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Abstract: The binary discernibility matrix, originally introduced by Felix and Ushio, is a binary matrix
representation for storing discernible attributes that can distinguish different objects in decision
systems. It is an effective approach for feature selection, knowledge representation and uncertainty
reasoning. An original binary discernibility matrix usually contains redundant objects and attributes.
These redundant objects and attributes may deteriorate the performance of feature selection and
knowledge acquisition. To overcome this shortcoming, row relations and column relations in a binary
discernibility matrix are defined in this paper. To compare the relationships of different rows (columns)
quickly, we construct deterministic finite automata for a binary discernibility matrix. On this basis,
a quick algorithm for binary discernibility matrix simplification using deterministic finite automata
(BDMSDFA) is proposed. We make a comparison of BDMR (an algorithm of binary discernibility
matrix reduction), IBDMR (an improved algorithm of binary discernibility matrix reduction) and
BDMSDFA. Finally, theoretical analyses and experimental results indicate that the algorithm of
BDMSDFA is effective and efficient.
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1. Introduction

Decision making can be considered as the process of choosing the best alternative from the feasible
alternatives. With the development of research, decision making is extended from one attribute to
multiple attributes. To solve problems in multiple attribute decision making, various theories such as
fuzzy sets, rough sets and utility theory, etc. have been used. Many of significant results [1–8] have
been achieved in multiple attribute decision making. Researchers in rough set theory [9] are usually
concerned with attribute reduction (or feature selection) problems of multiple attribute decision
making. The binary discernibility matrix, proposed by Felix and Ushio [10], is a useful tool for
attribute reduction and knowledge acquisition. Recently, many algorithms of attribute reduction
based on binary discernibility matrices have been developed [11–13]. In 2014, Zhang et al. [14]
proposed a binary discernibility matrix for an incomplete information system, and designed
a novel algorithm of attribute reduction based on the proposed binary discernibility matrix. In the
paper [15], Li et al. developed an attribute reduction algorithm in terms of the improved binary
discernibility matrix, and applied the algorithm in customer relationship management. Tiwari et al. [16]
developed hardware for a binary discernibility matrix which can be used for attribute reduction
and rule acquisition in an information system. Considering mathematical properties of a binary
discernibility matrix, Zhi and Miao [17] introduced the so-called binary discernibility matrix reduction
(BDMR), which was actually an algorithm for binary discernibility matrix simplification. On the
basis of BDMR, two algorithms for attribute reduction and reduction judgement were presented.
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A binary discernibility matrix with a vertical partition [18] was proposed to deal with big data in
attribute reduction. Ren et al. [19] constructed an improved binary discernibility matrix which can
be used in an inconsistent information system. Ding et al. [20] discussed several problems about
a binary discernibility matrix in an incomplete system. Combining the binary discernibility matrix in
an incomplete system, an algorithm of incremental attribute reduction was proposed. In the paper [20],
a novel method for calculation of incremental core attribute was introduced firstly. On this basis,
an algorithm of attribute reduction was proposed. As is well known that core attributes play a crucial
role in heuristic attribute reduction algorithms. Core attributes are computationally expensive in
attribute reduction. Hu et al. [21] gave a quick algorithm of the core attribute calculation using a binary
discernibility matrix. The computational complexity of the algorithm is O(|C||U|), where |C| is the
number of condition attributes and |U| is the number of objects in the universe.

An original binary discernibility matrix usually contains redundant objects and attributes.
These redundant objects and attributes may deteriorate the performance of feature selection (attribute
reduction) and knowledge acquisition based on binary discernibility matrices. In other words,
storing or processing all objects and attributes in an original binary discernibility matrix could be
computationally expensive, especially in dealing with large scale data sets with high dimensions.
So far, however, few works about the binary discernibility matrix simplification have been investigated.
The existing algorithms regarding binary discernibility matrix simplification are time-consuming.
To tackle this problem, our works in this paper concern on how to improve the time efficiency of
algorithms of binary discernibility matrix simplification. On this purpose, we construct deterministic
finite automata in a binary discernibility matrix to compare the relationships of different rows
(or columns) quickly. By using deterministic finite automata, we develop a quick algorithm of
binary discernibility matrix simplification. Experimental results show that the proposed algorithm
is effective and efficient. The contributions of this paper are summarized as follows: First, we define
row and column relations which can be used for constructing deterministic finite automata in a binary
discernibility matrix. Second, deterministic finite automata in a binary discernibility matrix are
proposed to compare the relationships of different rows (or columns) quickly. Third, based on this
method, a quick algorithm for binary discernibility matrix simplification (BDMSDFA) is proposed.
The proposed method in this paper is meaningful in practical applications. First, by using BDMSDFA,
we obtain the simplified binary discernibility matrices quickly. These simplified binary discernibility
matrices can significantly improve the efficiency of attribute reduction (feature selection) in decision
systems. Second, a binary discernibility matrix without redundant objects and attributes will have the
high performance of learning algorithms, and need less space for data storage.

The rest of this paper is structured as follows. We review basic notions about rough set theory
in the next section. In Section 3, we propose a general binary discernibility matrix, and define row
relations and column relations in a binary discernibility matrix. In Section 4, we develop a quick
algorithm for binary discernibility matrix simplification which is called BDMSDFA. Experimental
results in Section 5 show that the algorithm of BDMSDFA is effective and efficient, it can be applicable
to simplification of large-scale binary discernibility matrices. Finally, the whole paper is summarized
in Section 6.

