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Abstract

:

Multi-valued neutrosophic sets (MVNSs) consider the truth-membership, indeterminacy-membership, and falsity-membership simultaneously, which can more accurately express the preference information of decision-makers. In this paper, the normalized multi-valued neutrosophic distance measure is developed firstly and the corresponding properties are investigated as well. Secondly, the normalized multi-valued neutrosophic distance difference is defined and the corresponding partial ordering relation is discussed. Thirdly, based on the developed distances and comparison method, an extended multi-valued neutrosophic QUALItative FLEXible multiple criteria (QUALIFLEX) method is proposed to handle MCDM problems where the weights of criteria are completely unknown. Finally, an example for selection of medical diagnostic plan is provided to demonstrate the proposed method, together with sensitivity analysis and comparison analysis.
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1. Introduction


Recently, neutrosophic sets (NSs) [1,2,3] have become very useful in many areas [4,5,6,7,8] since they collect data and provide some available information. However, because of the complexity and ambiguity of information in the real decision-making process, it is difficult for decision-makers to express their preference accurately by using their extensions, including single-valued neutrosophic sets (SNSs) [9,10] and interval neutrosophic sets (INSs) [11], interval-valued neutrosophic soft sets [12], neutrosophic soft multi-set [13], and neutrosophic refined sets [14]. Then, based on the definitions of SNSs and the hesitant fuzzy sets (HFSs) [15,16], Wang and Li [17] and Ye [18] defined the concept of multi-valued neutrosophic sets (MVNSs) and single-valued neutrosophic hesitant fuzzy sets (SVNHFSs), respectively. MVNSs and SVNHFSs are denoted by truth-membership, indeterminacy-membership, and falsity-membership functions, which comprise of a set of numerical numbers between zero and one. In recent years, MVNSs and SVNHFSs have been extensively studied and applied to different fields. For example, Peng et al. [19,20,21,22] defined multi-valued neutrosophic preference relations, outranking relations and aggregation operators. Ji et al. [23] defined an extended an acronym in Portuguese of the Interactive and Multicriteria Decision Making (TODIM) method with multi-valued neutrosophic information. Finally, based on the concept of MVNSs, Peng et al. [24] defined probability MVNSs, and Wu and Wang [25] investigated some cross-entropy measures of MVNSs and applied them to the selection of a middle-level manager.



Furthermore, those aforementioned methods with MVNSs always involve in operations and measures which impact on the final decision-making may be momentous. However, there exist other methods to avoid these defects, namely the relation model. Relation models could rank the alternatives in terms of priority among the criteria by using outranking relations or priority functions, such as Elimination Et Choix Traduisant la REalité (ELECTRE) [26,27] and QUALItative FLEXible multiple criteria method (QUALIFLEX) [28,29,30].



The QUALIFLEX method, which was introduced by Paelinck [28,29,30], is an effective outranking method to handle multi-criteria decision-making (MCDM) problems by arranging a set of preference rankings [31,32]. Moreover, QUALIFLEX method assumes that all possible permutations of the alternatives are determined. Then the best permutation can be identified by maximizing the concordance/discordance index value based on the pair-wise comparisons of alternatives under each criterion [33,34]. The principal advantage of QUALIFLEX method is that it can effectively handle decision-making problems where the criteria numbers are more than the alternative numbers obviously. Recently, several extended QUALIFLEX methods have been developed [35,36,37,38,39]. Moreover, Ji et al. [40] defined a triangular neutrosophic QUALIFLEX-TODIM method for treatment selection. Li and Wang [41] developed a probability hesitant fuzzy QUALIFLEX method to select green suppliers.



Based on the aforementioned studies, some attempts have been made to define outranking relations, preference, aggregation operators, and cross-entropy measures of MVNSs. According to the existing distances between MVNSs, the TODIM method proposed by Wang and Li [17] and Ji et al. [40] forms part of the multi-valued neutrosophic distance, which is a simple extension based on the Hamming distance. Moreover, if the distance of SNSs and HFSs were extended to MVNSs, then this should satisfy the conditions that two MVNSs should be of equal length, i.e., the lengths of the three memberships should be equal and ranked in ascending order; otherwise it needs to add the same element to the shorter one. Thus, in order to address this shortcoming, the main goals of this paper are: (1) provide the improved distance measure of MVNSs and the corresponding distance difference; and (2) extend the QUALIFLEX method to a multi-valued neutrosophic environment based on the proposed distance difference.



The paper is constructed as follows: In Section 2, some definitions and operations of MVNSs are introduced. Then the normalized multi-valued neutrosophic distance measure and corresponding difference distance as well as comparison method are developed in Section 3. The multi-valued distance-based QUALIFLEX method with incomplete weight information is constructed in Section 4. In Section 5, the selection of a medical diagnostic plan is presented to demonstrate the proposed approach. Finally, we summarize the paper with further discussion in Section 6.




2. MVNSs


Some definitions and operations of MVNSs are reviewed in this section, which will be utilized in later analysis.



Definition 1.

[17,18] A MVNS Min a space of points (objects) Xcan be expressed as M={⟨x,T˙(x),I˙(x),F˙(x)⟩|x∈X}. T˙(x), I˙(x), and F˙(x)are denoted by HFSs respectively, i.e., three sets of numerical number in [0,1], denoting the truth-membership degree, indeterminacy-membership function and falsity-membership degree respectively, and satisfying 0≤γ, η, ξ≤1, 0≤γ++η++ξ+≤3, where γ∈T˙(x), η∈I˙(x), ξ∈F˙(x), γ+=supT˙(x), η+=supI˙(x)and ξ+=supF˙(x).



If there exists only one element inX, thenMis called a multi-valued neutrosophic number (MVNN), denoted byM=⟨T˙(x),I˙(x),F˙(x)⟩. For convenience, a MVNN can be denoted byM=⟨T˙,I˙,F˙⟩.





Definition 2.

[19] Let M∈MVNSs, the complement of Mcan be defined as MC={⟨x,T˙C(x),I˙C(x),F˙C(x)⟩|x∈X}. Here T˙C(x)=∪ξ∈F˙(x){ξ(x)}, I˙C(x)=∪η∈I˙(x){1−η(x)}and F˙C(x)=∪γ∈T˙(x){γ(x)}for all x∈X.





Definition 3.

LetM1={⟨x,T˙1(x),I˙1(x),F˙1(x)⟩|x∈X}andM2={⟨x,T˙2(x),I˙2(x),F˙2(x)⟩|x∈X}be two MVNSs. Then we haveM1⊆M2ifγ1(x)≤γ2(x), η1(x)≥η2(x)andξ1(x)≥ξ2(x)for anyx∈X. Hereγi(x)∈T˙i(x), ηi(x)∈I˙i(x)andξi(x)∈F˙i(x)(i=1, 2).





Definition 4.

