
 information

Article

Evaluating User Behaviour in a
Cooperative Environment

Enrico Bazzi 1, Nunziato Cassavia 2, Davide Chiggiato 3, Elio Masciari 4,* , Domenico Saccà 5,
Alessandra Spada 6 and Irina Trubitsyna 2

1 JAKALA, 20124 Milano, Italy; enrico.bazzi@serijakala.com
2 Dimes Department, University of Calabria, 87036 Rende, Italy; nunziato.cassavia@icar.cnr.it (N.C.);

i.trubitsyna@dimes.unical.it (I.T.)
3 Subcom, 20124 Milano, Italy; davide@subcom.it
4 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR), 87036 Rende, Italy
5 ICT-SUD, 87036 Rende, Italy; sacca@unical.it
6 Alkemy, 20124 Milano, Italy; a.spada@alkemytech.it
* Correspondence: elio.masciari@icar.cnr.it; Tel.: +39-0984-493-885

Received: 15 October 2018 ; Accepted: 27 November 2018; Published: 30 November 2018 ����������
�������

Abstract: Big Data, as a new paradigm, has forced both researchers and industries to rethink data
management techniques which has become inadequate in many contexts. Indeed, we deal everyday
with huge amounts of collected data about user suggestions and searches. These data require
new advanced analysis strategies to be devised in order to profitably leverage this information.
Moreover, due to the heterogeneous and fast changing nature of these data, we need to leverage new
data storage and management tools to effectively store them. In this paper, we analyze the effect
of user searches and suggestions and try to understand how much they influence a user’s social
environment. This task is crucial to perform efficient identification of the users that are able to spread
their influence across the network. Gathering information about user preferences is a key activity in
several scenarios like tourism promotion, personalized marketing, and entertainment suggestions.
We show the application of our approach for a huge research project named D-ALL that stands for
Data Alliance. In fact, we tried to assess the reaction of users in a competitive environment when
they were invited to judge each other. Our results show that the users tend to conform to each other
when no tangible rewards are provided while they try to reduce other users’ ratings when it affects
getting a tangible prize.

Keywords: behavioural analysis; big data; Exponential Random Graph Model; clustering; social influence

1. Introduction

Big Data [1] is nowadays the leading paradigm both for research and industrial applications.
Many platforms and tools have been proposed for innovative data analysis for managing huge
amounts of data [2–4]. These new approaches are guided by the need shared by both researchers and
industries to rethink storage and analysis techniques in order to deal with the massive data that are
continuously generated at faster rates and showing a really heterogeneous nature [5]. As a matter of
fact, the Big Data revolution has been guided by the continuous advances of the web technologies
which make available complex and powerful data providers having very efficient connections. As an
example, applications such as Uber, Facebook or Twitter attract millions of users. The peculiar features
of such application can be summarized as: Uber: ridesharing domain, Twitter/Facebook: Social
Network/Micro-Blogging domain, Dropbox: File storage domain, Craigslist: Sales domain. It is worth
noting that all of these approaches fuel the so-called sharing economy. Indeed, the definition of new data

Information 2018, 9, 303; doi:10.3390/info9120303 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-1778-5321
https://orcid.org/0000-0002-9031-0672
http://dx.doi.org/10.3390/info9120303
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/12/303?type=check_update&version=2

Information 2018, 9, 303 2 of 17

analysis models and tools based on artificial intelligence and machine learning is mandatory for a more
efficient monitoring of data flows. From a practical point of view, this can favour more democratic,
secure forms of sharing economy, better management of digital rights and new user-focused and
fair-payment models of social participation.

Unfortunately, this information is generated by quite heterogeneous sources and exhibit different
formats and semantic [6]. However, this information contains “gold nuggets” about user behavior,
their opinions about product and services and the way they interact each other. Thus, there is a
continuous demand (shared by researcher and industries) for new algorithms that could allow a deep
understanding of user preferences and their interaction patterns with complex systems.

To this end in [7], we described a collaborative network that allows users to cooperate with each
other getting high performance task execution (by partitioning complex tasks in smaller and easier
subtasks) while saving money. Indeed, we allow the use of computing capabilities and skills that
would be wasted otherwise. Moreover, as the subtasks assigned to users may consist of processes
whose result is the definition of specific features for a context (e.g., deciding whether a restaurant is
better than another), we need to deal with controversial or inconsistent data. Thus, we devised some
proper data manipulation strategies in order to make data as much reliable as possible. This step will
allow us to effectively evaluate the user’s cooperation and their behavior.

In more detail, in Figure 1, we show our Peer To Peer (P2P) system for user cooperation.
Our platform is rather flexible, thus it can be leveraged for every complex task that can be partitioned
in subtasks.

Figure 1. Coremuniti system at work.

As a first step, in order to participate in the network, users have to install the Coremuniti server
(NSA (Node Server Agent) in Figure 1) in order to set the type of task and the resources they are able to
solve, when solving a task, users (referred in what follows as resource providers) will be rewarded with
credits to be spent on the network. Users who may need help to perform complex tasks should run the
client tool (referred as NCA (Node Client Agent) in Figure 1. In order to ask for task computation on
the network, users need to meet one of the following constraints: (1) they previously participated in
network activities as providers and had been rewarded with a sufficient amount of credits or (2) they
pay for the service. For the sake of efficiency, we partition the bigger tasks into smaller subtasks that
can be easily managed by resource providers.

When a set of providers outputs a subtask, it is checked for correctness leveraging a ranking
system based on users’ mutual judgment; if the output is correct, we reward the participating peers.
Details of this strategy are beyond the scope of this paper and are described in [7].

As user involvement is crucial, we reward users based on their effectiveness and quality of the
provided results. In more detail, we allow users requesting task execution to evaluate the quality
of the results provided by resource providers. Since the correctness of the task to be performed is a

Information 2018, 9, 303 3 of 17

decision-making problem (e.g., deciding whether given decision is correct or assigning a given job
a rank against others) that can be influenced by other users [8], we need to provide a soundness
guarantee. In particular, in literature, several approaches have been proposed for measuring the
influence that users have on each other in several scenarios like leisure suggestions [9,10] or large
social environments [11]. Indeed, a work somehow closely related to ours falls in the category of
non-progressive influence analysis.

Indeed, in the seminal work [12], the authors demonstrate how to reduce the non-progressive
influence maximization problem to the progressive case by modifying the original graph under specific
assumption. Since in a non-progressive process a node can switch between states indefinitely (in our
case, a user can be assigned to different tasks each time s/he joins the network), the classical target
function of influence maximization under progressive models (i.e., the one trying to maximize the
expected number of influenced nodes), can not be exploited in the non-progressive scenario. Thus,
Ref. [13] suggests a new target function that maximizes the total time during which nodes are using a
product by discrete-time non-progressive model that leverages the idea in [12].