2. Preliminaries

Basic notions about rough set theory are briefly reviewed in this section. Some further details
about rough set theory can be found in the paper [9]. A Pawlak decision system can be regarded as an
original information system with decision attributes which give decision classes for objects.

A Pawlak decision system [9] can be denoted by 4-tuple DS = (U, AT, V, f ), where universe
U = {x1, x2, ..., x|U|} is a finite non-empty set of objects; attribute set AT = C ∪ D, C ∩ D = ∅,
where C = {a1, a2, ..., a|C|} is called a condition attribute set and D = {d} is called a decision attribute
set in a decision system; Vam is the domain of a condition attribute am ∈ AT, V = ∪am∈ATVam and
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f : U × AT → V is a function such that f (xi, am) = am(xi) ∈ Vam∈AT , f (xi, d) = d(xi) ∈ Vd∈AT ,
where xi ∈ U.

Given a Pawlak decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, an indiscernibility
relation regarding attribute set B ⊆ C is defined as IND(B) = {(xi, xj) : ∀b ∈ B, f (xi, b) = f (xj, b)}.
Therefore, the discernibility relation regarding attribute set B ⊆ C is given by DIS(B) = {(xi, xj) :
∃b ∈ B, f (xi, b) 6= f (xj, b)}. The indiscernibility relation regarding B ⊆ C is reflexive, symmetric
and transitive. Meanwhile, the discernibility relation is irreflexive, symmetric, but not transitive.
A partition of U derived from IND(B) is denoted by U/IND(B). The equivalence class in U/IND(B)
containing object xi is defined as [xi]IND(B) = [xi]B = {xj ∈ U : (xi, xj) ∈ IND(B)}.

For ∀B ⊆ C, the relative indiscernibility relation and discernibility relation with respect to decision
attribute set [9] are defined by:

IND(B|D) = {(xi, xj) : xi, xj ∈ U, (∀b ∈ B→ ( f (xi, b) = f (xj, b)) ∨ ( f (xi, d) = f (xj, d))},

DIS(B|D) = {(xi, xj) : xi, xj ∈ U, (∃b ∈ B→ ( f (xi, b) 6= f (xj, b)) ∧ ( f (xi, d) 6= f (xj, d))}.

A relative indiscernibility relation IND(B|D) with respect to B ⊆ C is reflexive, symmetric,
but not transitive. A relative discernibility relation DIS(B|D) with respect to B ⊆ C is irreflexive,
symmetric, but not transitive.

A discernibility matrix, proposed by Skowron and Rauszer [22], suggests a matrix representation
for storing condition attribute sets which can discern objects in the universe. Discernibility matrix
is an effective method in reduct construction, data representation and rough logic reasoning, and it
is also useful mathematical tool in data mining, machine learning, etc. Many extended models of
dicernibility matrices have been studied in recent years [23–30]. Considering the classification property
∆, Miao et al. [31] constructed a general discernibility matrix M∆ = (m∆(xi, xj)), where m∆(xi, xj) is
denoted by:

m∆(xi, xj) =

{
{a ∈ C : f (xi, a) 6= f (xj, a)}, (xi, xj) ∈ DIS∆(C|D)

∅ otherwise
,

where (xi, xj) ∈ DIS∆(C|D) denotes objects xi and xj are discernible with respect to the classification
property ∆ in a decision system DS. It should be noted that ∆ is a general definition on classification
property. A general discernibility matrix provides a common solution to attribute reduction algorithms
based on discernibility matrices. By constructing different discernibility matrices, the relative attribute
reducts with different reduction targets can be obtained. Based on the relative discernibility relation
DIS(C|D), Miao et al. [31] introduced a relationship preservation discernibility matrix which can be
denoted as follows:

Definition 1. [31] Let DS = (U, C ∪ D, V, f ) be a decision system, for ∀xi, xj ∈ U, ∀a ∈ C, 1 ≤
i < j ≤ |U|, Mrelationship = (mrelationship(xi, xj)) is a relationship preservation discernibility matrix,
where mrelationship(xi, xj) is defined by:

mrelationship(xi, xj) =

{
{a ∈ C : f (xi, a) 6= f (xj, a)} (xi, xj) ∈ DIS(C|D)

∅ otherwise
.

3. Binary Discernibility Matrices and Their Simplifications

The binary discernibility matrix, initiated by Felix and Ushio [10], is a binary presentation of
original discernibility matrix. In this section, we suggest a general binary discernibility matrix.
Relations of row pairs and column pairs are discussed respectively. Formally, a binary discernibility
matrix [10] is introduced as follows:
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Definition 2. [10] Given a decision system DS = (U, C ∪D, V, f ), for ∀xi, xj ∈ U and ∀am ∈ C. MBDM =

(mBDM(xi, xj)) is a binary discernibility matrix, where the element mBDM(xi, xj) is denoted by:

mBDM(xi, xj) =

{
1 f (xi, am) 6= f (xj, am) ∧ d(xi) 6= d(xj)

0 otherwise
.

