U, radius δ;
Outputs: Predicted label of y : PreAT(y).
1. ∀x ∈ U, compute4AT(y, x);
2. Compute δ

′
by Equation (5), and then obtain δ

′
AT(y) by Equation (6);

// Note that in NEC, y /∈ δ
′
AT(y);

3. ∀Xi ∈ U/INDd, compute the probability Pr(Xi|δ
′
AT(y)) =

|δ′AT(y) ∩ Xi|
|δ′AT(y)|

;

4. Xk = arg max{Pr(Xi|δ
′
AT(y)) : ∀Xi ∈ U/INDd};

5. Find the corresponding label in terms of Xk and assign it to PreAT(y);
6. Return PreAT(y).

2.3. Measures

Approximation quality is frequently used to evaluate the certainty of belongingness in rough-set
theory. In a neighborhood rough set, the formal definition is shown as follows:

Definition 2. Given decision system DS, ∀A ⊆ AT, the approximation quality of d related to A is defined as

γ(A, d) =
| ⋃q

i=1 Xi A |
| U | . (9)

This reflects the percentage of the samples that belong to one of the decision classes determinately
by the semantic explanation of lower approximation. Obviously, 0 ≤ γ(A, d) ≤ 1 holds.

Remark 1. Note that ∀A ⊆ AT, γ(A, d) ≤ γ(AT, d) does not always hold; the reason is that, if some
condition attributes are eliminated from AT, then the value of δ

′
obtained by Equation (5) changes.

Example 1. As the decision system shown in Table 1, U = {x1, x2 · · · , x10} is the set of samples,
AT = {a1, a2, · · · , a7} is the set of condition attributes, and d is a decision attribute.
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Suppose that δ = 0.10, then by Equation (5), the values of δ
′

for ten samples are 0.8553, 0.7208, 0.8463,
0.8583, 0.8651, 0.8183, 0.7941, 0.6669, 0.9005, and 0.7025, respectively, if AT is used. Consequently, it is
obtained that γ(AT, d) = 0.1000.

Suppose that condition attribute a7 is eliminated from the above decision system and then
A = {a1, a2, · · · , a6}, by Equation (5), the values of δ

′
for ten samples are 0.8212, 0.7059, 0.7633, 0.8349,

0.6992, 0.6860, 0.6738, 0.6289, 0.8439, and 0.6767, respectively. Immediately, γ(A, d) = 0.2000 is obtained.
The above results tell us that γ(A, d) ≤ γ(AT, d) does not always hold if A ⊆ AT.

Table 1. Decision-system example.

a1 a2 a3 a4 a5 a6 a7 d

x1 0.8147 0.1576 0.6557 0.7060 0.4387 0.2760 0.7513 1
x2 0.9058 0.9706 0.0357 0.0318 0.3816 0.6797 0.2551 1
x3 0.1270 0.9572 0.8491 0.2769 0.7655 0.6551 0.5060 2
x4 0.9134 0.4854 0.9340 0.0462 0.7952 0.1626 0.6991 2
x5 0.6324 0.8003 0.6787 0.0971 0.1869 0.1190 0.8909 3
x6 0.0975 0.1419 0.7577 0.8235 0.4898 0.4984 0.9593 3
x7 0.2785 0.4218 0.7431 0.6948 0.4456 0.9597 0.5472 1
x8 0.5469 0.9157 0.3922 0.3171 0.6463 0.3404 0.1386 2
x9 0.9575 0.7922 0.6555 0.9502 0.7094 0.5853 0.1493 3
x10 0.9649 0.9595 0.1712 0.0344 0.7547 0.2238 0.2575 2

Conditional entropy is another widely accepted measure that is an effective tool for characterizing
distinguishable ability in a decision system. The lower the value of conditional entropy is, the higher
the ability of that condition attribute to distinguish samples that we will have. Such discrimination
can be considered as a type of uncertainty. Presently, many definitions of conditional entropies have
been proposed in terms of different requirements [9–11,35–37]. A typical representation of conditional
entropy is shown in Definition 3.

Definition 3. Reference[30] Given decision system DS, ∀A ⊆ AT, the conditional entropy of d related to A is
defined as:

ENT(A, d) = − 1
|U| ∑

x∈U
log
|δ′A(x) ∩ [x]d|
|δ′A(x)|

. (10)

∀A ⊆ AT, ENT(A, d) ≥ ENT(AT, d) does not always hold. This is because not only does the
monotonic property of Equation (10) not hold [19], but also the value of δ

′
obtained from Equation (5)

is changed if some condition attributes are eliminated from AT.