In order to properly manage the issues discussed above, we propose an approach based on the
analysis of network dynamics by Exponential Graph Random Models (EGRM) [14]. In particular,
we aim at evaluating the maximum likelihood of the features (i.e., parameters) that are relevant for
task assignment (e.g., the rank achieved by those users). In more detail, we leverage EGRM for the
analysis of relative liking judgments among users, and for modelling the revenue flow generated by
user interactions. Unfortunately, the maximum likelihood evaluation is computationally hard even for
small sized scenarios. In this paper, we will describe two approaches for sampling data that overcome
the problem mentioned above: (1) Metropolis Hastings sampling and (2) Clustering based sampling.

We analyze what happens with users’ search preferences when they are aware of other people’s
choices. This case could often arise in social environments or crowd based systems where people
usually post their activities. In more detail, we considered a group of users involved in a research
project and we let them know mutual preferences on some topics. After that, we analyzed user
search strategies after a rewarding plan has been started, i.e., we give some credits to those people
that suggested some useful search directions to other users (initially, they are not aware of them).
We analyzed the network dynamics using two different approaches: the first one based on Exponential
Random Graph Model (ERGM) to model the interactions, and a second one based on clustering
for grouping users. Our goal is to identify profitable links for spreading search dimensions as this
information can be leveraged by decision makers in order to design effective marketing campaigns or
other activities based on user influence.

To properly measure the above-mentioned network dynamics, we compute three values proposed
in [15] and briefly described in the following.

1. Global Nonconformity (GNC): in many settings where a user observe the rankings ofothers,
it has been shown in literature that this will influence its rank causing his/her own rankings to
conform with others;

2. Local Nonconformity (LNC): these parameters model the case of a user i ranking a user j that is
influenced only by users ranked above j;

3. Deference Aversion (DA): this parameter is the most intriguing in our context. The above-
mentioned parameters deal with the mutual adjustment among raters regarding their relative
assessments of third parties. In our framework, however, higher rankings are associated with
positive evaluation (thus higher rewards), such that being ranked below others is aversive. Thus,
if user l ranks j above i and i ranks l above j, i is ranking herself below l. As a consequence,
deference aversion may lead i to resist ranking l above j.

2. Data Preparation

As we mentioned above, we may need to deal with inconsistent data (as users may assign different
interpretations, thus different score meaning, to a specific feature) or we may need the informative

Information 2018, 9, 303 4 of 17

content to be provided to users. Indeed, data coming from the crowd require a great effort to be
managed as they could be quite uncertain [16] or biased [17]. Indeed, we can refer to these data
as incomplete data, thus requiring proper pre-elaboration prior to their analysis. In what follows,
we briefly describe two approaches we leveraged in our system.

2.1. Dealing with Incomplete and Inconsistent Data

Reasoning in the presence of inconsistent information is a problem that has attracted a great
deal of interest in the AI and database communities. Many inconsistency-tolerant semantics for
query answering have been proposed, and most of them rely on the notions of consistent query answer
and repair. Intuitively, a repair is a “maximal” consistent subset of the facts of the knowledge base.
A consistent answer to a query is a query answer that is entailed by every repair. Since there could
be many repairs, finding certain answers is most commonly in coNP in data complexity, and it is
very often coNPhard, even for conjunctive queries [18,19]. For this reason, different approximation
strategies to compute a sound but possibly incomplete set of consistent query answers in polynomial
time have been developed.

Consistent query answering was first proposed in [20]. Query answering under various
inconsistency-tolerant semantics for ontologies expressed in DL languages has been studied in [21–27],
and in [28–31] for ontologies expressed by fragments of Datalog+/–. Several notions of maximality for
a repair have been considered in [32]. An approach for the approximation of consistent query answers
from above and from below have been proposed in [27]. In [33], an approach based on three-valued
logic to compute a sound but possibly incomplete set of consistent query answers has been proposed.
All of the approaches above adopt the most common notion of repair, where whole facts are removed.
This can cause a loss of information, and it might well be the case that only a few of the facts’ attributes
are involved in inconsistencies, leading to a significant loss of useful data.

There have also been different proposals adopting a notion of repair that allows values to be
updated [34–38]. Recently, a new approach based on the value updates has been proposed in [39].
Its repair strategy behaves similar to the one of [34,36,37] in that values on the right-hand side of
functional dependencies (FDs) are updated. However, those works focus on FDs only, whereas [39]
allows much more general constraints. Moreover, Ref. [39] introduces the notion of a universal repair,
which compactly represents all repairs and can be used for exact/approximate query answering.
Consistent query answering in this framework is coNP-complete (data complexity), while the
approximation algorithm provides a sound (but possibly incomplete) set of consistent query answers
in polynomial time. The repair strategy in [39] can be seen as an instance of the value-based family of
policies proposed in [40], even though the two approaches differ in how multiple dependencies are
handled, and they focus on FDs only. In [38], numerical databases and a different class of (aggregate)
constraints have been considered.

Approximation algorithms for computing sound but possibly incomplete sets of query answers in
the presence of nulls have been also proposed in [41–44], but no dependencies are considered therein,
and thus the database is assumed to be consistent.

The coarse-grained classification of facts into two classes (namely, consistent and non-consistent
ones) does not provide much information about the non-consistent facts (e.g., a fact may be entailed by
99 out of 100 repairs). There has been some work on probabilistic query answering on inconsistent
knowledge bases [37,45,46] that define probabilistic guarantees for query answers. The [45] considers
primary keys only and a repair strategy based on fact deletions; [37] considers a restricted class of
functional dependencies and a repair strategy based on fact updates, but none of them deal with
approximating query answers. The most recent proposal [46] employs a repair strategy based on fact
deletions (and insertions) and deals with more general dependencies and approximation schemes.
We applied different ideas presented in this work in our system.

Universal solution and chase algorithm. Computing solutions in data exchange, and computing
certain answers in data integration and in a possibly inconsistent knowledge base can be solved by

Information 2018, 9, 303 5 of 17

exhibiting a universal model. Roughly speaking, a model for a database and a set of dependencies is a
finite instance that includes the database and satisfies the dependencies. A universal model is a model
that can be “mapped” to every other model—in a sense, it represents the entire space of possible
models. Universal models are slight generalizations of universal solutions in the data exchange
setting [47], and can be used to compute them. Moreover, the certain answers to a conjunctive query in
the presence of dependencies can be computed by evaluating the query over a universal model (rather
than considering all models). Other applications of universal models (e.g., dependency implication and
query containment under dependencies) can be found in [48]. The computation of universal models
can be done by means of the fixpoint chase algorithm, when it terminates [48]. The execution of the
chase involves inserting tuples possibly with null values to satisfy tuple generating dependencies (TGDs),
and replacing null values with constants or other null values to satisfy equality generating dependencies
(EGDs). Specifically, the chase consists of applying a sequence of steps, where each step enforces
a dependency that is not satisfied by the current instance. It might well be the case that multiple
dependencies can be enforced and, in this case, the chase picks one non deterministically. Different
choices lead to different sequences, some of which might be terminating, while others might not.
Unfortunately, checking whether the chase terminates is an undecidable problem [48]. To cope with
this issue, several “termination criteria” have been proposed, that is, (decidable) sufficient conditions
ensuring chase termination. Some recent works can be found in [49,50].

2.2. Enriching the Data: Data Posting

One of the most important features of Data Posting recently introduced in [51] is the improvement
of data exchange between the sources and the target database. The idea is to adapt the well-known
Data Exchange techniques to the new Big Data management and analysis challenges we find in real
world scenarios.