[19] Let M1={⟨x,T˙1(x),I˙1(x),F˙1(x)⟩|x∈X}and M2={⟨x,T˙2(x),I˙2(x),F˙2(x)⟩|x∈X}be two MVNSs. Also let ∀x∈X, all values in T˙i(x), I˙i(x)and F˙i(x)(i=1, 2)be ranked in ascending order. γiσ(⋅)(x),ηiσ(⋅)(x)and ξiσ(⋅)(x)are the (⋅)-th value in T˙i(x),I˙i(x)and F˙i(x)(i=1, 2)respectively. Then we have:



M1≤M2ifγ1σ(j)(x)≤γ2σ(j)(x)andγ1σ(lT˙1)(x)≤γ2σ(lT˙2)(x)(j=1,2,…,lT˙(x);lT˙(x)=min(lT˙1(x),lT˙2(x))),η1σ(k)(x)≥η2σ(k)(x)andη1σ(lI˙1)(x)≥η2σ(lI˙2)(x)(k=1,2,…,lI˙(x),lI˙(x)=min(lI˙(x),lI˙(x))),ξ1σ(m)(x)≥ξ2σ(m)(x)andξ1σ(lF˙1)(x)≥ξ2σ(lF˙2)(x)(m=1,2,…,lF˙(x),lF˙(x)=min(lF˙(x),lF˙(x))).



WherelT˙(x), lI˙(x)andlF˙(x)are the number of elements inT˙i(x),I˙i(x)andF˙i(x)(i=1, 2)respectively.





Example 1.

LetM1={x,⟨{0.1,0.3},{0.3},{0.2}⟩}andM2={x,⟨{0.2,0.6},{0.1,0.2},{0.1}⟩}be two MVNSs. According to the proposed comparison method in Definition 3, we havelT˙=min(lT˙1,lT˙2)=2, γ1σ(1)≤γ2σ(1)andγ1σ(2)≤γ2σ(2),lI˜=min(lI˜1,lI˜2)=1, η1σ(1)≥η2σ(1)andη1σ(1)≥η2σ(2),lF˙=min(lF˙1,lF˙2)=1andξ1σ(1)≥ξ2σ(1). Therefore, we haveM1≤M2.






3. Multi-Valued Neutrosophic Distance Measures


Based on the intuitionistic fuzzy H-max distance defined in Ngan et al. [42], the normalized multi-valued neutrosophic distance is proposed. Then the multi-valued neutrosophic distance difference is defined in this section.



3.1. The Normalized Multi-Valued Neutrosophic Distance


Definition 5.

LetM1, M2andM3be three MVNSs on the universeX={x1,x2,…,xn}. A mappingD: MVNS(x)×MVNS(x)→Ris a normalized distance measure of MVNSs iff it satisfies the following axioms:

	
H1.0≤D(M1, M2)≤1;



	
H2.D(M1, M2)=D(M2, M1);



	
H3.D(M1, M2)=0iffM1=M2;



	
H4. IfM1≤M2≤M3, thenD(M1, M3)≥D(M1, M2)andD(M1, M3)≥D(M2, M3).










Definition 6.

LetM1andM2be two MVNSs on the universeX={x1,x2,…,xn}. The normalized multi-valued neutrosophic measure ofM1andM2can be defined as:


DGm(M1, M2)=(15n∑i=1n(Δγi,12λ+Δηi,12λ+Δξi,12λ+Δ12λ(γi,ηi)+Δ12λ(γi,ξi)))1/λ (λ≥1).



(1)




whereΔγi,12=maxγ1(xi)∈T˙1(xi)γ2(xi)∈T˙2(xi)|γ1(xi)−γ2(xi)|(i=1,2,…,n);



Δηi,12=maxη1(xi)∈I˙1(xi)η2(xi)∈I˙2(xi)|η1(xi)−η2(xi)|(i=1,2,…,n);



Δξi,12=maxξ1(xi)∈F˙1(xi)ξ1(xi)∈F˙1(xi)|ξ1(xi)−ξ2(xi)|(i=1,2,…,n);



Δ12(γi,ηi)=|maxγ1(xi)∈T˙1(xi)η2(xi)∈I˙2(xi){γ1(xi),η2(xi)}−maxγ2(xi)∈T˙2(xi)η1(xi)∈I˙1(xi){γ2(xi),η1(xi)}|(i=1,2,…,n);



Δ12(γi,ξi)=|maxγj1(xi)∈T1(xi)ξm2(xi)∈F2(xi){γj1(xi),ξm2(xi)}−maxγ2(xi)∈T˙2(xi)ξ1(xi)∈F˙1(xi){γ2(xi),ξ1(xi)}|(i=1,2,…,n).



(1) In particular, ifλ=1, then the normalized multi-valued neutrosophic measure reduces to a normalized multi-valued neutrosophic Hausdorff measure, i.e.:


DGm(M1, M2)=15n∑i=1n(Δγi,12+Δηi,12+Δξi,12+Δ12(γi,ηi)+Δ12(γi,ξi)).



(2)







(2) Ifλ=2, then the normalized multi-valued neutrosophic measure reduces to a normalized multi-valued neutrosophic Euclidean measure, i.e.:


DGm(M1, M2)=(15n∑i=1n(Δγi,122+Δηi,122+Δξi,122+Δ122(γi,ηi)+Δ122(γi,ξi)))1/2.



(3)









Theorem 1.

The normalized multi-valued neutrosophic measure defined in Definition 6 is a normalized distance measure of MVNSs, i.e.,DGm(M1, M2)satisfies the following axioms:



H1.0≤DGm(M1, M2)≤1;



H2.DGm(M1, M2)=DGm(M2, M1);



H3.DGm(M1, M2)=0iffM1=M2;



H4. IfM1≤M2≤M3, thenDGm(M1, M3)≥DGm(M1, M2)andDGm(M1, M3)≥DGm(M2, M3).





Proof. 

H1: Since 0≤Δγi,12≤1, 0≤Δηi,12≤1, 0≤Δξi,12≤1, 0≤Δ12(γi,ηi)≤1 and 0≤Δ12(γi,ξi)≤1, then we have 0≤15n∑i=1n(Δγi,12λ+Δξi,12λ+Δηi,12λ+Δ12λ(γi,ηi)+Δ12λ(γi,ξi))≤1. Thus 0≤DGm(M1, M2)≤1.



H2: Clearly, we have DGm(M1, M2)=DGm(M2, M1).



H3: If M1=M2, then we have γ1σ(j)(xi)=γ2σ(j)(xi), γ1σ(lT˙1)(xi)=γ2σ(lT˙2)(xi) and η1σ(k)(xi)=γ2σ(k)(xi),η1σ(lI1)(x)=η2σ(lI2)(x) and ξ1σ(m)(x)=ξ2σ(m)(x), ξ1σ(lF˙1)(x)=ξ2σ(lF˙2)(x) for any xi∈X, i.e., Δγi,12=Δηi,12=Δξi,12=Δ12(γi,ηi)=Δ12(γi,ξi)=0.