3. Multiple-Criteria Reduct with Sample Selection

3.1. Attribute Reduction

Attribute reduction is one of the key topics in rough-set theory [38]. Generally speaking,
the purpose of attribute reduction is to delete the redundant attributes by some given constraints [39].
These constraints can be constructed by well-known measures such as approximation quality
and conditional entropy. Many different definitions of attribute reduction have been proposed
with different measures or requirements. Dai et al [9] proposed extended conditional entropy in
interval-valued decision systems and designed corresponding definitions and algorithms. Yao et al. [7]
addressed different measures, such as confidence, coverage, generality, cost, and decision monotocity
based on the decision-theoretic rough-set models. Jia et al. [40] compared most popular definitions
and then proposed a generalized attribute reduction that not only considers the data but also users’
preferences. For more details about definitions of attribute reductions, see references [9,41–43].
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Definition 4. Given decision system DS, ∀A ⊆ AT,

1. A is the approximation quality reduct if and only if γ(A, d) ≥ γ(AT, d) and ∀A
′ ⊂ A, γ(A

′
, d) <

γ(A, d);
2. A is the conditional entropy reduct if and only if ENT(A, d) ≤ ENT(AT, d) and ∀A

′ ⊂ A,
ENT(A

′
, d) > ENT(A, d).

Different from Pawlak’s [1,2] traditional definition of attribute reduction for preserving
approximation quality, the constraint used in Definition 4 indicates that the approximation quality will
not be decreased at least. The reason is shown in Remark 1: the approximation quality is not strictly
monotonic in terms of variations of condition attributes. The case of conditional entropy is similar to
that of approximation quality.

If γ(A ∪ {a}, d) ≤ γ(A, d), then a is redundant; in other words, attribute a has no contribution
to the increase of approximation quality. If γ(A ∪ {a}, d) > γ(A, d), then a can be considered as a
member in the reduct set. Similarly, it is trivial to present the semantic explanation of redundant
attributes in terms of conditional entropy reduct. Therefore, the significance of attributes in terms of
two different reducts shown in Definition 4 can be defined as follows:

Sigγ(a, A, d) = γ(A ∪ {a}, d)− γ(A, d); (11)

SigENT(a, A, d) = ENT(A, d)− ENT(A ∪ {a}, d). (12)

In a decision system, the above two significances both satisfy that the higher the value is, the more
important the condition attribute a will be. Following the given significances, the algorithms of finding
the reduct must be immediately designed. Up to now, many algorithms have been proposed to obtain
reducts. Considering time efficiency, the forward greedy search strategy has become a common way
to do this. This kind of algorithm starts from an empty set and gradually adds the attribute with the
maximum significance into the candidate attribute subset in each iteration [44] until the constraint is
satisfied. This kind of approach is frequently referred to as the heuristic algorithm.

Take the approximation quality reduct as an example; the reduct aims to derive a subset of
condition attributes that do not decrease the value of approximation quality. The detailed process of
heuristic algorithm for finding such reduct is shown in Algorithm 2.

Algorithm 2 Approximation Quality Reduct (AQR)
Inputs: Decision system DS =< U, AT ∪ {d} >, radius δ.
Outputs: An approximation quality reduct A.
1. Compute γ(AT, d);
2. A← ∅;
3. Do

(1) ∀ai ∈ AT − A, compute Sigγ(ai, A, d), select aj such that
Sigγ(aj, A, d) = max{Sigγ(ai, A, d) : ∀ai ∈ AT − A};

(2) A = A ∪ {aj};
(3) Compute γ(A, d);
Until γ(A, d) ≥ γ(AT, d);

4. Return A.

Similarly, if it is required to compute Conditional Entropy Reduct (CER), as the conditional
entropy is a measure that characterizes the distinguishing information of a subset of attributes, and the
lower of the value of the conditional entropy is, the greater the distinguishment ability of the attribute
set is. Then, the termination in Step 3 of Algorithm 2 is replaced by “ENT(A, d) ≤ ENT(AT, d)”,
and the significance of attribute in Step 3(1) is replaced by Equation (12), i.e., SigENT(ai, A, d); then,
we select the attribute that has maximum significance.
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The time complexity of a computing neighborhood relation is O(|U|2), in which |U| is the number
of samples in a dataset. In the worst case, there are |AT| attributes should be added into the reduct,
i.e., no attribute is redundant; then, Step 3 in Algorithm 2 is executed |AT| times. In the i-th iteration,
Step 3 is executed |AT| − i + 1 times. Finally, the time complexity of AQR is O(|U|2× |AT|2). Similarly,
the time complexity of CER is also O(|U|2 × |AT|2).