First of all, the Data Posting approach allows for avoiding the introduction of null values due to
the presence of existential quantifiers in the mapping rules (the so called, Source to Target Generating
Dependencies) choosing in a smart way the values to be inserted. The choice of the appropriate values
is made on the basis of the directions specified in the framework. Intuitively, the candidate values can
be extracted thanks to the data mining techniques, while the selection rules can be expressed using the
count constraints [52]. In more detail, the source database is enriched with additional tables, called
domain relations, that can be used to perform the non deterministic choice among some value sets.
In addition, “count constraints" are used to select the most appropriate values (i.e., those that are
supported by at least a certain number of occurrences) [51].

The problem of finiteness of the Target database is well known in the context of Data Exchange.
As discussed in the previous section, the existence of existential quantifiers in the mapping rules and
their replacement with null values can create situations in which the finiteness property of the Target
database could not be satisfied. The Data Posting framework selects the actual values from a finite set
of candidates, ensuring the finiteness of the Target database. Obviously, the solution thus obtained
could also not be universal as it represents a specific choice. However, it is worth noticing that, in the
context of Big Data, we are often interested in the discovery of new knowledge and the overall analysis
of the data and some attributes of the target tables can be created for storing the discovered values.
Thus, the choice of concrete values can be seen as a first phase of data analysis that solves uncertainties
by enriching the information contents of the whole system.

In order to illustrate the use of this approach in our system, we provide two toy examples that
will make clear the wide applicability of the approach.

Example 1. Consider the sources S1 and S2 describing the user’s profiles by relations P1(I, N, V) and P2(I, N, V),
respectively, with attributes I (profile’s identifier), N (attribute’s name) and V (attribute’s value). Suppose also to
have a relation C(I1, I2, L) that contains the information about a profile’s compatibility in the above-mentioned

Information 2018, 9, 303 6 of 17

relations. In particular, the first two attributes contain a profile’s identifiers from tables S1 and S2, respectively,
whereas L represents the level of compatibility of these profiles.

In order to enrich entities of the source S1 with some “relevant" attributes from the source S2, we can set the
following rules: An attribute combination name-value (n2, v2) taken from the source S2 is added to the profile
with identifier i1 if it is “supported" by at least 10 profiles of the source S2 with a percentage of compatibility
towards i1 at least 50%.

This situation can be modeled in our setting as follows. The relations P1, P2 and C can be considered as
source relations. D is a domain relation composed of values 0 and 1. The target relations are:

• A(I1, I2, N2, V2) stores the information of the profile from P2, whose compatibility level with some profile
in P1 is at least 50%.

• Add(I1, N2, V2, Flag) stores the combinations name-value taken from P2 and the decision to add this couple
to the profile from P1, represented by means of Flag attribute: 0 (not add) and 1 (add).

The source to target dependencies are

P2(i2, n2, v2) ∧ C(i1, i2, l) ∧ l ≥ 0, 50 → A(i1, i2, n2, v2),
P2(i2, n2, v2) ∧ C(i1, i2, l) ∧ l ≥ 0, 50∧ D(flag) → Add(i1, n2, v2, flag),

where all variables are universally quantified. The fact that D is domain relation and its presence in the body of
the second constraint express that only one value between 0 and 1 can be chosen for each triple (i1, n2, v2) in the
relation Add.

The following count constraints guarantee that all combinations name-value (n2, v2) “supported" by at
least 10 profiles in the relation P2 with a percentage of compatibility towards i1 at least 50% are added to i1,
whereas the combinations that do not satisfy the above-mentioned property are not added to i1:

(1): Add(i1, n2, v2, 1) → #({ I2 : A(i1, I2, n2, v2)}) ≥ 10,

(2): Add(i1, n2, v2, 0) → #({ I2 : A(i1, I2, n2, v2)}) < 10.

Intuitively, # is an interpreted function symbol for computing the cardinality of a set, lowercase and uppercase
letters denote variables that are respectively universally and existentially quantified.

In order to choose for the same attribute only one value “supported" by at least 10 profiles in the relation P2

with a percentage of compatibility towards i1 at least 50%, the second constraint must be substituted by the
following one, where anonymous variables, denoted by an underscore, are used to define a relation projection:

(2’): Add(i1, n2, _, _) → #({ V : Add(i1, I, n2, V, 1)}) = 1.

By adding to the set of {1, 2′} constraint 3 reported below, we can also specify that the added value must be
the most supported one:

(3): Add(i1, n2, v2, 1), Add(i1, n2, v, 0) →
#({ I2 : A(i1, I2, n2, v2)}) ≥ #({ I2 : A(i1, I2, n2, v)}).

Example 2. Suppose having the description of the user ratings (that we call comments) stored in the relation
C(U, N, V) with attributes U (user identifier), N (argument of rating) and V (rating value). Suppose having a
relation T(U1, U2, L) that represents the trust level L of user U2 for the user U1.

In order to suggest to the user some “relevant" comments, we can set the following rules: a comment (n, v)
is suggested to the user u if it is “supported" by at least 20 users whose trust level towards u is greater than 70%.

This situation can be modeled in the data posting setting as follows. The relations C and T can be considered
as source relations. D is domain relation composed by values 0 and 1. The target relations are:

• A(U1, U2, N, V) auxiliary relation that stores the comments for users with compatibility level greater
than 70%.

Information 2018, 9, 303 7 of 17

• S(U, N, V, Decision) stores the decision to suggest the comment (N, V) to the user U, represented by means
of Decision attribute: 0 (not suggest) and 1 (suggest).

The source to target dependencies are

C(u2, n, v) ∧ T(u1, u2, l) ∧ l > 0, 70 → A(u1, u2, n, v),
C(u2, n, v) ∧ T(u1, u2, l) ∧ l > 0, 70∧ D(d) → S(u1, n, v, d),

where all variables are universally quantified. The fact that D is a domain relation and its presence in the body of
the second constraint expresses that only one value between 0 and 1 can be chosen for each triple (u1, n, v) in the
relation S.

The following count constrains guarantee that all comments (n, v) “supported" by at least 20 users whose
trust level towards u is greater than 70% are suggested to the user u, whereas the comments that do not satisfy
the above-mentioned property are not suggested to u:

(1): S(u1, n, v, 1) → #({ U2 : A(u1, U2, n, v)}) ≥ 20,

(2): S(u1, n, v, 0) → #({ U2 : A(u1, U2, n, v)}) < 20.

As usual, # is an interpreted function symbol for computing the cardinality of a set; lowercase and uppercase
letters denote variables that are respectively universally and existentially quantified.

In order to determine for the same rating argument only the most supported values in the above-mentioned
choice, constraint (2) must be substituted by the following constraints:

(3): S(u1, n, _, _) → #({ V : S(u1, n, V, 1)}) ≥ 1,

(4): S(u1, n, v2, 1), S(u1, n, v, 0) →
#({ U2 : A(U1, U2, n, v2)}) ≥ #({ U2 : A(U1, U2, n, v)}).