Based on a binary discernibility matrix, discernible attributes about xi and xj can be easily
obtained. A binary discernibility matrix brings us an understandable approach for representations of
discernible attributes, and can be used for designing reduction algorithms. To satisfy more application
requirements, we extend original binary discernibility matrix to general binary discernibility matrix
as follows:

Definition 3. Given a decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, ∀am ∈ C, M∆
BDM

=

(m∆
BDM

(xi, xj)) regarding ∆ is a general binary discernibility matrix, in which m∆
BDM

(xi, xj) is defined by:

m∆
BDM

(xi, xj) =

{
1 (xi, xj) ∈ DIS∆(C|D)

0 otherwise
.

DIS∆(C|D) is the discernibility relation regarding classification property ∆. The set of rows in M∆
BDM

is presented by R = {r1, r2, ..., r|R|}, where |R| = (|U| × (|U| − 1))/2. The set of columns in M∆
BDM

is presented by C = {a1, a2, ..., a|C|}, where |C| is the cardinality of attribute sets in a decision system.
For convenience, a general binary discernibility matrix M∆

BDM
= (m∆

BDM
(xi, xj)) can be also denoted by

M∆
BDM

= (m∆
BDM

(em
p , em

q )). For ∀am ∈ C, ∀rp, rq ∈ R, em
P

is the matrix element at row rp and column
am in M∆

BDM
, and em

q is the matrix element at row rq and column am in M∆
BDM

, where 1 ≤ p < q ≤
(|U| × (|U| − 1))/2, 1 ≤ m ≤ |C|.

Since a general binary discernibility matrix provides a common structure of binary discernibility
matrices in rough set theory, one can construct a binary discernibility matrix according to a given
classification property. Any binary discernibility matrix can be also regarded as the special case of the
general binary discernibility matrix. Therefore, a general definition of binary discernibility matrix is
necessary and important. Based on the relative discernibility relation with respect to D, Definition 2
can be also rewritten as follows:

Definition 4. Given a decision system DS = (U, C ∪ D, V, f ), for ∀xi, xj ∈ U, ∀am ∈ C, DIS(C|D) is the
relative discernibility relation with respect to a condition attribute set C. MBDM = (mBDM(xi, xj)) is a binary
discernibility matrix, in which the element mBDM(xi, xj) is denoted by:

mBDM(xi, xj) =

{
1 (xi, xj) ∈ DIS(C|D)

0 otherwise
.

This definition is equivalent to Definition 2 [10]. It is noted that we calculate binary discernibility
matrix in this paper by using the relationship preservation discernibility matrix.

Definition 5. For ∀am ∈ C, ∀rp, rq ∈ R, em
P

and em
q are elements in a binary discernibility matrix M

BDM
=

(mBDM(xi, xj)), a row pair with respect to attribute am is denoted by < em
p , em

q >∈ {< 0,0 >, < 0,1 >, < 1,0 >,
< 1,1 >}, a binary relation between row rp and rq is defined as Rrow = {< em

p , em
q >: 1 ≤ p < q ≤ |R|}.

Similar to Definition 5, we define a column pair and a binary relation with respect to columns
as follows.
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Definition 6. For ∀am, an ∈ C, ∀rp ∈ R, elements em
P

and en
p in a binary discernibility matrix M

BDM
=

(mBDM(xi, xj)), a column pair with respect to row rp is denoted by < em
p , en

p >∈ { < 0,0 >, < 0,1 >, < 1,0 >,
< 1,1 >}, a binary relation between column am and an is defined as Rcol = {< em

p , en
p >: 1 ≤ m < n ≤ |C|}.

For the matrix element em
p and em

q in the same column am, we define three row relations in a binary
discernibility matrix as follows.

Definition 7. Given a binary discernibility matrix M
BDM

= (mBDM(xi, xj)), ∀rp, rq ∈ R,

(1) for ∀am ∈ C, ∃an ∈ C, rp ⊃ rq if and only if em
p + em

q = em
p and en

p 6= en
q ; for ∀am ∈ C, ∃an ∈ C,

rq ⊃ rp if and only if em
q + em

p = em
q and en

q 6= en
p;

(2) for ∀am ∈ C, rp = rq if and only if em
p = em

q ;
(3) for ∃am, an ∈ C, rp 6= rq if and only if em

p + em
q = em

q (em
p 6= em

q ) and en
p + en

q = en
p (en

p 6= en
q ).

Analogous to Definition 7, for matrix elements em
p and en

p in the same row rp, we define column
relations in a binary discernibility matrix as follows.

Definition 8. Given a binary discernibility matrix M
BDM

= (mBDM(xi, xj)), ∀am, an ∈ C,

(1) for ∀rp ∈ R, ∃rq ∈ R, am ⊃ an if and only if em
p + en

p = em
p and em

q 6= en
q ; for ∀rp ∈ R, ∃rq ∈ R,

an ⊃ am if and only if en
p + em

p = en
p and en

q 6= em
q ;

(2) for ∀rp ∈ R, am = an if and only if em
p = en

p;
(3) for ∃rp, rq ∈ R, am 6= an if and only if em

p + en
p = em

p (em
p 6= en

p) and em
q + en

q = en
q (em

q 6= en
q ).

Let Ap be the elements’ set of a prime implicant in a disjunctive normal form with row rp and
Aq be the elements’ set of a prime implicant in a disjunctive normal form with row rq, then rp ⊃ rq

means that Ap is the superset of Aq. For ∀am, an ∈ C, am ⊃ an indicates attribute am can distinguish
more objects in the universe. In a binary discernibility matrix, the row in which all elements are 0s
indicates there are no attribute can discern the related objects, and the column in which all elements
are 0s indicates that this attribute cannot discern objects in the universe.