3.2. Limitations of Single Measure

The above algorithm shows us a complete process of computing the reduct that is determined by a
single measure, i.e., either approximation quality or conditional entropy. However, the derived reduct
may fail to meet the constraints with multiple criteria. We used the following example to explain it:

Example 2. In the decision system shown in Table 1, suppose that δ = 0.15, then γ(AT, d) = 0.1000 and
ENT(AT, d) = 0.6879; both of them are obtained by raw attributes.

Furthermore, by Definition 4 and the heuristic process, the obtained approximation-quality reduct is
A1 = {a1, a2, a3}, and the obtained conditional-entropy reduct is A2 = {a1, a2, a3, a4, a5}.

If the approximation-quality reduct is selected, then γ(A1, d) = 0.1000, and ENT(A1, d) = 0.7860.
It is observed that the value of approximation quality is maintained, while the value of conditional entropy is
increased. In other words, though the constraint based on approximation quality is satisfied by A1, such subset
of attributes does not meet the constraint in terms of conditional entropy.

If the conditional-entropy reduct is selected, then γ(A2, d) = 0.0000, and ENT(A2, d) = 0.6762. It is
observed that the value of conditional entropy has been significantly decreased, while the value of approximation
quality is also decreased. In other words, the constraint defined by approximation quality cannot be guaranteed if
the conditional-entropy reduct is used.

The above example tells us that a reduct in terms of a single measure does not meet the
constraints in terms of multiple criteria. Therefore, to alleviate such a problem, we propose a
multiple-criteria attribute-reduction strategy that considers both the evaluations of approximation
quality and conditional entropy.

3.3. Multiple-Criteria Reduct

Since the single-criterion reduct cannot meet the constraints, then the multiple-criteria
framework [45] can be a solution. The definition of a multiple-criteria reduct presented as follows:

Definition 5. Given decision system DS, if A ⊆ AT, A is the multiple-criteria reduct if and only if:

1. γ(A, d) ≥ γ(AT, d) and ENT(A, d) ≤ ENT(AT, d);
2. ∀A

′ ⊂ A, γ(A
′
, d) < γ(A, d) or ENT(A

′
, d) > ENT(A, d).

Different from the approximation-quality and conditional-entropy reducts shown in Definition 4,
the multiple-criteria reduct shown in Definition 5 is defined by considering constraints given by both
approximation quality and conditional entropy.

Algorithm 3 presents a heuristic process to compute our multiple-criteria reduct. It should be
emphasized that, to derive attribute significance, Equations (11) and (12) should be used.

In Step 3, m and n represent the attribute locations that have maximal significances in terms of
approximation quality and conditional entropy, respectively. In Step 3(2), if m and n are the same,
then there is no conflict for voting. Otherwise, two attributes have conflict, which means that the
max values of significances computed by the measures of approximation quality and conditional
entropy are derived from different attributes. Then, a mechanism for selection is required. In this
case, we select one attribute without considering the measures, mainly because approximation quality
and conditional entropy take the same weight in our algorithm. To make the algorithm more stable,
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the attribute ranks lower in the order of the raw attributes that are selected instead of a random one.
Such thinking is similar to what has been addressed in reference [21].

Similar to AQR, the time complexity of MCR is O(|U|2× |AT|2), where |U| represents the number
of samples in decision system (DS), and |AT| represents the number of condition attributes. However,
MCR may spend more time on computing reduct, because MCR should compute two different types
of significances in each iteration.