Therefore, DGm(M1, M2)=0



H4: If M1≤M2≤M3, then we have 0≤γ1σ(j)(xi)≤γ2σ(j)(xi)≤γ3σ(j)(xi)≤1, 0≤γ1σ(lT˙1)(xi)≤γ2σ(lT˙2)(xi)≤γ3σ(lT˙3)(xi)≤1 and 1≥η1σ(k)(xi)≥η2σ(k)(xi)≥η3σ(k)(xi)≥0, 1≥η1σ(lI˙1)(xi)≥η2σ(lI˙2)(xi)≥η3σ(lI˙3)(xi)≥0, and 1≥ξ1σ(m)(xi)≥ξ2σ(m)(xi)≥ξ3σ(m)(xi)≥0, 1≥ξ1σ(lF˙1)(xi)≥ξ2σ(lF˙2)(xi)≥ξ3σ(lF˙3)(xi)≥0 for any xi∈X. Thus, Δγi,12λ≤Δγi,13λ, Δηi,12λ≤Δηi,13λ, Δξi,12λ≤Δξi,13λ, 1≥maxγ3(xi)∈T˙3(xi)η1(xi)∈I˙1(xi){γ3(xi),η1(xi)}≥maxγ2(xi)∈T˙2(xi)η1(xi)∈I˙1(xi){γ2(xi),η1(xi)}≥maxγ1(xi)∈T˙1(xi)η2(xi)∈I˙2(xi){γ1(xi),η2(xi)}≥maxγ1(xi)∈T˙1(xi)η3(xi)∈I˙3(xi){γ1(xi),η3(xi)}≥0, i.e., Δ12λ(γi,ηi)≤Δ13λ(γi,ηi) and 1≥maxγ3(xi)∈T˙3(xi)ξ1(xi)∈F˙1(xi){γ3(xi),ξ1(xi)}≥maxγ2(xi)∈T˙2(xi)ξ1(xi)∈F˙1(xi){γ2(xi),ξ1(xi)}≥maxγ1(xi)∈T˙1(xi)ξ2(xi)∈F˙2(xi){γ1(xi),ξ2(xi)}≥maxγ1(xi)∈T˙1(xi)ξ3(xi)∈F˙3(xi){γ1(xi),ξ3(xi)}≥0 i.e., Δ12λ(γi,ξi)≤Δ13λ(γi,ξi). Hence, DGm(M1, M3)≥DGm(M1, M2).



Similarly, DGm(M1, M3)≥DGm(M2, M3) can be obtained. □





Property 1.

LetM1andM2be two MVNSs on the universeX={x1,x2,…,xn}. γiσ(⋅)(x), ηiσ(⋅)(x)andξiσ(⋅)(x)are the(⋅)-th value inT˙i(x),I˙i(x)andF˙i(x)(i=1, 2)respectively. ThenDGm(M1C, M2C)=DGm(M1, M2)iffγ1σ(j)(xi)=ξ1σ(j)(xi)andlT˙1(xi)=lF˙1(xi), andγ2σ(j)(xi)=ξ2σ(j)(xi)andlT˙2(xi)=lF˙2(xi)for anyxi∈X.





Proof. 

Since M1C={⟨x, ∪ξ1(x)∈F˙1(x){ξ1(x)}, ∪η1(x)∈I˙1(x){η1(x)},∪γ1(x)∈T˙1(x){γ1(x)}⟩} and M2C={⟨x, ∪ξ2(x)∈F˙2(x){ξ2(x)}, ∪η2(x)∈I˙2(x){η2(x)},∪γ2(x)∈T˙2(x){γ2(x)}⟩}, then DGm(M1C, M2C)=(15n∑i=1n(Δξi,12λ+Δηi,12λ+Δγi,12λ+Δ12λ(ξi,γi)+Δ12λ(ξi,ηi)))1/λ. If γ1σ(j)(xi)=ξ1σ(j)(xi) and lT˙1(xi)=lF˙1(xi), and γ2σ(j)(xi)=ξ2σ(j)(xi) and lT˙2(xi)=lF˙2(xi) for any xi∈X, then maxγ1(xi)∈T˙1(xi)η2(xi)∈I˙2(xi){γ1(xi),η2(xi)}=maxξ1(xi)∈F˙1(xi)η2(xi)∈I˙2(xi){ξ1(xi),η2(xi)} and maxγ2(xi)∈T˙2(xi)η1(xi)∈I˙1(xi){γ2(xi),η1(xi)}=maxξ2(xi)∈F˙2(xi)η1(xi)∈I˙1(xi){ξ2(xi),η1(xi)}, i.e., Δ12λ(γi,ηi)=Δ12λ(ξi,ηi).



Thus, DGm(M1C, M2C)=(15n∑i=1n(Δξi,12λ+Δηi,12λ+Δγi,12λ+Δ12λ(ξi,γi)+Δ12λ(ξi,ηi)))1/λ=DGm(M1, M2). □





Property 2.

LetM1andM2be two MVNSs on the universeX={x1,x2,…,xn}, then we have the following results:

	
(1) if M1⊆M2, then DGm(M1∪M2, M1∩M2)=DGm(M1, M2);



	
(2) ifM1⊇ M2, thenDGm(M1∩M2, M1∪M2)=DGm(M1, M2).










Proof. 

(1) IfM1⊆M2, then we haveγM1(xi)≤γM2(xi), ηM1(xi)≥ηM2(xi)andξM1(xi)≥ξM2(xi)for anyxi∈X.



From Definition 2, we have:



|γM1∪M2(xi)−γM1∩M2(xi)|=|max{γM1(xi), γM2(xi)}−min{γM1(xi), γM2(xi)}|=|γM2(xi)−γM1(xi)|=Δγi,12;|ηM1∪M2(xi)−ηM1∩M2(xi)|=|min{ηM1(xi), ηM2(xi)}−max{ηM1(xi), ηM2(xi)}|=|ηM1(xi)−ηM2(xi)|=ηi,12;|ξM1∪M2(xi)−ξM1∩M2(xi)|=|minξ{νM1(xi), ξM2(xi)}−max{ξM1(xi), ξM2(xi)}|=|ξM2(xi)−ξM1(xi) |=Δξi,12.