In [17], Zhi and Miao first proposed an algorithm of a binary discernibility matrix simplification
shown in Algorithm 1. To improve the efficiency of BDMR, Wang et al. [32] introduced an improved
algorithm of binary discernibility matrix reduction shown in Algorithm 2.

Algorithm 1 : An algorithm of binary discernibility matrix reduction, BDMR.

Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: for p = 1 to |R| do
3: for q = 1 to |R| do
4: if rp ⊃ rq then
5: delete row rp
6: break
7: end if
8: end for
9: end for

10: delete the column in which all elements are 0 s;
11: for m = 1 to |C| do
12: for n = 1 to |C| do
13: if an ⊃ am then
14: delete column am
15: break
16: end if
17: end for
18: end for
19: output a simplified binary discernibility matrix M′BDM;
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Algorithm 2 : An improved algorithm of binary discernibility matrix reduction, IBDMR.

Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: sort rows in ascending order by the quantity of the number ‘1’ in each row
3: for p = 1 to |R| do
4: for q = 1 to |R| do
5: if rp ⊃ rq then
6: delete row rp
7: break
8: end if
9: end for

10: end for
11: delete the column in which all elements are 0 s;
12: for m = 1 to |C| do
13: for n = 1 to |C| do
14: if an ⊃ am then
15: delete column am
16: break
17: end if
18: end for
19: end for
20: output a simplified binary discernibility matrix M′BDM;

4. A Quick Algorithm for Binary Discernibility Matrix Simplification

In this section, we investigate two theorems related to row relations and column relations
respectively. Based on the two theorems, deterministic finite automata for row and column relations
are introduced. Deterministic finite automata can be carried out to obtain the row relations and
column relations quickly. By using deterministic finite automata, we propose an algorithm of binary
discernibility matrix simplification using deterministic finite automata (BDMSDFA).

Theorem 1. Let MBDM = (mBDM(xi, xj)) be a binary discernibility matrix, for ∀am ∈ C, ∀rp, rq ∈ R,
|R| = (|U| × (|U| − 1))/2, we have:

(1) if rp ⊃ rq, then there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|};
(2) if rq ⊃ rp, then there exists < 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|};

(3) if rp = rq, then there exists < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or
< 1, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|};

(4) if rp 6= rq, then there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and
< 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|}.

Proof.

(1) If there does not exist < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}, then < 0, 0 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|} or < 0, 1 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} or

< 1, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}. We have seven binary relations as follows: {< 0, 0 >},
{< 0, 1 >}, {< 1, 1 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 1 >,< 1, 1 >} and
{< 0, 0 >,< 0, 1 >,< 1, 1 >}. From seven binary relations above, if ∀am ∈ C, ∃an ∈ C,
one cannot get em

p + em
q = em

p (en
p 6= en

q ). Thus, there exists < 1, 0 >∈ {< em
p , em

q >: 1 ≤
p < q ≤ |R|} in MBDM.

(2) If there does not exist < 0, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}, then < 0, 0 >∈ {< em
p , em

q >:
1 ≤ p < q ≤ |R|} or < 1, 0 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {< em

p , em
q >:
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1 ≤ p < q ≤ |R|}. Thus, we can also have seven binary relations as follows: {< 0, 0 >},
{< 1, 0 >}, {< 1, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 1, 0 >,< 1, 1 >} and
{< 0, 0 >,< 1, 0 >,< 1, 1 >}. From seven binary relations above, if ∀am ∈ C and ∃an ∈ C,
one cannot get em

p + em
q = em

q (en
q 6= en

p). Thus, there exists < 0, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤
|R|} in MBDM.

(3) If there does not exist < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {< em
p , em

q >:
1 ≤ p < q ≤ |R|}. There must have seven binary relations as follows: {< 0, 1 >}, {< 1, 0 >},
{< 0, 1 >,< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 1, 1 >,< 0, 1 >},
{< 1, 1 >,< 1, 0 >}. From seven binary relations above, we cannot have em

p = em
q . Thus, there

exists < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}} or < 1, 1 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}}
in MBDM.

(4) If there does not exist < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. We may obtain eleven binary relations as follows:

{< 0, 0 >}, {< 1, 1 >}, {< 0, 1 >}, {< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >},
{< 1, 1 >,< 0, 1 >}, {< 1, 1 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 0 >,< 1, 1 >,< 0, 1 >},
{< 0, 0 >,< 1, 1 >,< 1, 0 >}. From eleven binary relations, for ∀am ∈ C, we cannot have
em

p 6= em
q . Thus, there exists < 1, 0 >∈ {< em

p , em
q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈ {<

em
p , em

q >: 1 ≤ p < q ≤ |R|} in MBDM.

This completes the proof.

Analogous to Theorem 1, we can easily obtain the following theorem as:

Theorem 2. Let MBDM = (mBDM(xi, xj)) be a binary discernibility matrix, for ∀am, an ∈ C, ∀rp ∈ R,
we can have:

(1) if am ⊃ an, then there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|};
(2) if an ⊃ am, then there exists < 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|};

(3) if am = an, then there exists < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or
< 1, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|};

(4) if am 6= an, then there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} and
< 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|}.