Algorithm 3 Multiple-Criteria Reduct (MCR)
Inputs: Decision system DS =< U, AT ∪ {d} >, radius δ.
Outputs: A multiple criteria reduct A.
1. Compute γ(AT, d) and ENT(AT, d);
2. A← ∅;
3. Do

(1) ∀ai ∈ AT − A, compute Sigγ(ai, A, d) and SigENT(ai, A, d), select am and an such that
Sigγ(am, A, d) = max{Sigγ(ai, A, d) : ∀ai ∈ AT − A},
SigENT(an, A, d) = max{SigENT(ai, A, d) : ∀ai ∈ AT − A};

(2) Select aj, where j = min(m, n);
(3) A = A ∪ {aj};
(4) Compute γ(A, d) and ENT(A, d);
Until γ(A, d) ≥ γ(AT, d) and ENT(A, d) ≤ ENT(AT, d);

4. Return A.

3.4. Multiple-Criteria Reduct with Sample Selection

Obviously, the process of the heuristic algorithm for computing the reduct is still based on
scanning all samples in the data. To further improve the time efficiency of the algorithms shown in
Sections 3.1 and 3.3, reducing the size of samples may be a feasible solution.

In the field of machine learning and feature selection [46,47], the technique of sample selection
has been widely used. For instance, following many previous results [20,48–50], it has been pointed
out that sample selection is a useful method. Wilson et al. [48] provided a survey of previous
algorithms, and proposed six additional reduction algorithms that can be used to remove samples
from the concept description. Brighton et al. [49] proposed that internal samples positioned away from
class boundaries have little or no effect on classification accuracy; on the contrary, samples that
lie close to class boundaries hold more information to accurately describe the decision surface.
Nikolaidis et al. [50] proposed the Class Boundary Preserving Algorithm (CBP). CBP divided all
data into two sets that are referred to as the internal-sample set and boundary-sample set, and focused
more on the boundary samples. Xu et al. [20] further expanded the sample selection of boundary
samples and introduced it into multilabel datasets. From the above analyses, we can find that the
samples in the boundary region are more important than other samples. We propose an algorithm to
compute a multiple-criteria reduct by using boundary samples instead of whole samples in the data.

First of all, we used a K-means clustering algorithm to choose K cluster centroids [51–54].
This process is executed M times because the result of K-means clustering is not stable. Secondly,
we compute average cluster centroids by those results. Finally, we select those samples that are far
away from the average cluster centroids, and construct a new decision system. We select those samples
that are far away from the average cluster centroids, which is mainly because: (1) these samples are
more difficult to be correctly classified, and samples nearer to the average cluster centroids tend to be
closer to each other, making it easy for them to be classified correctly; (2) these samples sometimes
fail to be assigned to the lower approximation set, while the samples closer to the average cluster
centroids tend to be in the lower approximation set. Therefore, in order to improve classification
performance and reduce the time consumption with the neighborhood rough-set model, we apply
boundary samples instead of all samples. To judge whether a sample is far away from the cluster
centroid, we used Definition 6, as follows:
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Definition 6. Given a cluster Cj, C∗j is the cluster centroid of Cj, dist(x, C∗j ) denotes the distance between
x ∈ Cj and C∗j , and the average distance between all samples in Cj and C∗j is

dist(C∗j ) =
1
|Cj| ∑

x∈Cj

dist(x, C∗j ). (13)

Remark 2. ∀x ∈ Cj, if dist(x, C∗j ) ≥ dist(C∗j ), then x is referred to as a sample which is far away from the
cluster centroid C∗j , such sample is selected for constructing new decision system.

With all boundary samples selected, new decision system DS
′

can be constructed. Obviously,
the size of the data in DS

′
is smaller than that in decision system DS. From this point of view, the time

consumption of computing the reduct may be reduced. Algorithm 4 shows us the heuristic process to
compute a multiple-criteria reduct by using sample selection.

Algorithm 4 Multiple-Criteria Reduct with Sample Selection (MCRSS)
Inputs: Decision system DS =< U, AT ∪ {d} >, radius δ, M.
Outputs: A multiple criteria reduct A.
1. U′ = ∅;

// Initialize the universe of new decision system;
2. For r = 1 to M

Execute K-means clustering algorithm over DS, obtain clusters Cr = {Cr
1, Cr

2, · · · , Cr
K};

// In K-means clustering, K is the number of decision classes;
End For

3. For j = 1 to K
Obtain the j-th average cluster centroid

C∗j =
∑M

r=1 Cr
j

M
;

End for
4. For j = 1 to K

∀x ∈ Cj, if dist(x, C∗j ) ≥ dist(C∗j ) , then U′ = U′ ∪ {x};
End For
// The new decision system DS

′
=< U′, AT ∪ {d} > is constructed;