Constraint 3 ensures that at least one value for each relevant argument is chosen, constraint 4 specifies, that this
value must be maximally supported. Observe that in the case that two or more values are maximally supported
for the same argument and the same user, all of these values will be suggested owing to the presence of the ≥ sign
in the constraint 3. Observe that, by substituting this sign with an equal sign, we can impose the selection of
only one from the maximally supported values. In the absence of additional constraints, this selection will be
performed in a non-deterministic way.

Once we have properly manipulated the input data, we can assign the tasks to users (e.g., determining
the quality of other user reviews). The next section is devoted to describe our approach to evaluate the
user ranking behaviours.

3. ERGM Sampling

As mentioned above in many scenarios, user searches (or suggestions) can be evaluated by other
users. This process leads to a matrix representation of these rankings (denoted as S, in what follows).
Each cell Si,j reports the value assigned to the search (or suggestion) of j by user i. Using S as a basis for
computation, it is easy to compute S+ that contains information about tie between i to j (i.e., Si,j > 0)
and S− that reports information about no tie between i to j (i.e., Ri,j = 0). We point out that nodes i
and j are tied if there exists a link between them in their social environment (e.g., likes or comments on
the same post).

In order to perform an effective analysis of network dynamics in our scenario, we leverage a
well studied approach (which dates back to some decades ago) based on Exponential Graph Random
Models (EGRM) [14] that offers better performances even against recent approaches [53–55]. ERGMs
have been introduced for formulating hypotheses about social processes that might have produced
empirically observed social networks. In more detail, ERGMs belong to a family of statistical models
that have been introduced for social networks for analyzing the dependence assumptions underpinning

Information 2018, 9, 303 8 of 17

hypotheses of network formation. As an example, consider the toy network reported in Figure 2;
the graph exhibits a structure composed of two nodes having no relations with each other but sharing
all of their partners; this situation is worth investigation from a social network viewpoint.

Figure 2. A graph exhibiting shared partners’ structure.

The analysis can be performed by comparing the frequency of particular configurations in
observed networks with their frequency in stochastic models. Dependence assumptions are based on
the idea that pairs of nodes cannot be connected independently of what happens in the rest of the
network; in a sense, users are influenced by the (eventual) presence or absence of specific users and
their opinions.

In our scenario, when evaluating the maximum likelihood of the features (i.e., parameters) that
are relevant for task assignment (e.g., the rank achieved by those users), it is crucial to take into account
relative liking judgments among users. The latter analysis allows a more accurate modelling of the
revenue flow generated by user interactions.

In more detail, in order to evaluate the effect of user searches, we are interested in measuring
the existence of a tie (represented as a value in S). To better explain this phenomenon, we leverage
important features like mean searches number, average number of obtained results, etc. In what
follows, we represent such variables as z1(S), z2(S) · · · zn(S) and the model parameters by a vector θ

computed as follows:

θ1 · z1(S) + θ2ż2(S) + · · ·+ θn żn(S). (1)

To compute the probability value P(S), we need to compute its Maximum Likelihood Estimates
(MLE), i.e., we need to compute:

L(Θ) = P(Z1 = z1, Z2 = z2, . . . , Zn = zn) = f (z1, Θ) · f (z2, Θ) ḟ (zn, Θ) = ∏
i

f (zi, Θ). (2)

Unfortunately, as it is easy to see from the above formula, the maximum likelihood evaluation is
computationally hard even for small sized scenarios. In what follows, we will describe our approaches
for sampling data that overcome the above-mentioned problem: (1) Metropolis–Hastings sampling
and (2) Clustering based sampling.

3.1. Metropolis–Hastings

This algorithm tries to evaluate a probability density function F(x1, . . . , xn) that is our unknown
target by leveraging the values of proposal distribution P(x1, . . . , xn). The output of this sampling
step is a proper data partition. These samples provide a good estimates of F(x1, . . . , xn) as they exhibit
similar shapes. Our implementation is reported in Algorithm 1.

Based on the above strategy for sample generation, we can implement the Best Search sampling
strategy reported in Algorithm 2.

Information 2018, 9, 303 9 of 17

Algorithm 1 MH Sampling.
Require: N output samples; B: number of samples for burn-in;
Ensure: a sequence of k network resource providers P = [p1, . . . , pk]

1: S = ∅
2: generate an initial sample s
3: for i = 0 to B + N do

4: s′ ← s
5: perturb s′

6: jitter = random()

7: if jitter ≤ min(1, P(s
′)

P(s)) then

8: s = s′

9: end if
10: if k ≥ B then

11: Add s to S
12: end if
13: end for
14: return S

Algorithm 2 Algorithm for Best Search sampling.
Require: A set of searches to be performed y, a rank matrix X, the probability array p, an integer accU,

an integer cMaxS
Ensure: a sequence of k sampled nodes P = [p1, . . . , pk]

cCoal the current coalition of users, cPcoal the probability of the current coalition of user, tCoal
the generated coalition, tPCoal the probability of the generated coalition, ST the set of generated
coalition (that does not contain duplicated elements).

1: cCoal = ∅, cPcoal = 0
2: S = ∅
3: for i = 1 to burn + It do

4: tCoal = cCoal
5: if 0 < |tCoal| < cMaxS then

6: tCoal = genericUpdate(tCoal)
7: else
8: if |tCoal| = 0 then

9: tCoal = addUser(tCoal)
10: else

11: tCoal = remUser(tCoal)
12: end if
13: end if
14: tPCoal = computeProb(tCoal, y)
15: jitter = random()

16: if jitter < min(1, tPCoal
cPcoal) then

17: cCoal = tCoal, cPcoal = tPCoal
18: end if
19: if i > burnIt then

20: update(S, cCoal)
21: end if
22: end for
23: return bestSearch(S, accU)

Information 2018, 9, 303 10 of 17

In more detail, the two steps of the algorithm work as follows. The first step is devoted to initialize
the coalition by generating burn samples to be disregarded. Next, we compute it coalition that are
added to S.

Function computeProb(tCoal,y) computes the probability that a task y can be executed by coalition
tCoal according to the values included in matrix XtCoal as follows:

computeProb(tCoal, y) (3)

= pCoal
|tCoal|−1

m

∏
i=1

p(XtCoal [i] , y [i]),

where p (XtCoal [i] , y [i]) is defined as follows: p (XtCoal [i] , y [i]) = 1
3 , if ∃h, k s.t. XtCoal [i][h] 6=

XtCoal [i][k] and, if no such h, k exists, and otherwise

p (XtCoal [i] , y [i]) = (4)

pu, if y [i] = −1, (a)
(1− pu)p[i], if y [i] = 1 e XtCoal [i] = 1, (b)
pu p[i], if y [i] = 1 e XtCoal [i] = 0, (c)
pu(1− p [i]), if y [i] = 0 e XtCoal [i] = 1, (d)
(1− pu)(1− p [i]), if y [i] = 0 e XtCoal [i] = 0. (e)

In more detail, the definition computeProb(tCoal, y) assumes that the probability that tCoal
executes y is the combination of two different independent contributions:

• the fact that |tCoal| users formed a coalition, and
• the probability that the user in tCoal worked on y.