Proof.

(1) If there does not exist < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}, then < 0, 0 >∈ {<
em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 0, 1 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈

{< em
p , en

p >: 1 ≤ m < n ≤ |C|}. We have seven binary relations as follows: {< 0, 0 >},
{< 0, 1 >}, {< 1, 1 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 1 >,< 1, 1 >} and
{< 0, 0 >,< 0, 1 >,< 1, 1 >}. From seven binary relations above, if ∀rp ∈ R, ∃rq ∈ R, one cannot
get em

p + en
p = em

p (em
q 6= en

q ). Thus, there exists < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}
in MBDM.

(2) If there does not exist < 0, 1 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|}, then < 0, 0 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|} or < 1, 0 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em

p , en
p >:

1 ≤ m < n ≤ |C|}. Thus, we can also have seven binary relations as follows: {< 0, 0 >},
{< 1, 0 >}, {< 1, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 1, 0 >,< 1, 1 >}
and {< 0, 0 >,< 1, 0 >,< 1, 1 >}. From seven binary relations above, if ∀rp ∈ R and ∃rq ∈ R,
one cannot get em

p + en
p = en

p(em
q 6= en

q ). Thus, there exists < 0, 1 >∈ {< em
p , en

p >: 1 ≤ m < n ≤
|C|} in MBDM.

(3) If there does not exist < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|}. There must have seven binary relations as follows: {< 0, 1 >}, {< 1, 0 >},
{< 0, 1 >,< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >}, {< 1, 1 >,< 0, 1 >},
{< 1, 1 >,< 1, 0 >}. From seven binary relations above, we cannot have em

p = en
p. Thus,
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there must exists < 0, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} or < 1, 1 >∈ {< em
p , en

p >:
1 ≤ m < n ≤ |C|} in MBDM.

(4) If there does not exist < 1, 0 >∈ {< em
p , en

p >: 1 ≤ m < n ≤ |C|} and < 0, 1 >∈
{< em

p , en
p >: 1 ≤ m < n ≤ |C|}. We may obtain eleven binary relations as follows:

{< 0, 0 >}, {< 1, 1 >}, {< 0, 1 >}, {< 1, 0 >}, {< 0, 0 >,< 0, 1 >}, {< 0, 0 >,< 1, 0 >},
{< 1, 1 >,< 0, 1 >}, {< 1, 1 >,< 1, 0 >}, {< 0, 0 >,< 1, 1 >}, {< 0, 0 >,< 1, 1 >,< 0, 1 >},
{< 0, 0 >,< 1, 1 >,< 1, 0 >}. From eleven binary relations, for ∀rp ∈ R, we cannot have
em

p 6= en
p. Thus, there exists < 1, 0 >∈ {< em

p , en
p >: 1 ≤ m < n ≤ |C|} and < 0, 1 >∈ {<

em
p , en

p >: 1 ≤ m < n ≤ |C|} in MBDM.

This completes the proof.

Deterministic finite automaton, also called deterministic finite acceptor, is an important concept
in theory of computation. A deterministic finite automaton constructs a finite-state machine which
can accept or reject symbol strings, and produce a computation of automation for each input string.
In what follows, we adopt deterministic finite automata to obtain row relations and column relations
in a binary discernibility matrix. Here, we first review the definition of deterministic finite automaton
as follows.

Definition 9. A deterministic finite automaton is a 5-tuple (Q, ∑, δ, S0, F), where Q is a finite nonempty set
of states, ∑ is a finite set of input symbols, δ is a transition function, S0 ∈ Q is a start state, F is a set of
accept states.

Regarding object pair ‘em
p em

q ’ as the basic granule in input symbols, a deterministic finite automaton
for row relations in a binary discernibility matrix is illustrated by the following theorem:

Theorem 3. A deterministic finite automaton for row relations, denoted by DFArow, is a 5-tuple
(Q, ∑, δ, S0, F), where Q = {S0, S1, S2, S3, S4} is a finite set of states, ∑ = {e0

pe0
qe1

pe1
q . . . em

p em
q em+1

p em+1
q . . .

e|C|p e|C|q }(1 < m < |C|, rp, rq ∈ R) is an input binary character string, δ is a transition function, S0 ∈ Q is a
start state, F = {S1, S2, S3, S4} is a set of accept states. A deterministic finite automaton for row relations can
be illustrated in Figure 1 as follows.

S0

S3S1 S2

S4

Figure 1. A Deterministic Finite Automaton for Row Relations.

Proof. In a binary discernibility matrix, relations between rp and rq can be concluded as rq ⊃ rp,
rp = rq, rp ⊃ rq and rp 6= rq.

We discuss a deterministic finite automaton for row relations from four parts separately, as follows.

(1) According to Definition 5 and Theorem 1, for ∀am ∈ C, ∀rp, rq ∈ R, there must be < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. Thus, the regular expression for rq ⊃ rp can be defined as
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[(00/11)∗(01)+(00/11)∗]+. We can easily have the corresponding deterministic finite automaton
in Figure 2 as:

S0 S1

Figure 2. A Deterministic Finite Automaton for rq ⊃ rp.

(2) For rp = rq, there must be < 0, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} or < 1, 1 >∈ {<
em

p , em
q >: 1 ≤ p < q ≤ |R|}. The regular expression for rp = rq is denoted by (00/11)+.