5. Compute γ(AT, d) and ENT(AT, d) over DS
′
;

6. A← ∅;
7. Do

(1) ∀ai ∈ AT − A, compute Sigγ(ai, A, d) and SigENT(ai, A, d), select am and an such that
Sigγ(am, A, d) = max{Sigγ(ai, A, d) : ∀ai ∈ AT − A},
SigENT(an, A, d) = max{SigENT(ai, A, d) : ∀ai ∈ AT − A};

(2) Select aj, where j = min(m, n);
(3) A = A ∪ {aj};
(4) Compute γ(A, d) and ENT(A, d);
Until γ(A, d) ≥ γ(AT, d) and ENT(A, d) ≤ ENT(AT, d);

8. Return A.

The first four steps show us the process of sample selection, i.e., the process of constructing a
new decision system. In Step 1, the universe of the new decision system is initialized. In the following
two steps, a K-means clustering algorithm is executed M times, and the average cluster centroids are
obtained. In Step 4, samples that are far away from the average cluster centroids are immediately
selected, and the new decision system is constructed. The last three steps are used to compute a
multiple-criteria reduct over the new decision system.
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The time complexity of MCRSS is O(|U′|2 × |AT|2 + K × |U| × M), where |U′| represents the
number of samples in the new decision system (DS′); both K and M are constants. It must be noted
that |U′| < |U|.

The time complexity of MCR is O(|U|2 × |AT|2), so we compare the time complexity between
MCR and MCRSS. Generally speaking, K×M ≤ (|U| − |U′|2/|U|)× |AT|2 holds for most of the data
because K and M are constants that are much less than the number of samples.

Therefore, it is a trivial to show that O(|U|2 × |AT|2) ≥ O(|U′|2 × |AT|2 + K× |U| ×M) holds,
in other words, the time consumption of MCRSS is less than that of MCR.

The sample-selection strategy shown in Algorithm 4 can also be used in computing
approximation-quality and conditional-entropy reducts. It is immediately trivial to design two
algorithms: Approximation-Quality Reduct with Sample Selection (AQRSS) and Conditional-Entropy
Reduct with Sample Selection (CERSS). The time complexities of AQRSS and CERSS are also
O(|U′|2 × |AT|2 + K× |U| ×M).

4. Experimental Analysis

To validate the effectiveness of MCRSS proposed in this paper, 12 UCI datasets were collected to
conduct the experiments. The basic descriptions of the datasets are shown in Table 2. All experiments
were carried out on a personal computer with Windows 7, dual-core 1.50 GHz CPU, and 8 GB memory.
The programming language was MATLAB R2016a.

Table 2. Descriptions of datasets.

ID Data Sets Samples Attributes Decision Classes

1 Breast Cancer Wisconsin (Diagnostic) 569 30 2
2 Breast Tissue 106 9 6
3 Cardiotocography 2126 21 10
4 Dermatology 365 34 6
5 Forest-Type Mapping 523 27 4
6 Hayes Roth 132 4 3
7 Ionosphere 351 34 2
8 Molecular Biology 106 57 2
9 Statlog (Vehicle Silhouettes) 846 18 4
10 Vertebral Column 310 6 2
11 Wine 178 13 3
12 Yeast 1484 8 10

In the following, five-folder Cross-Validation (5-CV) was adopted. In other words, we divided
each set of data into five parts of the same size, which are denoted by U1 ∪ · · · ∪U5: for each round of
computation, 80% of the samples in the data were regarded as the training samples for computing
reducts, and the rest were considered as the test samples for computing measures by the attributes
in reducts. Furthermore, in this experiment, M = 5, i.e., the K-means clustering, was executed five
times to generate average cluster centroids. Ten different values of δ, such that 0.03, 0.06, · · · , 0.30,
were also selected.

4.1. Comparisons of Approximation Qualities

Figure 1 shows us the detailed results of approximation qualities with respect to three
different algorithms for computing reducts, AQRSS, MCRSS, and CERSS. AQRSS and CERSS are
an approximation-quality reduct and a conditional-entropy reduct with sample selection technique,
while MCRSS is a multiple-criteria reduct with sample selection. AQRSS, MCRSS, and CERSS have
the same meaning in other comparisons in Section 4.
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Figure 1. Comparisons of approximation qualities.

In Figure 1, we can observe the following:

1. If the value of δ increases, then the decreasing trends have been obtained for approximation
qualities with respect to three different reducts, though those decreasing trends are not
necessarily monotonic.