The first contribution is represented by the factor pCoal
|tCoal|−1 in Equation (3), where pCoal is the

probability that two randomly picked users cooperate. The second contribution is represented by the
product, for each subtask i of the task y, of the probability that the users in tCoal executed the i-th
sub-task of y. The latter probability is assumed to be pu if the i-th subtask of y is not evaluated (case (a)
of Equation (4)), where pu is a constant representing the probability that a task has not been evaluated.
In cases (b)–(e) of Equation (4), the probability that the users in tCoal executed the i-th sub-tast of y is
assumed proportional to the probability that the subtask was randomly executed.

3.2. Using Clustering

The natural dynamics of social networks may result in the formation of user coalitions willing
to interact with similar users. To address this issue, we leverage cluster analysis that is a powerful
knowledge discovery tool widely investigated over the last several decades [56–58]. In this paper,
we are interested in identifying natural clusters; thus, we leverage CLUBS+[59], a new clustering
algorithm for matrix data as the ones considered in our experiments. A complete description of the
algorithm and its peculiar features are reported in [59], while here we only mention that, as clusters
are detected by CLUBS+, we can perform sampling by randomly picking up some users from each
cluster and using it in our algorithms.

4. Experimental Evaluation

4.1. Setup

In this section, we report the results obtained on a test set of user searches collected for four
months during the D-ALL project activities. In more detail, users involved in the project cooperate
in evaluating different services (e.g., restaurants, art itineraries and so on) and the project goal is to

Information 2018, 9, 303 11 of 17

extract relevant patterns from these information. We provided each user with two different options:
(1) they can ask for search suggestion or (2) they can suggest search directions on request. At fixed time
intervals, users may evaluate obtained results (both as consumers and providers of information) by
assigning a rank ranging from 0 to 10 to their experience. As we implemented a rewarding strategy, i.e.,
users pay for targeted suggestions and are paid when they suggest a proper search, the effectiveness
evaluation is crucial as we do not want users to pay for wrong information.

As explained in previous sections, we model our small network interactions by a random graph
that is continuously updated as new links among users appear (i.e., new interactions between a pair of
users). In order to better understand the information relevant to our goal, we leverage two types of
analysis: the first one, referred to as cross-sectional (CS), considers only the variation occurring when
data are observed while the second one considers each observation as an independent unit; thus, it is
referred to as dynamic (Dyn). In order to be fair and to evaluate the influence excerpted by users each
other, every participant is aware of the other’s scores.

The latter results in the need to analyze factors that are endogenous, i.e., those phenomenon that
may arise when users each know the rankings of others, thus causing the rankings given by user i to
be influenced by other user rankings except i. To this end, we measure in what follows the values of
GNC, LNC and DA.

4.2. Evaluation

In order to analyze the evolution of user search effects, we use the following statistics: overall
search number performed by user; keyword total number; mean assigned keyword rank. For the sake
of completeness, we use both cross-sectional and dynamic analysis combined with clustering and
Metropolis–Hastings sampling.

In what follows, we summarize in tabular form the results obtained. Note that, for dynamic
analysis, we compute fifteen graphs (one for each week except the first one); for the other analysis, we
have 16 graphs.

We show in Table 1 the obtained values for the DA, GNC and LNC for CS and Dyn analysis when
adopting M-H sampling. It is easy to observe that the values obtained for Deference Aversion have
always been high since the beginning. It is worth noting that, as we start rewarding users (at week 4),
the DA values further increase. In more detail, both for dynamic and cross-sectional analysis, global
nonconformity is not a significant factor. The values reported for the other two factors are, on the
whole, significant, but are uniformly smaller in magnitude for dynamic analysis compared to those of
the corresponding weeks in the cross-sectional analysis and are less precisely estimated (as represented
by uniformly greater standard errors). This is because, rather than embodying the structure of the
whole network, they embody only the structure of changes in the network over the week, thus the only
important value to rely on is the weekly changes of values. This means that “instant” social effects
(e.g., friendship reciprocation) have been absorbed into the Week 0 observation, which is not modeled
in the dynamic analysis.

Moreover, above-mentioned phenomena can be considered as a kind of social “envy”: users tend
to decrease the scores of other users in order to get more requests for themselves and thus get more
rewards. We note that also LNC value is high while GNC is not impressive: in a sense, users tend to
agree on the general topics but not on the specific ones. Similar observations can be made for all of the
analysis reported in Tables 2–4.

Information 2018, 9, 303 12 of 17

Table 1. MH sampling and cross-sectional analysis.

Week GNC LNC DA

1 0.000 −0.013 −0.133
2 0.001 −0.014 −0.138
3 0.002 −0.017 −0.146
4 0.002 −0.020 −0.166
5 0.002 −0.028 −0.211
6 0.003 −0.043 −0.278
7 0.002 −0.040 −0.302
8 0.002 −0.037 −0.366
9 0.002 −0.039 −0.384

10 0.001 −0.040 −0.399
11 0.002 −0.036 −0.417
12 0.001 −0.038 −0.422
13 0.001 −0.039 −0.433
14 0.001 −0.040 −0.442
15 0.000 −0.039 −0.451
16 0.001 −0.040 −0.460

Table 2. MH sampling and dynamic analysis.

WeekTransition GNC LNC DA

1→ 2 0.000 −0.011 −0.221
2→ 3 0.001 −0.016 −0.241
3→ 4 0.002 −0.018 −0.266
4→ 5 0.002 −0.022 −0.322
5→ 6 0.001 −0.024 −0.341
6→ 7 0.001 −0.026 −0.348
7→ 8 0.002 −0.024 −0.367
8→ 9 0.002 −0.028 −0.411
9→ 10 0.003 −0.031 −0.432

10→ 11 0.002 −0.035 −0.466
11→ 12 0.002 −0.034 −0.479
12→ 13 0.002 −0.033 −0.485
13→ 14 0.002 −0.031 −0.502
14→ 15 0.001 −0.032 −0.511
15→ 16 0.001 −0.035 −0.525

Table 3. Clustering based sampling and cross-sectional analysis.

Week GNC LNC DA

1 0.000 −0.018 −0.127
2 0.001 −0.019 −0.141
3 0.001 −0.021 −0.166
4 0.002 −0.024 −0.174
5 0.003 −0.042 −0.181
6 0.002 −0.053 −0.188
7 0.002 −0.058 −0.192
8 0.002 −0.062 −0.195
9 0.001 −0.067 −0.199

10 0.002 −0.071 −0.194
11 0.001 −0.073 −0.192
12 0.001 −0.075 −0.193
13 0.001 −0.079 −0.191
14 0.002 −0.081 −0.190
15 0.002 −0.083 −0.193
16 0.001 −0.085 −0.194

Information 2018, 9, 303 13 of 17

As a final note, we can observe that the results obtained when sampling data by clustering are
slightly better. This behaviour can be explained considering that, when leveraging cluster approaches,
it is more likely to obtain more homogeneous groups (i.e., group of users sharing common interests
and features).

Table 4. Clustering based sampling and dynamic analysis.