Moreover,



|max{γM1∪M2(xi), ηM1∩M2(xi)}−max{γM1∩M2(xi), ηM1∪M2(xi)}|=|max{max{γM1(xi), γP2(xi)}, max{ηM1(xi), ηM2(xi)}}−max{min{γM1(xi), γM2(xi)}, min{ηM1(xi), ηM2(xi)}}|=|max{γM2(xi),ηM1(xi)}−max{γM1(xi),ηM2(xi)}|=Δ12(γi,ηi);|max{γM1∪M2(xi), ξM1∩M2(xi)}−max{γM1∩M2(xi), ξM1∪M2(xi)}|=|max{max{γM1(xi), γM2(xi)}, max{ξM1(xi), ξM2(xi)}}−max{min{γM1(xi), γM2(xi)}, min{ξM1(xi), ξM2(xi)}}|=|max{γM2(xi),ξM1(xi)}−max{γM1(xi),ξM2(xi)}|=Δ12(γi,ξi).ThenDGm(M1∪M2, M1∩M2)=(15n∑i=1n(Δγi,12λ+Δξi,12λ+Δηi,12λ+Δ12λ(γi,ξi)+Δ12λ(γi,ηi)))1/λ=DGm(M1,M2).



(2) Similarly, ifM1⊇ M2, thenDGm(M1∩M2, M1∪M2)=DGm(M1, M2)can be obtained. □





Property 3.

LetM, M1andM2be three MVNSs,M*={x,⟨1,0,0⟩}be an ideal MVNS, andDGmbe the normalized multi-valued neutrosophic distance. Then we have:

	
(1) ∀M∈MVNSS,0≤DGm(M,M*)≤1;



	
(2) DGm(M*,M*)=0;



	
(3) ∀M∈MVNSS,DGm(M, M*)=DGm(M*, M);



	
(4)∀M1,M2∈MVNSS, if M1≤M2, then DGm(M1, M*)=DGm(M2, M*).










Proof. 

Based on Theorem 1, the results can be obtained obviously. □






3.2. The Normalized Multi-Valued Neutrosophic Distance Difference


Definition 7.

LetM, M1andM2be three MVNSs, andM*={x,⟨1,0,0⟩}be an ideal MVNS. Then the multi-valued neutrosophic distance difference betweenM1andM2can be defined as:


Diff(M1, M2)=DGm(M1, M*)−DGm(M2, M*).



(4)









Theorem 2.

The multi-valued neutrosophic distance difference measure defined in Def. 7 satisfies the following properties:

	
(1) −1≤Diff(M1, M2)≤1;



	
(2) if M1=M2, then Diff(M1,M2)=0;



	
(3) if M1≤M2, then Diff(M1,M2)≥0;



	
(4) if M1≥M2, then Diff(M1,M2)≤0;



	
(5) ifDiff(M1,M2)≥0andDiff(M2,M3)≥0, thenDiff(M1,M3)≥0.










Proof. 

(1) Since 0≤DGm(M1,M*)≤1 and 0≤DGm(M2,M*)≤1, so we have −1≤DGm(M1,M*)−DGm(M2,M*)≤1, i.e., −1≤Diff(M1, M2)≤1.



(2) if M1=M2, then Diff(M1,M2)=DGm(M1,M*)−DGm(M1,M*)=0.



(3) Since M* be an ideal MVNS, so M1≤M2≤M* can be obtained. According to Theorem 1, we have:



DGm(M1,M*)≥DGm(M2,M*), i.e., DGm(M1,M*)−DGm(M2,M*)≥0. Thus, Diff(M1,M2)≥0.



(4) Similarly to the proof in (3), if M1≥M2, then Diff(M1,M2)≤0.



(5) Since Diff(M1,M2)=DGm(M1,M*)−DGm(M1,M*)≥0 and Diff(M2,M3)=DGm(M2,M*)−DGm(M3,M*)≥0. So Gm(M1,M*)−DGm(M2,M*)+DGm(M2,M*)−DGm(M3,M*)≥0, i.e., DGm(M1,M*)−DGm(M3,M*)≥0. Thus, Diff(M1,M3)≥0. □





It is noted that for any two MVNSs M1 and M2, the normalized multi-valued neutrosophic distance DGm(M1,M*) and DGm(M2,M*) are real values. Then one of following three conditions should be hold: DGm(M1,M*)>DGm(M2,M*), DGm(M1,M*)=DGm(M2,M*) or DGm(M1,M*)<DGm(M2,M*). It follows that normalized multi-valued neutrosophic distance satisfies the law of trichotomy. Then the partial ordering relation of MVNSs can be drawn via the difference distance.



Definition 8.

LetM, M1andM2be three MVNSs, andM*={x,⟨1,0,0⟩}be an ideal MVNS. Then the partial ordering relation of MVNSs can be constructed as:



(1) IfDiff(M1, M2)>0, i.e.,DGm(M1,M*)−DGm(M2,M*)>0, thenM1is inferior toM2, denoted byM1≺M2;



(2) IfDiff(M1, M2)=0, i.e.,DGm(M1,M*)−DGm(M2,M*)=0, thenM1is indifferent toM2, denoted byM1~M2;



(3) IfDiff(M1, M2)<0, i.e.,DGm(M1,M*)−DGm(M2,M*)<0, thenM1is preferred toM2, denoted byM1≻M2.





Example 2.

LetM1={x,⟨{0.4,0.7},{0.2},{0.3}⟩}andM2={x,⟨{0.5,0.6},{0.2},{0.3}⟩}be two MVNSs andM*={x,⟨1,0,0⟩}be an ideal MVNS.



(1) Based on the comparison method in Definition 4, we haveγ1σ(1)≤γ2σ(1)andγ1σ(2)≰γ2σ(2). M1≰M2can be obtained.



(2) According to Definition 10,DGm(M1,M*)=0.366andDGm(M2,M*)=0.374can be obtained. From the comparison method in Definition 10,DGm(M1,M*)>DGm(M2,M*), thenM1is inferior toM2, i.e.,M1≺M2.







4. The Multi-Valued Neutrosophic Distance-Based QUALIFLEX Approach


Assume a group of alternatives denoted by M={M1,M2,…,Mn} and corresponding criteria denoted by C={c1,c2,…,cm}, and the weight of criterion wj is completely unknown. Mij=⟨T˙Mij,I˙Mij,F˙Mij⟩ represents the evaluation value of Mi with respect to criterion cj, where T˙Mij, I˙Mij,and F˙Mij are HFNs and indicate the truth-membership, the indeterminacy-membership, and the falsity-membership, respectively. The proposed method consists of the following steps.



Step 1. Transform the evaluation information into MVNNs



According to decision-makers’ knowledge and experience, experts provide evaluation values for criteria for each alternative at three levels: high, medium and low. In other words, the option about high, middle, and low in the evaluation process correspond to the three parameters of MVNS, namely, positive membership, neutral membership, and negative membership, respectively. In order to assure the accuracy and effectiveness of the evaluation information, no corresponding information was provided during the evaluation process, and decision-makers were not allowed to communicate with each other. Mij=⟨T˙Mij,I˙Mij,F˙Mij⟩ is the set of evaluation values for all decision-makers. Then the decision-making matrix can be obtained.