2. By comparing it with AQRSS, MCRSS can preserve or slightly increase approximation qualities.
This is mainly because the constraint designed by the measure of approximation quality is
also considered in MCRSS. Take, for instance, the “Ionosphere” dataset; if δ = 0.12, then the
approximation qualities derived by MCRSS and AQRSS are 0.6049 and 0.4644, respectively.

3. An interesting observation is that the approximation qualities obtained by CERSS may be greater
than those obtained by AQRSS in some datasets. Take, for instance, the “Dermatology” dataset;
if δ = 0.06, then approximation qualities derived by MCRSS, AQRSS, and CERSS are 0.9333,
0.8606, and 0.9151, respectively. Such results tell us that AQRSS is not always good in deriving
higher approximation qualities.

4.2. Comparisons of Conditional Entropies

Figure 2 shows us the detailed results of conditional entropies with respect to three different
algorithms for computing reducts.
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Figure 2. Comparisons of conditional entropies.

In Figure 2, we can observe the following:

1. If the value of δ increases, then the increasing trends have been obtained for conditional entropies
with respect to three different reducts, though those increasing trends are not strictly monotonic.

2. In most cases, there are slight differences between conditional entropies generated by MCRSS and
CERSS, which can be attributed to the constraint designed by the measure of conditional entropy
that has also been considered in MCRSS. Take, for instance, the “Breast Tissue" dataset; if δ = 0.15,
then the conditional entropies derived by MCRSS and CERSS are 0.6127 and 0.6599, respectively.

3. In most cases, the conditional entropies obtained by AQRSS are greater than those derived by both
CERSS and MCRSS. This observation demonstrates that, if we only pay attention to the single
measure of approximation quality, the obtained reduct may not be effective in terms of conditional
entropy. Take, for instance, the “Forest-Type Mapping” dataset; if δ = 0.21, then the conditional
entropies derived by MCRSS, CERSS, and AQRSS are 0.4744, 0.5507, and 0.8951, respectively.

4.3. Comparisons of Classification Accuracies

In the following, the neighborhood classifier was used to measure the classification performances
of the reducts derived from three different algorithms. The detailed results are shown in Figure 3.



Information 2018, 9, 282 13 of 20

0.06 0.12 0.18 0.24 0.30

δ

0.82

0.83

0.84

0.85

0.86

0.87
C

la
ss

ifi
ca

tio
n
 a

cc
u
ra

cy

Breast Cancer Wisconsin (Diagnostic)

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.55

0.6

0.65

0.7

0.75

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Breast Tissue 

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30
δ

0.55

0.6

0.65

0.7

0.75

0.8

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Cardiotocography

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.9

0.92

0.94

0.96

0.98

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Dermatology

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

 Forest type mapping

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.4

0.5

0.6

0.7

0.8

0.9

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Hayes Roth

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.72

0.74

0.76

0.78

0.8

0.82

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Ionosphere

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.65

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Molecular Biology

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.4

0.45

0.5

0.55

0.6

0.65

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Statlog (Vehicle Silhouettes)

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.65

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

 Vertebral Column

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.88

0.9

0.92

0.94

0.96

0.98

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Wine

AQRSS

CERSS

MCRSS

0.06 0.12 0.18 0.24 0.30

δ

0.35

0.4

0.45

0.5

0.55

0.6

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

Yeast

AQRSS

CERSS

MCRSS

Figure 3. Comparisons of classification accuracies.

In Figure 3, we can observe that the classification accuracies obtained by MCRSS are greater than
those obtained by AQRSS and CERSS. Take the “Statlog (Vehicle Silhouettes)” dataset as an example;
if δ = 0.06, then the classification accuracies derived by MCRSS, AQRSS, and CERSS are 0.6205, 0.4352,
and 0.6047, respectively. Such results tell us that the MCRSS algorithm provides better classification
performance with the use of a neighborhood classifier.

4.4. Comparisons of Reduct Lengths

Figure 4 shows us the reduct lengths derived from three different algorithms.
InFigure 4, we can observe that the reduct lengths obtained by considering multiple criteria are

greater than the lengths of reducts obtained by a single measure (approximation quality or conditional
entropy). This is mainly because the multiple-criteria reduct in this experiment considers two measures,
and then the constraint is stricter than the constraint defined by only one measure.
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Figure 4. Comparisons of reduct lengths.

