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Abstract: A single-valued neutrosophic set has king power to express uncertainty characterized by
indeterminacy, inconsistency and incompleteness. Most of the existing single-valued neutrosophic
cross entropy bears an asymmetrical behavior and produces an undefined phenomenon in some
situations. In order to deal with these disadvantages, we propose a new cross entropy measure under
a single-valued neutrosophic set (SVNS) environment, namely NS-cross entropy, and prove its basic
properties. Also we define weighted NS-cross entropy measure and investigate its basic properties.
We develop a novel multi-attribute group decision-making (MAGDM) strategy that is free from the
drawback of asymmetrical behavior and undefined phenomena. It is capable of dealing with an
unknown weight of attributes and an unknown weight of decision-makers. Finally, a numerical
example of multi-attribute group decision-making problem of investment potential is solved to show
the feasibility, validity and efficiency of the proposed decision-making strategy.

Keywords: neutrosophic set; single-valued neutrosophic set; NS-cross entropy measure; multi-attribute
group decision-making

1. Introduction

To tackle the uncertainty and modeling of real and scientific problems, Zadeh [1] first introduced
the fuzzy set by defining membership measure in 1965. Bellman and Zadeh [2] contributed important
research on fuzzy decision-making using max and min operators. Atanassov [3] established the
intuitionistic fuzzy set (IFS) in 1986 by adding non-membership measure as an independent component
to the fuzzy set. Theoretical and practical applications of IFSs in multi-criteria decision-making
(MCDM) have been reported in the literature [4–12]. Zadeh [13] introduced entropy measure in the
fuzzy environment. Burillo and Bustince [14] proposed distance measure between IFSs and offered an
axiomatic definition of entropy measure. In the IFS environment, Szmidt and Kacprzyk [15] proposed
a new entropy measure based on geometric interpretation of IFS. Wei et al. [16] developed an entropy
measure for interval-valued intuitionistic fuzzy set (IVIFS) and presented its applications in pattern
recognition and MCDM. Li [17] presented a new multi-attribute decision-making (MADM) strategy
combining entropy and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in
an IVIFS environment. Shang and Jiang [18] introduced the cross entropy in the fuzzy environment.
Vlachos and Sergiadis [19] presented intuitionistic fuzzy cross entropy by extending fuzzy cross
entropy [18]. Ye [20] defined a new cross entropy under an IVIFS environment and presented an
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optimal decision-making strategy. Xia and Xu [21] put forward a new entropy and a cross entropy and
employed them for multi-attribute criteria group decision-making (MAGDM) strategy under an IFS
environment. Tong and Yu [22] defined cross entropy under an IVIFS environment and applied it to
MADM problems.

The study of uncertainty took a new direction after the publication of the neutrosophic set
(NS) [23] and single-valued neutrosophic set (SVNS) [24]. SVNS appeals more to researchers for
its applicability in decision-making [25–54], conflict resolution [55], educational problems [56,57],
image processing [58–60], cluster analysis [61,62], social problems [63,64], etc. The research on
SVNS gained momentum after the inception of the international journal “Neutrosophic Sets and
Systems”. Combining with the neutrosophic set, a number of hybrid neutrosophic sets such
as the neutrosophic soft set [65–72], the neutrosophic soft expert set [73–75], the neutrosophic
complex set [76], the rough neutrosophic set [77–86], the rough neutrosophic tri complex set [87],
the neutrosophic rough hyper complex set [88], the neutrosophic hesitant fuzzy sets/multi-valued
neutrosophic set [89–97], the bipolar neutrosophic set [98–103], the rough bipolar neutrosophic set [104],
the neutrosophic cubic set [105–113], and the neutrosophic cubic soft set [114,115] has been reported
in the literature. Wang et al. [116] defined the interval neutrosophic set (INS). Different interval
neutrosophic hybrid sets and their theoretical development and applications have been reported
in the literature, such as the interval-valued neutrosophic soft set [117], the interval neutrosophic
complex set [118], the interval neutrosophic rough set [119–121], and the interval neutrosophic hesitant
fuzzy set [122]. Other extensions of neutrosophic sets, such as trapezoidal neutrosophic sets [123,124],
normal neutrosophic sets [125], single-valued neutrosophic linguistic sets [126], interval neutrosophic
linguistic sets [127,128], simplified neutrosophic linguistic sets [129], single-valued neutrosophic
trapezoid linguistic sets [130], interval neutrosophic uncertain linguistic sets [131–133], neutrosophic
refined sets [134–139], linguistic refined neutrosophic sets [140] bipolar neutrosophic refined sets [141],
and dynamic single-valued neutrosophic multi-sets [142] have been proposed to enrich the study of
neutrosophics. So the field of neutrosophic study has been steadily developing.