So, the corresponding deterministic finite automaton can be illustrated in Figure 3 as:

S0 S2

Figure 3. A Deterministic Finite Automaton for rp = rq.

(3) Analogous to rp ⊃ rq, for rp, rq ∈ R, there must be < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|}.
Therefore, the regular expression for rp ⊃ rq can be obtained as [(00/11)∗(10)+(00/11)∗]+.
We can easily have the corresponding deterministic finite automaton in Figure 4 as:

S0 S3

Figure 4. A Deterministic Finite Automaton for rp ⊃ rq.

(4) For rp 6= rq, there must be < 1, 0 >∈ {< em
p , em

q >: 1 ≤ p < q ≤ |R|} and < 0, 1 >∈
{< em

p , em
q >: 1 ≤ p < q ≤ |R|}. The regular expression for rp 6= rq is denoted

by [(00/11)∗(01)+(00/11)∗(10)+(00/11)∗]+/[(00/11)∗(10)+(00/11)∗(01)+(00/11)∗]+. Hence,
the corresponding deterministic finite automaton can be illustrated in Figure 5 as:

S0

S4S1 S3

Figure 5. A Deterministic Finite Automaton for rp 6= rq.

One can construct a deterministic finite automaton for row relations by four deterministic finite
automata shown in Figure 1.

This completes the proof.

Similar to the deterministic finite automaton for row relations, we present the deterministic finite
automaton for column relations in a binary discernibility matrix as follows.
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Theorem 4. A deterministic finite automaton for column relations DFAcol is a 5-tuple (Q, ∑, δ, S0, F),
where Q = {S0, S1, S2, S3, S4} is a finite set of states, ∑ = {em

0 en
0 em

1 en
1 . . . em

p en
pem

p+1en
p+1 . . . em

|R|e
n
|R|} (1 <

p < |R|, ∀am, an ∈ C) is an input binary character string, δ is a transition function, S0 ∈ Q is a start state.
F = {S1, S2, S3, S4} is a set of accept states. A deterministic finite automaton for column relations can be
illustrated in Figure 6 as follows:

S0

S3S1 S2

S4

Figure 6. A Deterministic Finite Automaton for Column Relations.

Proof. This proof is similar to the proof of Theorem 3.

By means of the proposed deterministic finite automata for row and column relations, we propose
a quick algorithm for binary discernibility matrix simplification using deterministic finite automata
(BDMSDFA) as follows:

We present the following example to explain Algorithm 3 as follows.

Algorithm 3 : A quick algorithm for binary discernibility matrix simplification using deterministic
finite automata, BDMSDFA.
Input: Original binary discernibility matrix MBDM;
Output: Simplified binary discernibility matrix M

′
BDM

1: delete the row in which all elements are 0 s;
2: compare the row relation between rp and rq by DFArow
3: for p = 1 to |R| do
4: for q = 1 to |R| do
5: if rp ⊃ rq then
6: delete row rp from MBDM
7: break
8: end if
9: end for

10: end for
11: delete the column in which all elements are 0 s;
12: compare the column relation between am and an by DFAcol
13: for m = 1 to |C| do
14: for n = 1 to |C| do
15: if an ⊃ am then
16: delete column am from MBDM
17: break.
18: end if
19: end for
20: end for
21: output a simplified binary discernibility matrix M′BDM;
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Example 1. Let DS = (U, C ∪ D, V, f ) be a decision system shown Table 1, where the universe
U = {x1, x2, x3, x4, x5}, the condition attribute set C = {a1, a2, a3, a4}, the decision attribute set D = {d}.

Table 1. A decision system.

a1 a2 a3 a4 d

x1 1 2 0 0 1
x2 1 2 0 0 1
x3 1 2 1 1 2
x4 1 3 1 1 3
x5 2 4 1 1 4

For the decision system above, we have the corresponding binary discernibility matrix as follows:

M1
BDM =



0 0 0 0
0 0 1 1
0 1 1 1
1 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
0 1 0 0
1 1 0 0
1 1 0 0


.

We delete the row in which all elements are 0 s in M1
BDM , and obtain the binary discernibility matrix

M2
BDM as follows.

M2
BDM =



0 0 1 1
0 1 1 1
1 1 1 1
0 0 1 1
0 1 1 1
1 1 1 1
0 1 0 0
1 1 0 0
1 1 0 0


.

In the binary discernibility matrix M2
BDM, r1 : 0011, r2 : 0111, r3 : 1111, r4 : 0011, r5 : 0111, r6 : 1111,

r7 : 0100, r8 : 1100, r9 : 1100. According to the definition of the deterministic finite automaton for row
relations, we have ∑12 = 00011111, ∑13 = 01011111, ∑14 = 00001111, ∑15 = 00011111, ∑16 = 01011111,
∑17 = 00011010, ∑18 = 01011010, ∑19 = 01011010. By using the deterministic finite automaton for row
relations shown in Figure 1, we can get the row relations as follows. r2 ⊃ r1, r3 ⊃ r1, r4 = r1, r5 ⊃ r1, r6 ⊃ r1,
r7 6= r1, r8 6= r1, r9 6= r1. Therefore, we delete r2, r3, r5 and r6. Similarly, we get r8 ⊃ r7 and r9 ⊃ r7, r4 6= r7,
and then delete r8 and r9. Therefore, we have the following binary discernibility matrix:

M3
BDM =

0 0 1 1
0 0 1 1
0 1 0 0

 .
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We delete the column in which all elements are 0 s in M3
BDM, and have

M4
BDM =

0 1 1
0 1 1
1 0 0

 .