4.5. Comparisons of Time Consumptions

In the following, we compare the time consumption of several algorithms, AQRSS, CERSS, MCRSS,
and MCR, in generating reducts. AQRSS and CERSS are used to find the approximation-quality reduct
and conditional-entropy reduct with sample selection, respectively; MCRSS and MCR are used to
find multiple-criteria reducts with and without sample selection, respectively. The detailed results are
shown in Figure 5.

The following conclusions can be obtained from Figure 5.

1. The time consumption of MCRSS is higher than that of AQRSS and CERSS, though the time
complexities of these three algorithms are the same. The reasons include two aspects: (1) MCRSS
computes two attribute significances instead of one in each iteration; (2) the length of the reduct
derived by MCRSS is frequently greater than those derived by AQRSS and CERSS, i.e., more
iterations should be used.

2. By comparing it with the time consumption of MCR, MCRSS time consumption was significantly
reduced. From this point of view, sample selection is effective in the process of finding a reduct
from the viewpoint of saving time.
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Figure 5. Comparisons of time consumption.

4.6. Comparisons of Core Attributes

In the following, we compare the three algorithms, AQRSS, CERSS and MCRSS, in the view of
core attributes. For readers’ convenience, we only display the core attributes with one fixed radius;
given δ = 0.15, we use boundary samples to compute the core attributes [55,56], and the thinking of
the process is similar to the algorithm proposed by Wang et al. [56]. We removed only one attribute
from the raw attributes (AT) to make the subset that is made up of the remaining attributes that cannot
satisfy the constraints in definition. Take the measure of “approximation quality” (AQRSS) as an
example; AT = {a1, a2 · · · an}: (1) remove a1 in the first time, then the remaining attributes construct
the subset A = {a2, a3 · · · an}; (2) compute γ(AT, d) and γ(A, d) in the new decision system DS′; (3) if
γ(A, d) < γ(AT, d), then a1 can be a member of the core set. a2 is removed in the second time and an

is removed in the n-th time. Similar algorithms are used to compute core sets for conditional entropy
(CERSS) and multicriterion (MCRSS).

For readers’ convenience, to compare the results of these three algorithms (AQRSS,
CERSS, MCRSS), the order of attributes was applied. When several consecutive attributes are core
attributes, the order are listed with the symbol “-”.Take the dataset of “Hayes Roth”(ID: 6) as an
example; since core attributes in terms of three algorithms are all {a1, a2, a3, a4}, which present “1-4”
in Table 3. With a careful investigation of Table 3, the core of MCRSS is the union set of the core of
AQRSS and CERSS in general. Take the data set of “Forest Type Mapping”(ID: 5) as an example,
the core attributes of AQRSS and CERSS are {a1, a6, a7, a16, a22} and {a1, a2, a4, a6, a15, a16, a22, a23, a25},
respectively. And the core attributes are {a1, a2, a4, a6, a7, a15, a16, a22, a23, a25}, which is the union set
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of the core attributes of AQRSS and CERSS. In the “Dermatology” (ID: 4) dataset, this union-set
relation is not correct since the core attributes of the three algorithms are {a5, a15}, {a5, a15, a21} and
{a5, a9, a15, a21, a22}, respectively. More information is shown as follows.

Table 3. Core attributes.

ID Datasets AQRSS CERSS MCRSS

1 Breast Cancer Wisconsin (Diagnostic) 2,8,10,28 2,8,20,28,29 2,8,20,28,29
2 Breast Tissue 2-3 2-3,9 2-3,9
3 Cardiotocography 1-2,4-5,8,17,21 2,4-5,8,10-12,18 1-2,4-5,8,10-12,18
4 Dermatology 5,15 5,15,21 5,9,15,21,22
5 Forest-Type Mapping 1,6-7,16,22 1-2,4,6,15-16,22-23,25 1-2,4,6-7,15-16,22-23,25
6 Hayes Roth 1-4 1-4 1-4
7 Ionosphere 1,3,12-14,26,30,32-34 1,3,11,15,17,19,21,32 1,3,11,15,17-22,30,32-34
8 Molecular Biology 13,38-39,48-49,56 13,38-40,48-49 13,38-40,48-49,56
9 Statlog (Vehicle Silhouettes) 4,10,14,16-18 1,4-6,8,10,14,16-18 1,4-6,8,10,14,16-18
10 Vertebral Column 2-3,5 2-3,5 2-3,5
11 Wine 2,5,7,10-13 1-2,4-5,7-8,10-13 1-2,4-5,7-8,10-13
12 Yeast 1-4,6-8 1-7 1-8

Given δ = 0.15, the results in Table 4 were obtained from all the data without using
sample selection, and 5-CV was also applied to compute the mean values of these three measures
(approximation quality, conditional entropy, and classification accuracy).