Week GNC LNC DA

1→ 2 0.000 −0.011 −0.144
2→ 3 0.001 −0.015 −0.167
3→ 4 0.000 −0.019 −0.171
4→ 5 0.001 −0.021 −0.181
5→ 6 0.001 −0.033 −0.184
6→ 7 0.001 −0.041 −0.186
7→ 8 0.000 −0.047 −0.19
8→ 9 0.001 −0.051 −0.198

9→ 10 0.001 −0.059 −0.197
10→ 11 0.000 −0.061 −0.189
11→ 12 0.001 −0.072 −0.185
12→ 13 0.001 −0.082 −0.174
13→ 14 0.001 −0.084 −0.181
14→ 15 0.000 −0.089 −0.188
15→ 16 0.000 −0.091 −0.187

Remark 1. The results reported in this section have been used for the evaluation of gain obtained by users when
considering the four scenarios described above. A first evaluation can be made by observing that, for those users
exhibiting low deference aversion values, executed task number increases and the rewards they get are higher.
This phenomenon produces a higher satisfaction rate for tasks requesting users due to the higher accuracy of
results. In what follows, we describe our assignment strategy that leverages such a result.

In more detail, our assignment strategy meets two constraints: (1) overall task completion time
minimization; and (2) provider and consumer of task satisfaction.

We assume a set RP = {rp1, . . . , rpn} of available resource providers, an assignment function
λc : RP → N × N, for matching resource providers with a 〈tmin, tmax〉 constraint. Herein: tmin
(resp. tmax) is the minimum (resp. maximum) execution time for subtask completion.

Furthermore, we leverage a rewarding strategy that takes into account the “usefulness” of the
result provided by each rpi. Indeed, let st be a subtask having a c credits value that has been assigned
to rpi1 , . . . rpix . We order rpi1 , . . . rpix ascending w.r.t. their rankings based on the strategies described
above and build a new sequence RPst. Obviously, those providers that fail to complete the assigned
subtasks are queued to RPst based on their task completion ratio.

As soon as more than two providers output their results, we give 3c
10 of the reward to the first

three listed in RPst, i.e., the ones which performed better in computing st. This choice has its rationale
in what follows: we need to output the results as soon as possible, thus if the first three providers
output a correct answer, we give them a higher share of the reward that has been assigned for that task.
After this first step, we assign c

10 credits to the other providers in RPst. In more detail, each provider
j ∈ [4..x] is assigned a share computed as follows:

c× Compl(RPst[j])
10×∑x

k=4 Compl(RPst[k])
.

Herein: Compl(rp) is completion percentage of st performed by rp. By this step, we guarantee that
all resource providers will be reward for their effort even in the case of incomplete task computation.
The rationale for this choice is to encourage all the users to join the network as they get some

Information 2018, 9, 303 14 of 17

reward even if their computational power was not adequate to solve the whole task assigned to
them. The following example will clarify this issue.

Example 3. Consider the case that a group of four resource providers RP = {rp1, . . . , rp4} was
assigned to st (for the sake of readability we assume here that all users obtained the same ranking), where
λc(rp1) = 〈1, 5〉, λc(rp2) = 〈2, 7〉, λc(rp3) = 〈6, 7〉 and λc(rp4) = 〈4, 8〉. In this case, t′ = 4 and t′′ = 7 and

ECst,RP =

4 +
∫ 5

4(1−F3
0 (x))dx +

∫ 6
5(1−F3

1 (x))dx +
∫ 7

6(1−F3
2 (x))dx =

4 +
∫ 5

4(1−
x−1
5−1

x−2
7−2

x−4
8−4)dx +

∫ 6
5(1−

x−2
7−2

x−4
8−4)dx +∫ 7

6

(
1−
(x−2

7−2
x−6
7−6 + x−2

7−2

(
1− x−6

7−6

) x−4
8−4 +

(
1− x−2

7−2

) x−6
7−6

x−4
8−4

))
dx =

4 +
∫ 5

4(1−
x−1

4
x−2

5
x−4

4)dx +
∫ 6

5(1−
x−2

5
x−4

4)dx +∫ 7
6

(
1−
(x−2

5
x−6

1 + x−2
5

(
1− x−6

1

) x−4
4 +

(
1− x−2

5

) x−6
1

x−4
4

))
dx =

4 +
[

11x
10 −

7x2
80 + 7x3

240 −
x4
320

]5

4
+
[

3x
5 + 3x2

20 −
x3
60

]6

5

+
[

1
10 (−126x + 44x2 − 17x3

3 + x4
4)
]7

6
=

4 + 901
960 + 11

15 + 31
120 ≈ 5.93.

5. Conclusions and Future Work

In this work, we described the use of Exponential Random Graph Models for the analysis of
user influence across social networks. We exploited many interesting mathematical tools to model
several psychological and social mechanisms that proved to be effective in our scenario. The ability to
evaluate and compare competing approaches based on a fair mechanism proved to be adequate in
our context, thus validating the use of statistical approaches for our goal. Moreover, given the current
wave of interest in social networks, computationally scalable estimation is worth the investigation.
We are aware that, compared to population-scale networks, the networks considered here are fairly
small. However, the latter observation does not decrease the validity of our approach as ranking data
of the form analyzed here is typically of interest only in specific groups or organizational settings in
which all members of the network are salient since such networks are by nature fairly small. Thus,
highly scalable techniques are less compelling in our setting. Nevertheless, computationally scalable
estimation is an interesting challenge for future research in this area that we want to address in the next
few months. In this respect, it is worth noticing that ERGMs provide an effective tool for addressing
both new and classic problems in social network decision-making. The main outcome of our research
is the proof of the social influence excerpt by users, each in a cooperative environment when a kind of
reward is provided. In more detail, we proved that the influence tends to be negative when the reward
is tangible (such as money) or positive if the reward is intangible (such as gaining popularity in an
expert environment).

As a future work, we plan to investigate more scalable approaches to extend our results in a
larger environment.

Author Contributions: Conceptualization, E.B. and D.S.; Data curation, I.T.; Methodology, D.C.; Software, N.C.;
Validation, A.S.; Writing—review & editing, E.M.

Funding: This research was funded by Ministero dell’Istruzione, dell’Università e della Ricerca: D-ALL.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Big Data. Nature 2008. Available online: https://www.nature.com/collections/wwymlhxvfs (accessed on
30 November 2018).

2. Borkar, V.R.; Carey, M.J.; Li, C. Inside “Big Data Management”: Ogres, Onions, or Parfaits? In International
Conference on Extending Database Technology; Rundensteiner, E.A., Markl, V., Manolescu, I., Amer-Yahia, S.,
Naumann, F., Ari, I., Eds.; ACM: New York, NY, USA, 2012; pp. 3–14.

3. Lohr, S. The Age of Big Data. 2012. Available online: nytimes.com (accessed on 30 November 2018).

https://www.nature.com/collections/wwymlhxvfs
nytimes.com

Information 2018, 9, 303 15 of 17

4. Manyika, J.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier
for Innovation, Competition, And Productivity; McKinsey Global Institute: New York, NY, USA, 2011.