Majumdar and Samanta [143] defined an entropy measure and presented an MCDM strategy
under SVNS environment. Ye [144] proposed cross entropy measure under the single-valued
neutrosophic set environment, which is not symmetric straight forward and bears undefined
phenomena. To overcome the asymmetrical behavior of the cross entropy measure, Ye [144] used a
symmetric discrimination information measure for single-valued neutrosophic sets. Ye [145] defined
cross entropy measures for SVNSs to overcome the drawback of undefined phenomena of the cross
entropy measure [144] and proposed a MCDM strategy.

The aforementioned applications of cross entropy [144,145] can be effective in dealing with
neutrosophic MADM problems. However, they also bear some limitations, which are outlined below:

i. The strategies [144,145] are capable of solving neutrosophic MADM problems that require the
criterion weights to be completely known. However, it can be difficult and subjective to offer
exact criterion weight information due to neutrosophic nature of decision-making situations.

ii. The strategies [144,145] have a single decision-making structure, and not enough attention is paid
to improving robustness when processing the assessment information.

iii. The strategies [144,145] cannot deal with the unknown weight of the decision-makers.

Research gap:

MAGDM strategy based on cross entropy measure with unknown weight of attributes and
unknown weight of decision-makers.

This study answers the following research questions:

i. Is it possible to define a new cross entropy measure that is free from asymmetrical phenomena
and undefined behavior?
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ii. Is it possible to define a new weighted cross entropy measure that is free from the asymmetrical
phenomena and undefined behavior?

iii. Is it possible to develop a new MAGDM strategy based on the proposed cross entropy measure
in single-valued neutrosophic set environment, which is free from the asymmetrical phenomena
and undefined behavior?

iv. Is it possible to develop a new MAGDM strategy based on the proposed weighted cross entropy
measure in the single-valued neutrosophic set environment that is free from the asymmetrical
phenomena and undefined behavior?

v. How do we assign unknown weight of attributes?
vi. How do we assign unknown weight of decision-makers?

Motivation:

The above-mentioned analysis describes the motivation behind proposing a comprehensive
NS-cross entropy-based strategy for tackling MAGDM under the neutrosophic environment.
This study develops a novel NS-cross entropy-based MAGDM strategy that can deal with multiple
decision-makers and unknown weight of attributes and unknown weight of decision-makers and free
from the drawbacks that exist in [144,145].

The objectives of the paper are:

1. To define a new cross entropy measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

2. To define a new weighted cross measure and prove its basic properties, which are free from
asymmetrical phenomena and undefined behavior.

3. To develop a new MAGDM strategy based on weighted cross entropy measure under
single-valued neutrosophic set environment.

4. To develop a technique to incorporate unknown weight of attributes and unknown weight
of decision-makers in the proposed NS-cross entropy-based MAGDM under single-valued
neutrosophic environment.

To fill the research gap, we propose NS-cross entropy-based MAGDM, which is capable of dealing
with multiple decision-makers with unknown weight of the decision-makers and unknown weight of
the attributes.

The main contributions of this paper are summarized below:

1. We define a new NS-cross entropy measure and prove its basic properties. It is straightforward
symmetric and it has no undefined behavior.

2. We define a new weighted NS-cross entropy measure in the single-valued neutrosophic set
environment and prove its basic properties. It is straightforward symmetric and it has no
undefined behavior.

3. In this paper, we develop a new MAGDM strategy based on weighted NS cross entropy
to solve MAGDM problems with unknown weight of the attributes and unknown weight
of decision-makers.

4. Techniques to determine unknown weight of attributes and unknown weight of decisions makers
are proposed in the study.