Step 2. Normalize the decision matrix



For each criterion can be divided into two types, including benefit criteria, which means the lager the better, and cost criteria, which means the smaller the better. For the benefit criteria, nothing is done; for the cost criteria, the criterion values can be transformed as M¯ij=(Mij)c(i=1,2,…,n;j=1,2,…,m). Here (Mij)c is the complement of Mij as presented in Def. 7.



Step 3. Calculate the weight of criteria



Based on the maximizing deviation method of SVNSs defined by Sahin and Liu [43], the non-linear programming model with MVNNs can be constructed as:


(L) {max P(ϖ)=151/λ∑j=1m∑ς=1n∑τ=1mϖj(Δμηξ)subject to ϖj≥0, ∑j=1mϖj2=1. j=1,2,…,m



(5)







Then according to the Lagrange function, the weight of criteria can be determined as [43]:


ϖj=∑ς=1n∑τ=1n(Δμηξ)∑j=1m(∑ς=1n∑τ=1n(Δμηξ))2.



(6)







In order to normalize the weight, then we have:


ϖj*=∑ς=1n∑τ=1n(Δμηξ)∑j=1m∑ς=1n∑τ=1n(Δμηξ).



(7)







Here, (Δμηξ)=(1n∑i=1n(Δγi,12λ+Δηi,12λ+Δξi,12λ+Δ12λ(γi,ηi)+Δ12λ(γi,ξi)))1/λ.



Step 4. Determine the possible permutations



For a group of alternative Mi(i=1,2,…,n), there exist n! permutations of different ranks of alternatives. Assume Pτ represents the κ-th permutation as:


Pκ=(…,Mς,…,Mτ,…), κ=1,2,…,n!



(8)




where Mς,Mτ∈M, and Mς is superior than or equal to Mτ.



Step 5. Calculate the concordance/discordance index



For each pair of alternatives (Mς,Mτ)(Mς,Mτ∈M) respect to the j-th criterion, the corresponding concordance/discordance index φjκ(Mς,Mτ) can be defined as:


φjκ(Mς,Mτ)=Diff(M¯ςj,M¯τj).



(9)







According to the multi-valued neutrosophic distance difference in Def. 10, the following can be true:



(1) If φjκ(Mς,Mτ)>0, i.e., Diff(M¯ςj,M¯τj)>0, then Mτ ranks over Mς respect to the j-th criterion under the τ-th permutation;



(2) If φjκ(Mς,Mτ)=0, i.e., Diff(M¯ςj,M¯τj)=0, then both Mς and Mτ have the same rank respect to the j-th criterion under the τ-th permutation;



(3) If φjκ(Mς,Mτ)<0, i.e., Diff(M¯ςj,M¯τj)<0, then Mς ranks over Mτ respect to the j-th criterion under the τ-th permutation.



Step 6. Determine the weighted concordance/discordance index



Considering the importance weight ϖj of each criterion cj∈C being expressed by MVNNs, the weighted concordance/discordance index φκ(Mς,Mτ) for each pair of alternatives (Mς,Mτ)(Mς,Mτ∈M) can be denoted as:


φκ(Mς,Mτ)=∑j=1mφjκ(Mς,Mτ)⋅(1−DGm(ϖj,M*)).



(10)







Step 7. Calculate the comprehensive concordance/discordance index



For the κ-th permutation, the corresponding comprehensive concordance/discordance index φκ can be calculated as:


φκ=∑Mς,Mτ∈Mφκ(Mς,Mτ).



(11)







Step 8. Rank the alternatives



According to the partial ordering relation of MVNNs, it can be seen that the greater the comprehensive concordance/discordance index value is, the more optimal the final ranking is. Thus, the optimal rank can be obtained with the maximal comprehensive concordance/discordance index φκ, i.e.:


P*=maxκ=1n!{φκ}.



(12)








5. Illustrative Example


An example for selection of medical diagnostic plan (adapted from Chen et al. [37]) is provided in this section. There is a patient who was a 48 year old female with a history of diabetes mellitus. Her physician made a diagnosis of acute inflammatory demyelinating disease. Then the physician assessed the patient’s medical history and her current physical conditions and provided three treatment plans. Thus, how to select a suitable scheme is a MCDM problem. There are three possible schemes Mi(i=1,2,3) to be selected, including steroid therapy M1, plasmapheresis M2, and albumin immune therapy M3. Each scheme can be assessed based on nine criteria, i.e., cj(j=1,2,…,9): c1 is the survival rate; c2 is the seriousness of the side effects; c3 is the seriousness of the complications; c4 is the possibility of a cure; c5 is the uncomfortableness degree of the treatment; c6 is the cost; c7 is the number of days of hospitalization; c8 is the probability of a recurrence and c9 is the self-care capacity. Three decision-makers could assess three treatment plans under nine criteria in the form of MVNNs. When more than one decision-maker assesses the same value, it is counted once. The weights of criteria are completely unknown.



5.1. Illustration of the Developed Method


The steps of obtaining the optimal alternative, by using the developed approach, are as follows.



Step 1. Transform the evaluation information into MVNNs



Three decision-makers can provide evaluation values for criteria for each alternative at three levels: high, medium and low based on their knowledge and experience. Then sets of high, medium, and low correspond to the three parameters of MVNN, namely, positive membership, neutral membership, and negative membership, respectively. If two or more decision-makers provide the same value, then it is counted only once. Then the final evaluation information are in the form of MVNNs, i.e., Mij=⟨T˙Mij,I˙Mij,F˙Mij⟩. Thus, the decision matrix can be constructed as described in Table 1.



Step 2. Normalize the decision-making matrix



Since c1,c4, and c9 are benefit types and other criteria are cost types, from Definition 2 the normalized MVNN decision matrix can be determined as presented in Table 2.



Step 3. Calculate the weight of criteria



From Equation (5), the weight of criteria can be obtained as ϖ=(0.11,0.15,0.09,0.15,0.06,0.10,0.13,0.11,0.10).



Step 4. Determine all of the possible permutations



Since n=3, so we have 6(3!=6) permutations of alternative rankings, i.e.,



P1=(M1,M2,M3), P2=(M1,M3,M2), P3=(M2,M1,M3), P4=(M2,M3,M1), P5=(M3,M1,M2), P6=(M3,M2,M1).



Step 5. Calculate the concordance/discordance index



From Equation (9), for each pair of alternatives (Mς,Mτ)(Mς,Mτ∈M) in the permutation Pκ under criterion Cj, the concordance/discordance index φjκ(Mς,Mτ) can be obtained. For simplicity, let λ=1 in Equation (1), the normalized multi-valued neutrosophic distance is reduced to the normalized multi-valued neutrosophic Hausdorff distance, i.e., Equation (2), and the results can be founded in Table 3.



Step 6. Calculate the weighted concordance/discordance index.



For simplicity, let λ=1 in Equation (1), the weighted concordance/discordance indices φκ(Mς,Mτ) can be calculated as presented in Table 4.



Step 7. Calculate the comprehensive concordance/discordance index.