In the binary discernibility matrix M4
BDM, a1 : 001, a2 : 110, a3 : 110. According to the definition of

deterministic finite automaton for column relations, we have ∑12 = 010110, ∑13 = 010110, ∑23 = 111100.
By using the deterministic finite automaton for column relations shown in Figure 6, we have a1 6= a2, a1 6= a3,
a2 = a3. Thus, we cannot delete any column in M4

BDM, and get the following binary discernibility matrix.

M5
BDM =

0 1 1
0 1 1
1 0 0

 .

A 10× 4 matrix M1
BDM is compressed to a 3× 3 matrix M5

BDM. The simplified binary discernibility
matrix with fewer objects or columns will be help in improving the efficiency of attribute reduction.

Assume that t = |R| and s = |C|, the upper bound of time complexity of BDMR is 3ts(t + s− 2),
the lower bound of time complexity of BDMR is 2ts(t + s− 2). The upper bound of time complexity
of IBDMR is 3ts(t + s − 2) and the lower bound of the worst-case time complexity of IBDMR is
2ts(t + s− 2). By employing deterministic finite automata, the algorithm complexity of BDMSDFA is
ts(t + s− 2). Obviously, the time complexity of BDMSDFA is lower than that of BDMR and IBDMR.
Therefore, it is concluded that the proposed algorithm BDMSDFA reduces the computational time for
binary discernibility matrix simplification in general.

The advantages of the proposed method are expressed as follows. (1) Deterministic finite automata
in a binary discernibility matrix are constructed, it can provide an understandable approach to
comparing the relationships of different rows (columns) quickly. (2) Based on deterministic finite
automata, a high efficiency algorithm of binary discernibility matrix simplification is developed.
Theoretical analyses and experimental results indicate that the proposed algorithm is effective and
efficient. It should be noted that the proposed method is based on Pawlak decision systems, but not
suitable for generalized decision systems, such as incomplete decision systems, interval-valued
decision systems and fuzzy decision systems. Deterministic finite automata in generalized decision
systems will be investigated in the future.

5. Experimental Results and Analyses

The objective of the following experiments in this section is to demonstrate the high efficiency of
the algorithm BDMSDFA. The experiments are divided into two aspects. In one aspect, we employ
10 datasets in Table 2 to verify the performance of time consumption of BDMR, IBDMR and BDMSDFA.
In the other aspect, the computational times of algorithms BDMR, IBDMR and BDMSDFA with
the increase of the size of attributes (or objects) are calculated respectively. We carry out three
algorithms on a personal computer with Windows 8.1 (64 bit) and Inter(R) Core(TM) i5-4200U, 1.6 GHz
and 4 GB memory. The software is Microsoft Visual Studio 2017 version 15.9 and C++. Data sets
used in the experiments are all downloaded from UCI repository of machine learning data sets
(http://archive.ics.uci.edu/ml/datasets.html).

Table 2 indicates the computational time of BDMR, IBDMR and BDMSDFA on the 10 data sets.
We can see that the algorithm BDMSDFA is much faster than the algorithms BDMR and IBDMR.
The computational times of three algorithms follows this order: BDMR ≥ IBDMR > BDMSDFA.
The computational time of BDMSDFA is the minimum among the three algorithms. For the data set
Auto in Table 2, the computational times of BDMR and IBDMR are 75 ms and 68 ms, while that of
BDMSDFA is 36 ms. For the data set Credit_a, the computational times of BDMR and IBDMR are

http://archive.ics.uci.edu/ml/datasets.html
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113 ms and 105 ms, while that of BDMSDFA is 55 ms. For some data sets in Table 2, the computational
time of BDMSDFA can reduce over half the computational time of BDMR or IBDMR. In Table 2, for the
data set Breast_w, the computational times of BDMR and IBDMR are 75 ms and 73 ms, while that of
BDMSDFA is 29 ms. For the data set Promoters, the computational times of BDMR and IBDMR are
1517 ms and 936 ms, while that of BDMSDFA is only 398 ms. For the date sets such as Lung-cancer,
Credit_a, Breast_w, Anneal, the computational time of BDMR is close to that of IBDMR. For the data
set Labor_neg, the computational time of BDMR is equivalent to that of IBDMR. For each data set in
Table 2, difference between BDMR and IBDMR is relatively smaller than difference between BDMR
(IBDMR) and BDMSDFA.

Table 2. Time consumption of BDMR, IBDMR and BDMSDFA.