5. Agrawal, D.; Bernstein, P.; Bertino, E.; Davidson, S.; Dayal, U.; Franklin, M.; Gehrke, J.; Haas, L.; Halevy, A.;
Han, J.; et al. Challenges and Opportunities With Big Data—A Community White Paper Developed by Leading
Researchers across The United States; ACM: New York, NY, USA, 2012.

6. Data, Data Everywhere. The Economist, 25 February 2010. Available online: https://www.emc.com/
collateral/analyst-reports/ar-the-economist-data-data-everywhere.pdf (accessed on 30 November 2018).

7. Cassavia, N.; Flesca, S.; Ianni, M.; Masciari, E.; Pulice, C. Distributed computing by leveraging and rewarding
idling user resources from P2P networks. J. Parallel Distrib. Comput. 2018, 122, 81–94. [CrossRef]

8. Almgren, K.; Lee, J. An empirical comparison of influence measurements for social network analysis.
Soc. Netw. Anal. Min. 2016, 6, 52:1–52:18. [CrossRef]

9. Rodríguez, H.; Macías, J.; Montalván, N.; Garzozi, R. Influence of Social Networks from Cellphones to
Choose Restaurants, Salinas—2016. In Proceedings of International Conference on Information Theoretic Security
(ICITS 2018); Springer: Cham, Switzerland, 2018; pp. 992–1003.

10. Cassavia, N.; Masciari, E.; Pulice, C.; Saccà, D. Discovering User Behavioral Features to Enhance Information
Search on Big Data. TiiS 2017, 7, 7:1–7:33. [CrossRef]

11. Almgren, K.; Lee, J. Applying an influence measurement framework to large social network. J. Netw. Technol.
2016, 7, 7.

12. Kempe, D.; Kleinberg, J.M.; Tardos, É. Maximizing the Spread of Influence Through a Social Network.
In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146.

13. Lou, V.Y.; Bhagat, S.; Lakshmanan, L.V.S.; Vaswani, S. Modeling Non-Progressive Phenomena for Influence
Propagation; CoRR: Leawood, KS, USA, 2014.

14. Brown, L.D. Fundamentals of Statistical Exponential Families with Applications in Statistical Decision
Theory. Available online: https://ci.nii.ac.jp/naid/10000043684/ (accessed on 30 November 2018).

15. Krivitsky, P.N.; Butts, C.T. Exponential-family random graph models for rank-order relational data.
Sociol. Methodol. 2017. [CrossRef]

16. Zhang, C.J.; Chen, L.; Tong, Y.; Liu, Z. Cleaning uncertain data with a noisy crowd. In Proceedings of the
31st IEEE International Conference on Data Engineering (ICDE), Seoul, Korea, 13–17 April 2015; pp. 6–17.

17. Budak, C.; Agrawal, D.; El Abbadi, A. Limiting the spread of misinformation in social networks.
In Proceedings of the 20th International Conference on World Wide Web (WWW’11), Hyderabad, India,
28 March–1 April 2011; pp. 665–674.

18. Chomicki, J.; Marcinkowski, J. Minimal-change integrity maintenance using tuple deletions. Inf. Comput.
2005, 197, 90–121. [CrossRef]

19. Wijsen, J. A Survey of the Data Complexity of Consistent Query Answering under Key Constraints.
In Proceedings of the International Symposium on Foundations of Information and Knowledge Systems
(FoIKS), Bordeaux, France, 3–7 March 2014; pp. 62–78.

20. Arenas, M.; Bertossi, L.E.; Chomicki, J. Consistent Query Answers in Inconsistent Databases. In Proceedings
of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’99),
Philadelphia, PA, USA, 31 May–3 June 1999; pp. 68–79.

21. Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; Savo, D.F. Inconsistency-Tolerant Semantics for Description
Logics; Hitzler, P., Lukasiewicz, T., Eds.; Web Reasoning and Rule Systems, RR 2010, Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6333.

22. Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; Savo, D.F. Query Rewriting for Inconsistent DL-Lite Ontologies;
Rudolph, S., Gutierrez, C., Eds.; Web Reasoning and Rule Systems, RR 2011; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6902, pp. 155–169.

23. Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; Savo, D.F. Inconsistency-tolerant query answering in
ontology-based data access. J. Web Semant. 2015, 33, 3–29. [CrossRef]

24. Bienvenu, M. First-Order Expressibility Results for Queries over Inconsistent DL-Lite Knowledge Bases.
In Proceedings of the 24th International Workshop on Description Logics (DL 2011), Barcelona, Spain,
13–16 July 2011.

https://www.emc.com/collateral/analyst-reports/ar-the-economist-data-data-everywhere.pdf
https://www.emc.com/collateral/analyst-reports/ar-the-economist-data-data-everywhere.pdf
http://dx.doi.org/10.1016/j.jpdc.2018.07.017
http://dx.doi.org/10.1007/s13278-016-0360-y
http://dx.doi.org/10.1145/2856059
https://ci.nii.ac.jp/naid/10000043684/
http://dx.doi.org/10.1177/0081175017692623
http://dx.doi.org/10.1016/j.ic.2004.04.007
http://dx.doi.org/10.1016/j.websem.2015.04.002

Information 2018, 9, 303 16 of 17

25. Bienvenu, M. On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI’12), Toronto, ON,
Canada, 22–26 July 2012.

26. Rosati, R. On the Complexity of Dealing with Inconsistency in Description Logic Ontologies. In Proceedings
of the Twenty-SeconD International Joint Conference on Artificial Intelligence—Volume Two (IJCAI’11),
Barcelona, Spain, 16–22 July 2011; pp. 1057–1062.

27. Bienvenu, M.; Rosati, R. Tractable Approximations of Consistent Query Answering for Robust Ontology-
based Data Access. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI’3), Beijing, China, 3–9 August 2013; pp. 775–781.

28. Lukasiewicz, T.; Martinez, M.V.; Simari, G.I. Inconsistency-Tolerant Query Rewriting for Linear Datalog+/−.
In Proceedings of the Second international conference on Datalog in Academia and Industry (Datalog 2.0’12),
Vienna, Austria, 11–13 September 2012; pp. 123–134.

29. Lukasiewicz, T.; Martinez, M.V.; Simari, G.I. Complexity of Inconsistency-Tolerant Query Answering in
Datalog+/−. In Proceedings of the OTM 2013 Conferences: Confederated International Conferences:
CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria, 9–13 September 2013; pp. 488–500.

30. Lukasiewicz, T.; Martinez, M.V.; Pieris, A.; Simari, G.I. From Classical to Consistent Query Answering under
Existential Rules. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin,
TX, USA, 25–30 January 2015; pp. 1546–1552.

31. Lukasiewicz, T.; Martinez, M.V.; Simari, G.I. Inconsistency Handling in Datalog+/−Ontologies. In Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI 2012)‚ Montpellier‚ France‚ 27–31 August 2012;
pp. 558–563.

32. Bienvenu, M.; Bourgaux, C.; Goasdoué, F. Querying Inconsistent Description Logic Knowledge Bases under
Preferred Repair Semantics. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI’14), Québec City, QC, Canada, 27–31 July 2014; pp. 996–1002.