From Equation (11), the comprehensive concordance/discordance index φκ can be calculated as shown in Table 5.



Step 8. Rank the alternatives



From the results in Step 5 and Equation (14), φ4>φ6>φ3>φ5>φ1>φ2 and P*=maxκ=1n!{φκ}=P4 can be obtained. Thus, the final order of the three plan is: M2≻M3≻M1. The best treatment plan is M2 while the worst treatment plan is M1.




5.2. Sensitivity Analysis


In this subsection, the influence of λ on the ranking of alternatives is discussed. From Figure 1, we can see that the rankings of alternatives are slightly different. If λ=1, 2, 4, then the optimal permutation is P4. The best alternative is always M2; while the worst alternative is M1; while if λ=6, 8,10, then the optimal permutation is P6. The best alternative is M3. Moreover, the values of comprehensive concordance/discordance index φκ become smaller as parameter λ increases. Generally speaking, different values of parameter λ can reflect the decision-makers’ preferences and risk attitudes, which can provide more choices for decision-makers. Moreover, since the evaluation values for three memberships in MVNNs are sets of numerical numbers in [0, 1], so we can see that if the value of parameter is too large, then the difference for the distances of MVNNs will not be distinct.




5.3. Comparison Analysis


To further validate the practicability of the developed method, a comparison analysis was investigated by utilizing some existing methods with multi-valued neutrosophic information, i.e., Peng et al. [19,20,21] and Ji et al. [23].



To facilitate a comparison analysis, the same example is used here as well. Since the compared methods presented above cannot handle multi-valued neutrosophic information where the weight is completely unknown, the weights of the criteria was determined as ϖ=(0.11,0.15,0.09,0.15,0.06,0.10,0.13,0.11,0.10)T. Then the final results can be calculated as presented in Table 6.



From the results presented in Table 4, we can see that the results from the proposed approach are consistent with the compared methods in Peng et al. [15,16] and Ji et al. [23]; the optimal treatment plan is M2, while the worst treatment plan is M1. For the other compared method in Peng et al. [14], although there is a slight difference in the final rankings of these methods, the optimal treatment plan is M2 or M3.



From the comparison analyses presented above, some results can be summarized.



Firstly, if the multi-valued neutrosophic power weighted arithmetic averaging operator and the multi-valued neutrosophic power weighted geometric averaging operator presented in Peng et al. [14] are used respectively, then the different rankings M2≻M3≻M1 and M3≻M2≻M1 can be obtained. However, different aggregation operators are always involved in the operations. Moreover, if the number of elements in MVNNs increases, then the number of elements in the aggregated value will exponentially increase. This will increase the difficulty of decision-making. Secondly, the method of Peng et al. [15] is suitable to solve the MCDM problems where the number of alternatives is more than the number of criteria; while the proposed approach and the method in Peng et al. [16] are preferred to handle MCDM problems where the number of alternatives is fewer than the number of criteria. Thirdly, all of the compared methods developed in Peng et al. [14,15,16] and Ji et al. [23] cannot deal with some special cases that the weight information is completely unknown. However, the proposed approach can avoid these shortcomings. Therefore, the primary characteristic of the approach developed are not only its ability to availably express the preference information by MVNNs, but also its consideration that the weights’ information is completely unknown. It can enlarge the application scope of decision-making methods.





6. Conclusions


In this paper, the normalized multi-valued neutrosophic distance measure is defined, then the normalized multi-valued neutrosophic difference distance is developed as well. Based on the developed distances, a multi-valued neutrosophic distance-based QUALIFLEX approach is proposed to deal with MCDM problems where the weights of criteria are completely unknown. A treatment selection example testified the practicability of the proposed method, and showed that the results are reasonable and credible. The mainly advantages of the developed method over the other methods is that it can handle the MCDM problems where the number of alternatives is fewer than the number of criteria and the weight information is completely unknown, which can be used to obtain the credible and realistic results. However, the limitation of the developed method is that it cannot be suitable for dealing with some problems where the number of alternatives is greater than the number of criteria. In the future, the related distance measures of MVNSs will be further investigated.







Author Contributions


J.J. Peng and C. Tian work together to finish this work. Two authors approved the publication work.




Funding


This work is supported by the National Natural Science Foundation of China (Nos. 71701065 and 71571193), the Postdoctoral Science Foundation of China (No. 2017M610511), and the Natural Science Foundation of Hubei Province (No. 2017CFC852).




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Smarandache, F. A Unifying Field in Logics: Neutrosophy Logic; American Research Press: Santa Fe, NM, USA, 1999; pp. 1–141. [Google Scholar]

	



Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrsophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability; Infinite Study; American Research Press: Santa Fe, NM, USA, 2005. [Google Scholar]

	



Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]

	



Mohamed, A.B.; Gunasekaran, M.; Abduallah, G. A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Des. Autom. Embed. Syst. 2018, 22, 257. [Google Scholar]

	



Mohamed, A.B.; Mohamed, M.; Smarandache, F. An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry 2018, 10, 116. [Google Scholar]

	



Abdel-Basset, M.; Mohamed, M.; Hussien, A.N.; Sangaiah, A.K. A novel group decision-making model based on triangular neutrosophic numbers. Soft Comput. 2017, 1, 1–15. [Google Scholar] [CrossRef]

	



Mohamed, A.B.; Mohamed, M.; Smarandache, F. A hybrid neutrosophic group ANP-TOPSIS framework for supplier selection problems. Symmetry 2018, 10, 226. [Google Scholar]

	



Mohamed, A.B.; Zhou, Y.Q.; Mohamed, M.; Chang, V. A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. J. Intell. Fuzzy Syst. 2018, 34, 4213–4224. [Google Scholar]

	



Ye, J. Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]

	



Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]

	



Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]

	



Deli, I. Interval-valued neutrosophic soft sets and its decision making. Int. J. Mach. Learn. Cybern. 2017, 8, 665–676. [Google Scholar] [CrossRef]

	



Deli, İ.; Broumi, S.; Ali, M. Neutrosophic soft multi-set theory and its decision making. Neutrosophic Sets Syst. 2014, 5, 65–76. [Google Scholar]

	



Broumi, S.; Deli, İ. Correlation measure for neutrosophic refined sets and its application in medical Diagnosis. Palest. J. Math. 2016, 5, 135–143. [Google Scholar]

	



Torra, V.; Narukawa, Y. On hesitant fuzzy sets and decision. In Proceedings of the 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 1378–1382. [Google Scholar]

	



Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]

	



Wang, J.Q.; Li, X.E. An application of the TODIM method with multi-valued neutrosophic set. Control Decis. 2015, 30, 1139–1142. [Google Scholar]

	



Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. J. Intell. Syst. 2015, 24, 23–36. [Google Scholar] [CrossRef]

	



Peng, J.J.; Wang, J.Q.; Wu, X.H.; Wang, J.; Chen, X.H. Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 345–363. [Google Scholar] [CrossRef]