Data Sets Num. of
Objects

Num. of
Attributes

Num. of
Rows

Num. of
Columns

Time of
BDMR (ms)

Time of
IBDMR (ms)

Time of
BDMSDFA (ms)

Labor_neg 40 15 52 14 2 2 1
Lung-cancer 32 57 206 53 11 9 3
Heart_statlog 270 14 96 13 32 27 14

Autos 250 26 36 19 75 68 36
Credit_a 690 16 27 12 113 105 55
Breast_w 699 10 20 9 75 73 29
Anneal 898 39 9 9 206 194 134

Promoters 106 58 2761 57 1517 936 398
Dermatology 366 35 1347 31 3239 2638 1318

Connect_4 67,557 43 697 42 2,444,328 2,433,863 1,759,917

We compare the computational times of BDMR, IBDMR and BDMSDFA with the increase of the
size of objects. In Figure 7a–f, the x-coordinate pertains to the size of objects in the universe, while the
y-coordinate concerns the time consumption of algorithms. We employ 6 data sets (Dermatlogy,
Credit_a, Controceptive_Method_Choice, Letter, Flag and Mushroom) to verify the performance of
time consumption of BDMR, IBDMR and BDMSDFA. When dealing with the same UCI data sets,
the computational time of BDMSDFA is less than that of BDMR and IBDMR, in other words, BDMSDFA
is more efficient than BDMR and IBDMR. Figure 7 shows more detailed change trends of each algorithm
with the number of objects increasing. The computational times of three algorithms increase with the
increase of the number of objects simultaneously. It is obvious to see that the slope of the curve of
BDMSDFA is smaller than the curve of BDMR or IBDMR, and the computational time of BDMSDFA
increases slowly. The differences between BDMR (IBDMR) and BDMSDFA become distinctly larger
when the size of the objects increases. In Figure 7c, the difference of BDMR (IBDMR) and BDMSDFA
is not obviously different at the beginning. The computational time of DBMR (IBDMR) increases
distinctly when the number of objects is over 450. The computational time of algorithm BDMR
increases by 479 ms when the number of objects rises from 450 to 1473, whereas the computational
time of algorithm BDMSDFA increases by only 141 ms. In Figure 7e, the computational time of the
algorithm IBDMR increases by 104 ms when the number of objects rises from 20 to 160, whereas the
time consumption of algorithm BDMSDFA increases by only 49.
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Figure 7. (a) Dermatlogy; (b) Credit_a; (c) Controceptive_Method_Choice; (d) Letter; (e) Flag; (f) Mushroom.

In Figure 8a–f, the x-coordinate pertains to the size of attributes, while the y-coordinate
concerns the time consumption of algorithms. We also take 6 data sets (Dermatlogy, Credit_a,
Controceptive_Method_Choice, Letter, Flag and Mushroom) to verify the performance of the
computational times of BDMR, IBDMR and BDMSDFA. The curve of BDMR is similar to that of
IBDMR. The curve of BDMSDFA is under the curves of BDMR and IBDMR. Then, the computational
time of BDMSDFA is less than that of BDMR or IBDMR. In Figure 8b, the computational time of
algorithms BDMR and IBDMR increase by 164 ms and 123 ms respectively, while the computational
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time of algorithm BDMSDFA increases by 58 ms. In Figure 8c, the curves of BDMR and IBDMR
raise profoundly when the size of the attributes increases. In Figure 8e, the computational time of
algorithm IBDMR increases from 4 ms to 105 ms when the number of objects rises from 3 to 24,
while the computational time of algorithm BDMSDFA increasedly from 2 ms to 50 ms. For Figure 8a–f,
it is concluded that the efficiency of BDMSDFA is higher than that of BDMR or IBDMR with the
increase of the number of attributes. Difference between BDMR and IBDMR is relatively smaller than
difference between BDMR (IBDMR) and BDMSDFA. The computational times of three algorithms
increase with the increase of the number of attributes monotonously. When dealing with the same
situation, the computational time of BDMSDFA is the minimum among the three algorithms.
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Figure 8. (a) Dermatlogy; (b) Credit_a; (c) Controceptive_Method_Choice; (d) Letter; (e) Flag; (f) Mushroom.
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Experimental analyses and results show a high efficiency of the algorithm BDMSDFA. The proposed
simplification algorithm using deterministic finite automata can be applied as a preprocessing
technique for data compression and attribute reduction in large-scale data sets.

6. Conclusions

Original binary discernibility matrices which are not simplified usually have irrelative objects
and attributes. These irrelative objects and attributes may lead to inefficiency in attribute reduction,
knowledge acquisition, etc. To tackle this problem, a quick method of comparing the relationships of
different rows (columns) are introduced in binary discernibility matrices. By using deterministic finite
automata, a quick algorithm for binary discernibility matrix simplification (BDMSDFA) is developed.
The experiment results indicate that DBMSDFA can get higher performance in the efficiency of binary
discernibility matrix simplification. The contributions of this paper can be summarized as follows.

(1) We define row (or column) relations which are used for constructing deterministic finite automata.
(2) Deterministic finite automata are firstly used for comparing the relationships of different rows

(columns) in a binary discernibility matrix.
(3) Based on deterministic finite automata, a quick algorithm for binary discernibility matrix

simplification is developed. Experimental results indicate that the relationship between the time
consumption of BDMSDFA and the number of objects (attributes) is strictly monotonic. With the
increase of the size of objects (attributes), the algorithm BDMSDFA is more efficient than BDMR
and IBDMR.

It is noted that the proposed quick simplification algorithm for discernibility matrix is only
suitable for completed decision systems. However, in practical applications, there exists many
generalized decision systems, such as incomplete decision systems, interval-valued decision systems,
etc. Researches on quick simplification algorithms in generalized decision systems will be investigated.
Combing the researches on fuzzy sets [33–36], we will propose the fuzzy binary discernibility matrix.
Some applications of the (fuzzy) binary discernibility matrix simplification will also be studied in
the future.
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