Table 4. Results obtained by using core attributes.

Approximation Quality Conditional Entropy Classification Accuracy

ID AQRSS CERSS MCRSS AQRSS CERSS MCRSS AQRSS CERSS MCRSS

1 0.6173 0.6303 0.6260 0.1660 0.1661 0.1650 0.9332 0.9560 0.9578
2 0.0800 0.3200 0.3200 0.8963 0.5038 0.5038 0.1229 0.4628 0.4628
3 0.2540 0.2408 0.2352 0.5810 0.5718 0.5784 0.8264 0.8810 0.9045
4 0.9945 0.9918 0.9782 0.1450 0.0896 0.0758 0.5219 0.7760 0.8387
5 0.2783 0.3130 0.3130 0.4716 0.4095 0.4249 0.7342 0.8547 0.8910
6 0.4505 0.4505 0.4505 0.3913 0.3913 0.3913 0.8033 0.8033 0.8033
7 0.6441 0.5646 0.6667 0.4374 0.3442 0.4384 0.7749 0.8319 0.8319
8 0.4030 0.3697 0.4030 0.3919 0.4473 0.4285 0.6710 0.7182 0.7182
9 0.1298 0.1403 0.1403 0.7605 0.7013 0.7013 0.2211 0.5757 0.5757

10 0.4882 0.4882 0.4882 0.2799 0.2799 0.2799 0.8719 0.8719 0.8719
11 0.8142 0.8408 0.8408 0.1085 0.0966 0.0966 0.9665 0.9775 0.9775
12 0.0532 0.0443 0.0443 0.9216 0.9203 0.9203 0.5266 0.5213 0.5213

average 0.4340 0.4495 0.4546 0.4625 0.4101 0.4170 0.6645 0.7713 0.7756

After a careful investigation of Table 4, it can be seen that MCRSS improves approximation quality
and classification accuracy, and it also reduces the conditional entropy.

1. In the comparisons of these three measures, the largest values of approximation quality
(classification accuracy) are in bold, and the smallest values of conditional entropy are underlined.
It should be emphasized that in Datasets 6 and 10, the values of these three measures are the
same. This is mainly because the cores of the three algorithms are the same, which can be seen
from Table 3.

2. The results shown in Table 4 can generally stay consistent with the results shown above
(Figures 1–3), which are obtained from the datasets with sample selection. The reducts obtained
by MCRSS can not only preserve approximation quality (Figure 1) and reduce conditional entropy
(Figure 2), but also improve classification accuracy performance (Figure 3).

3. We can find that conditional entropy and approximation quality both have an important role
in improving performance. The measure of conditional entropy may contribute a little more in
improving classification accuracy values. The phenomenon that most of the values derived from
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the CERSS and MCRSS are the same may illustrate that the constraint of conditional entropy is
more helpful in improving classification accuracy.

5. Conclusions and Future Perspectives

In this paper, a framework of a multiple-criteria reduct with sample selection has been proposed.
Different from the traditional attribute-reduction algorithm that only uses one measure, our algorithm
is executed based on the multiple criteria, which include approximation quality and conditional
entropy. Experimental results show that the reduct computed by our algorithm can not only
increase approximation quality and preserve conditional entropy, but also provide better classification
performance. Since we also applied boundary samples instead of the whole samples in the data,
our algorithm needed to spend less time in finding reducts.

The following topics merit further investigations:

1. Only two measures have been used to design multiple criteria; some other measures, such as
classification accuracy [57] and neighborhood discrimination index [12], will be further added
into the construction of multiple criteria.

2. Multiple-criteria attribute reduction is realized by a neighborhood rough set; it can also be
introduced into other rough-set models, such as a fuzzy rough set [19] and decision-theoretic
rough set [58].

3. Attribute reduction can be considered as the first step of data processing, and classification
performances in terms of different classifiers [59,60] based on our reducts will be further explored.
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