	



Peng, J.J.; Wang, J.Q.; Wu, X.H. An Extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Comput. Appl. 2017, 28, 1011–1022. [Google Scholar] [CrossRef]

	



Peng, J.J.; Wang, J.Q.; Yang, W.E. A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems. Int. J. Syst. Sci. 2017, 48, 425–435. [Google Scholar] [CrossRef]

	



Peng, J.J.; Wang, J.Q.; Hu, J.H.; Tian, C. Multi-criteria decision-making approach based on single-valued neutrosophic hesitant fuzzy geometric weighted Choquet integral heronian mean operator. J. Intell. Fuzzy Syst. 2018, 35, 3661–3674. [Google Scholar] [CrossRef]

	



Ji, P.; Zhang, H.Y.; Wang, J.Q. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput. Appl. 2018, 29, 221–234. [Google Scholar] [CrossRef]

	



Peng, H.G.; Zhang, H.Y.; Wang, J.Q. Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Comput. Appl. 2018, 30, 563–583. [Google Scholar] [CrossRef]

	



Wu, X.H.; Wang, J.Q. Cross-entropy measures of multi-valued neutrosophic sets and its application in selecting middle-level manager. Int. J. Uncertain. Quantif. 2017, 7, 155–176. [Google Scholar] [CrossRef]

	



Benayoun, R.; Roy, B.; Sussman, B. ELECTRE: Une Méthode pour Guider le Choix en Présence de Points de vue Multiples; Note de Travail; SEMA: Paris, France, 1996; p. 49. [Google Scholar]

	



Roy, B. The outranking approach and the foundations of ELECTRE methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]

	



Paelinck, J.H.P. Qualitative multiple criteria analysis, environmental protection and multiregional development. Pap. Reg. Sci. 1976, 36, 59–76. [Google Scholar] [CrossRef]

	



Paelinck, J.H.P. Qualitative multicriteria analysis: An application to airport location. Environ. Plan. A 1977, 9, 883–895. [Google Scholar] [CrossRef]

	



Paelinck, J.H.P. Qualiflex: A flexible multiple-criteria method. Econ. Lett. 1978, 1, 193–197. [Google Scholar] [CrossRef]

	



Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]

	



Lahdelma, R.; Miettinen, K.; Salminen, P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). Eur. J. Oper. Res. 2003, 147, 117–127. [Google Scholar] [CrossRef]

	



Martel, J.-M.; Matarazzo, B. Other outranking approaches. In Multiple Criteria Decision Analysis: State of the art Surveys; Springer: Berlin/Heidelberg, Germany, 2005; pp. 197–259. [Google Scholar]

	



Griffith, D.A.; Paelinck, J.H.P. Qualireg, a qualitative regression method. Adv. Geogr. Inf. Sci. 2011, 1, 227–233. [Google Scholar]

	



Chen, T.Y.; Wang, J.C. Interval-valued fuzzy permutation method and experimental analysis on cardinal and ordinal evaluations. J. Comput. Syst. Sci. 2009, 75, 371–387. [Google Scholar] [CrossRef]

	



Chen, T.Y. Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf. Sci. 2014, 261, 149–169. [Google Scholar] [CrossRef]

	



Chen, T.Y.; Chang, C.H.; Lu, J.-F.R. The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur. J. Oper. Res. 2013, 226, 615–625. [Google Scholar] [CrossRef]

	



Chen, T.Y. A signed-distance-based approach to importance assessment and multi-criteria group decision analysis based on interval type-2 fuzzy set. Knowl. Inf. Syst. 2013, 35, 193–231. [Google Scholar] [CrossRef]

	



Zhang, X.L.; Xu, Z.S. Hesitant fuzzy QUALIFILEX approach with a signed distance-based comparison method for multiple criteria decision analysis. Expert Syst. Appl. 2015, 42, 873–884. [Google Scholar] [CrossRef]

	



Ji, P.; Zhang, H.Y.; Wang, J.Q. Fuzzy decision-making framework for treatment selection based on the combined QUALIFLEX-TODIM method. Int. J. Syst. Sci. 2017, 48, 3072–3086. [Google Scholar] [CrossRef]

	



Li, J.; Wang, J.Q. An extended QUALIFLEX method under probability hesitant fuzzy environment for selecting green suppliers. Int. J. Fuzzy Syst. 2017, 19, 1866–1879. [Google Scholar] [CrossRef]

	



Ngan, R.T.; Son, L.H.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. 2018, 69, 393–425. [Google Scholar] [CrossRef]

	



Şahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 1–13. [Google Scholar] [CrossRef]








[image: Information 09 00327 g001 550]





Figure 1. The results of the sensitivity analysis. 
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Table 1. The evaluations of three schemes by decision-makers under criteria.
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Criteria

	
Schemes




	
M1

	
M2

	
M3






	
c1

	
<{0.4,0.6,0.7},{0.1},{0.2}>

	
<{0.4,0.5},{0.1},{0.2}>

	
<{0.4,0.5,0.7},{0.3},{0.2}>




	
c2

	
<{0.3},{0.3},{0.5,0.7}>

	
<{0.4},{0.1},{0.4}>

	
<{0.1,0.3},{0.2},{0.4,0.6}>




	
c3

	
<{0.3},{0.2},{0.4,0.6}>

	
<{0.4},{0.1},{0.5,0.6,0.7}>

	
<{0.3},{0.2},{0.5}>




	
c4

	
<{0.5,0.7},{0.2},{0.2}>

	
<{0.3,0.4},{0.2},{0.5}>

	
<{0.3,0.6},{0.1},{0.6}>




	
c5

	
<{0.3},{0.2},{0.5}>

	
<{0.2},{0.3},{0.3,0.5}>

	
<{0.3},{0.2},{0.4}>




	
c6

	
<{0.3},{0.1},{0.6,0.7}>

	
<{0.3},{0.2},{0.6}>

	
<{0.1},{0.2},{0.5,0.6,0.8}>




	
c7

	
<{0.2},{0.1},{0.4,0.6,0.9}>

	
<{0.2},{0.4},{0.6,0.8}>

	
<{0.1},{0.2},{0.5,0.7,0.8}>




	
c8

	
<{0.1},{0.3},{0.6,0.8}>

	
<{0.1},{0.2},{0.7,0.9}>

	
<{0.3},{0.1},{0.7}>




	
c9

	
<{0.7,0.8,0.9},{0.1},{0.1}>

	
<{0.6,0.7,0.8},{0.2},{0.3}>

	
<{0.6,0.9},{0.2},{0.2}>
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Table 2. Normalized decision matrix.
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Criteria