33. Furfaro, F.; Greco, S.; Molinaro, C. A three-valued semantics for querying and repairing inconsistent
databases. Ann. Math. Artif. Intell. 2007, 51, 167–193. [CrossRef]

34. Bohannon, P.; Flaster, M.; Fan, W.; Rastogi, R. A Cost-Based Model and Effective Heuristic for Repairing
Constraints by Value Modification. In Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data (SIGMOD’05), Baltimore, MD, USA, 14–16 June 2005; pp. 143–154.

35. Bertossi, L.E.; Bravo, L.; Franconi, E.; Lopatenko, A. The complexity and approximation of fixing numerical
attributes in databases under integrity constraints. Inf. Syst. 2008, 33, 407–434. [CrossRef]

36. Greco, S.; Molinaro, C. Approximate Probabilistic Query Answering over Inconsistent Databases; Li, Q., Spaccapietra,
S., Yu, E., Olivé, A., Eds.; i Conceptual Modeling—ER 2008, Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 5231, pp. 311–325.

37. Greco, S.; Molinaro, C. Probabilistic query answering over inconsistent databases. Ann. Math. Artif. Intell.
2012, 64, 185–207. [CrossRef]

38. Flesca, S.; Furfaro, F.; Parisi, F. Querying and repairing inconsistent numerical databases. ACM Trans.
Database Syst. 2010, 35, 14:1–14:50. [CrossRef]

39. Greco, S.; Molinaro, C.; Trubitsyna, I. Computing Approximate Query Answers over Inconsistent Knowledge
Bases. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI 2018), Stockholm, Sweden, 13–19 July 2018; pp. 1838–1846. [CrossRef]

40. Martinez, M.V.; Parisi, F.; Pugliese, A.; Simari, G.I.; Subrahmanian, V.S. Policy-based inconsistency
management in relational databases. Int. J. Approx. Reason. 2014, 55, 501–528. [CrossRef]

41. Guagliardo, P.; Libkin, L. Making SQL Queries Correct on Incomplete Databases: A Feasibility Study.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(PODS’16), San Francisco, CA, USA, 26 June–1 July 2016; pp. 211–223.

42. Libkin, L. How to Define Certain Answers. In Proceedings of the International Joint Conferences on Artificial
Intelligence (IJCAI), Buenos Aires, Argentina, 25–31 July 2015; pp. 4282–4288.

43. Libkin, L. Certain answers as objects and knowledge. Artif. Intell. 2016, 232, 1–19. [CrossRef]
44. Greco, S.; Molinaro, C.; Trubitsyna, I. Computing Approximate Certain Answers over Incomplete Databases.

In Proceedings of the 11th Alberto Mendelzon International Workshop on Foundations of Data Management
and the Web, Montevideo, Uruguay, 7–9 June 2017.

http://dx.doi.org/10.1007/s10472-008-9088-3
http://dx.doi.org/10.1016/j.is.2008.01.005
http://dx.doi.org/10.1007/s10472-012-9287-9
http://dx.doi.org/10.1145/1735886.1735893
http://dx.doi.org/10.24963/ijcai.2018/254
http://dx.doi.org/10.1016/j.ijar.2013.12.004
http://dx.doi.org/10.1016/j.artint.2015.11.004

Information 2018, 9, 303 17 of 17

45. Andritsos, P.; Fuxman, A.; Miller, R.J. Clean Answers over Dirty Databases: A Probabilistic Approach.
In Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA,
3–7 April 2006; p. 30.

46. Calautti, M.; Libkin, L.; Pieris, A. An Operational Approach to Consistent Query Answering. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Houston, TX,
USA, 10–15 June 2018; pp. 239–251. [CrossRef]

47. Fagin, R.; Kolaitis, P.G.; Miller, R.J.; Popa, L. Data exchange: Semantics and query answering. Theor. Comput. Sci.
2005, 336, 89–124. [CrossRef]

48. Deutsch, A.; Nash, A.; Remmel, J.B. The chase revisited. In Proceedings of the Twenty-Seventh ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2008), Vancouver, BC,
Canada, 9–11 June 2008; pp. 149–158. [CrossRef]

49. Greco, S.; Spezzano, F.; Trubitsyna, I. Checking Chase Termination: Cyclicity Analysis and Rewriting
Techniques. IEEE Trans. Knowl. Data Eng. 2015, 27, 621–635. [CrossRef]

50. Calautti, M.; Greco, S.; Molinaro, C.; Trubitsyna, I. Exploiting Equality Generating Dependencies in Checking
Chase Termination. PVLDB 2016, 9, 396–407. [CrossRef]

51. Cassavia, N.; Masciari, E.; Pulice, C.; Saccà, D. Discovering User Behavioral Features to Enhance Information
Search on Big Data. TiiS 2017, 7, 7:1–7:33. [CrossRef]

52. Saccà, D.; Serra, E.; Guzzo, A. Count Constraints and the Inverse OLAP Problem: Definition, Complexity and
a Step toward Aggregate Data Exchange; Lukasiewicz, T., Sali, A., Eds.; Lecture Notes in Computer Science;
Springer: Berlin, Germany, 2012; Volume 7153, pp. 352–369.

53. Borodin, A.; Filmus, Y.; Oren, J. Threshold Models for Competitive Influence in Social Networks. In Proceedings
of the 6th International Conference on Internet and Network Economics (WINE’10), Stanford, CA, USA,
13–17 December 2010; pp. 539–550.

54. Chen, W.; Wang, Y.; Yang, S. Efficient Influence Maximization in Social Networks. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’09), Paris,
France, 28 June–1 July 2009; pp. 199–208.

55. Du, N.; Song, L.; Gomez-Rodriguez, M.; Zha, H. Scalable Influence Estimation in Continuous-Time Diffusion
Networks; NIPS: London, UK, 2013; pp. 3147–3155.

56. Aggarwal, C.C.; Reddy, C.K. (Eds.) Data Clustering: Algorithms and Applications; CRC Press: Boca Raton, FL,
USA, 2014.

57. Greco, S.; Masciari, E.; Pontieri, L. Combining inductive and deductive tools for data analysis. AI Commun.
2001, 14, 69–82.

58. Masciari, E.; Mazzeo, G.M.; Zaniolo, C. Analysing microarray expression data through effective clustering.
Inf. Sci. 2014, 262, 32–45. [CrossRef]

59. Mazzeo, G.M.; Masciari, E.; Zaniolo, C. A fast and accurate algorithm for unsupervised clustering around
centroids. Inf. Sci. 2017, 400, 63–90. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3196959.3196966
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1145/1376916.1376938
http://dx.doi.org/10.1109/TKDE.2014.2339816
http://dx.doi.org/10.14778/2876473.2876475
http://dx.doi.org/10.1145/2856059
http://dx.doi.org/10.1016/j.ins.2013.12.003
http://dx.doi.org/10.1016/j.ins.2017.03.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Preparation
	Dealing with Incomplete and Inconsistent Data
	Enriching the Data: Data Posting

	ERGM Sampling
	Metropolis–Hastings
	Using Clustering

	Experimental Evaluation
	Setup
	Evaluation

	Conclusions and Future Work
	References