	
Schemes




	
M1

	
M2

	
M3






	
c1

	
<{0.4,0.6,0.7},{0.1},{0.2}>

	
<{0.4,0.5},{0.1},{0.2}>

	
<{0.4,0.5,0.7},{0.3},{0.2}>




	
c2

	
<{0.5,0.7},{0.3},{0.3}>

	
<{0.4},{0.1},{0.4}>

	
<{0.4,0.6},{0.2},{0.1,0.3}>




	
c3

	
<{0.4,0.6},{0.2},{0.3}>

	
<{0.5,0.6,0.7},{0.1},{0.4}>

	
<{0.5},{0.2},{0.3}>




	
c4

	
<{0.5,0.7},{0.2},{0.2}>

	
<{0.3,0.4},{0.2},{0.5}>

	
<{0.3,0.6},{0.1},{0.6}>




	
c5

	
<{0.5},{0.2},{0.3}>

	
<{0.3,0.5},{0.3},{0.2}>

	
<{0.4},{0.2},{0.3}>




	
c6

	
<{0.6,0.7},{0.1},{0.3}>

	
<{0.6},{0.2},{0.3}>

	
<{0.5,0.6,0.8},{0.2},{0.1}>




	
c7

	
<{0.4,0.6,0.9},{0.1},{0.2}>

	
<{0.6,0.8},{0.4},{0.2}>

	
<{0.5,0.7,0.8},{0.2},{0.1}>




	
c8

	
<{0.6,0.8},{0.3},{0.1}>

	
<{0.7,0.9},{0.2},{0.1}>

	
<{0.7},{0.1},{0.3}>




	
c9

	
<{0.7,0.8,0.9},{0.1},{0.1}>

	
<{0.6,0.7,0.8},{0.2},{0.3}>

	
<{0.6,0.9},{0.2},{0.2}>
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Table 3. The concordance/discordance index.
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	P1
	φj1(M1,M2)
	φj1(M1,M3)
	φj1(M2,M3)
	P2
	φj2(M1,M3)
	φj2(M1,M2)
	φj2(M3,M2)



	c1
	−0.08
	−0.04
	−0.04
	c1
	−0.04
	−0.08
	−0.04



	c2
	−0.12
	−0.04
	0.08
	c2
	−0.04
	−0.12
	−0.08



	c3
	0.06
	−0.02
	−0.08
	c3
	−0.02
	0.06
	0.08



	c4
	−0.22
	−0.14
	0.08
	c4
	−0.14
	−0.22
	−0.08



	c5
	−0.04
	−0.06
	−0.02
	c5
	−0.06
	−0.04
	0.02



	c6
	−0.06
	0.04
	0.10
	c6
	0.04
	−0.06
	−0.1



	c7
	−0.06
	−0.02
	0.04
	c7
	−0.02
	−0.06
	−0.04



	c8
	0.08
	−0.02
	−0.1
	c8
	−0.02
	0.08
	0.10



	c9
	−0.12
	−0.06
	0.06
	c9
	−0.06
	−0.12
	−0.06



	P3
	φj3(M2,M1)
	φj3(M2,M3)
	φj3(M1,M3)
	P4
	φj4(M2,M3)
	φj4(M2,M1)
	φj4(M3,M1)



	c1
	0.08
	0.04
	−0.04
	c1
	0.04
	0.08
	0.04



	c2
	0.12
	0.08
	−0.04
	c2
	0.08
	0.12
	0.04



	c3
	−0.06
	−0.08
	−0.02
	c3
	−0.08
	−0.06
	0.02



	c4
	0.22
	0.08
	−0.14
	c4
	0.08
	0.22
	0.14



	c5
	0.04
	−0.02
	−0.06
	c5
	−0.02
	0.04
	0.06



	c6
	0.06
	0.10
	0.04
	c6
	0.10
	0.06
	−0.04



	c7
	0.06
	0.04
	−0.02
	c7
	0.04
	0.06
	0.02



	c8
	−0.08
	−0.10
	−0.02
	c8
	−0.10
	−0.08
	0.02



	c9
	0.12
	0.06
	−0.06
	c9
	0.06
	0.12
	0.06



	P5
	φj5(M3,M1)
	φj5(M3,M2)
	φj5(M1,M2)
	P6
	φj6(M3,M2)
	φj6(M3,M1)
	φj6(M2,M1)



	c1
	0.04
	−0.04
	−0.08
	c1
	−0.04
	0.04
	0.08



	c2
	0.04
	−0.08
	−0.12
	c2
	−0.08
	0.04
	0.12



	c3
	0.02
	0.08
	0.06
	c3
	0.08
	0.02
	−0.06



	c4
	0.14
	−0.08
	−0.22
	c4
	−0.08
	0.14
	0.22



	c5
	0.06
	0.02
	−0.04
	c5
	0.02
	0.06
	0.04



	c6
	−0.04
	−0.10
	−0.06
	c6
	−0.10
	−0.04
	0.06



	c7
	0.02
	−0.04
	−0.06
	c7
	−0.04
	0.02
	0.06



	c8
	0.02
	0.10
	0.08
	c8
	0.10
	0.02
	−0.08



	c9
	0.06
	−0.06
	−0.12
	c9
	−0.06
	0.06
	0.12
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Table 4. The weighted concordance/discordance index.
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P1

	
φ1(M1,M2)

	
φ1(M1,M3)

	
φ1(M2,M3)

	
P2

	
φ2(M1,M3)

	
φ2(M1,M2)

	
φ2(M3,M2)




	
−0.2688

	
−0.1707

	
0.0981

	
−0.1707

	
−0.2688

	
−0.0981




	
P3

	
φ3(M2,M1)

	
φ3(M2,M3)

	
φ3(M1,M3)

	
P4

	
φ4(M2,M3)

	
φ4(M2,M1)

	
φ4(M3,M1)




	
0.2688

	
0.0981

	
−0.1707

	
0.0981

	
0.2688

	
0.1707




	
P5

	
φ5(M3,M1)

	
φ5(M3,M2)

	
φ5(M1,M2)

	
P6

	
φ6(M3,M2)

	
φ6(M3,M1)

	
φ6(M2,M1)




	
0.1707

	
−0.0981

	
−0.2688

	
−0.0981

	
0.1707

	
0.2688
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Table 5. The comprehensive concordance/discordance index.
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	φ1
	φ2
	φ3
	φ4
	φ5
	φ6



	−0.3414
	−0.5377
	0.1963
	0.5377
	−0.1963
	0.3414
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Table 6. The comparison results.
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	Methods
	The Final Ranking
	The Best Alternative(s)
	The Worst Alternative(s)





	Peng et al. [14]
	M2≻M3≻M1 or M3≻M2≻M1
	M2 or M3
	M1



	Peng et al. [15]
	M2≻M3≻M1
	M2
	M1



	Peng et al. [16]
	M2≻M3≻M1
	M2
	M1



	Ji et al. [23]
	M2≻M3≻M1
	M2
	M1



	The proposed method
	M2≻M3≻M1
	M2
	M1
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