The rest of the paper is presented as follows: Section 2 describes some concepts of SVNS.
In Section 3 we propose a new cross entropy measure between two SVNS and investigate its properties.
In Section 4, we develop a novel MAGDM strategy based on the proposed NS-cross entropy with
SVNS information. In Section 5 an illustrative example is solved to demonstrate the applicability and
efficiency of the developed MAGDM strategy under SVNS environment. In Section 6 we present
comparative study and discussion. Section 7 offers conclusions and the future scope of research.
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2. Preliminaries

This section presents a short list of mostly known definitions pertaining to this paper.

Definition 1 [23] NS. Let U be a space of points (objects) with a generic element in U denoted by u, i.e., u ∈ U.
A neutrosophic set A in U is characterized by truth-membership measure TA(u), indeterminacy-membership
measure IA(u) and falsity-membership measure FA(u), where TA(u), IA(u), FA(u) are the measures from U
to ]− 0, 1+ [i.e., TA(u), IA(u), FA(u):U→]− 0, 1+[ NS can be expressed as A = {<u; (TA(u), IA(u), FA(u))>:
∀ u ∈U}. Since TA(u), IA(u), FA(u) are the subsets of ]−0, 1+ [there the sum (TA(u) + IA(u) + FA(u)) lies
between −0 and 3+.

Example 1. Suppose that U = {u1, u2, u3, . . .} be the universal set. Let R1 be any neutrosophic set in U.
Then R1 expressed as R1 = {<u1; (0.6, 0.3, 0.4)>: u1 ∈ U}.

Definition 2 [24] SVNS. Assume that U be a space of points (objects) with generic elements u ∈ U. A SVNS
H in U is characterized by a truth-membership measure TH(u), an indeterminacy-membership measure IH(u),
and a falsity-membership measure FH(u), where TH(u), IH(u), FH(u) ∈ [0, 1] for each point u in U. Therefore,
a SVNS A can be expressed as H = {u, (TH (u), I H (u), FH (u)) | ∀u ∈ U}, whereas, the sum of TH(u), IH(u)
and FH(u) satisfy the condition 0 ≤ TH(u) + IH(u) + FH(u) ≤ 3 and H(u) = <(TH (u), IH (u), FH (u)> call a
single-valued neutrosophic number (SVNN).

Example 2. Suppose that U = {u1, u2, u3, . . .} be the universal set. A SVNS H in U can be expressed as:
H = {u1, (0.7, 0.3, 0.5)| u1 ∈ U} and SVNN presented H = <0.7, 0.3, 0.5>.

Definition 3 [24] Inclusion of SVNSs. The inclusion of any two SVNS sets H1 and H2 in U is denoted by
H1 ⊆ H2 and defined as follows:

H1 ⊆ H2, TH1(u) ≤ TH2(u), IH1(u) ≥ IH2(u), FH1(u) ≥ FH2(u) i f f f or all u ∈ U.

Example 3. Let H1 and H2 be any two SVNNs in U presented as follows: H1 = <(0.7, 0.3, 0.5)> and
H2 = <(0.8, 0.2, 0.4)> for all u ∈ U. Using the property of inclusion of two SVNNs, we conclude that H1 ⊆ H2.

Definition 4 [24] Equality of two SVNSs. The equality of any two SVNS H1 and H2 in U denoted by
H1 = H2 and defined as follows:

TH1(u) = TH2(u), IH1(u) = IH2(u) and FH1(u) = FH2(u) f or all u ∈ U.

Definition 5 Complement of any SVNSs. The complement of any SVNS H in U denoted by Hc and defined
as follows:

Hc = {u, 1− TH , 1− IH , 1− FH | u ∈ U}.

Example 4. Let H be any SVNN in U presented as follows: H = < (0.7, 0.3, 0.5) >. Then compliment of H is
obtained as Hc = <(0.3, 0.7, 0.5)>.

Definition 6 [24] Union. The union of two single-valued neutrosophic sets H1 and H2 is a neutrosophic set
H3 (say) written as

H3 = H1∪H2.
TH3(u) = max {TH1(u), TH2(u)}, IHJ3(u) = min {IH1(u), IH2(u)}, FH3 (u) = min {FH1(u), FH2(u)}, ∀ u ∈ U.
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Example 5. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>. Then union of them is presented as:

H1 ∪ H2 =< (0.7, 0.3, 0.4) > .

Definition 7 [24] Intersection. The intersection of two single-valued neutrosophic sets H1 and H2 denoted by
H4 and defined as

H4 = H1 ∩ H2
TH4 (u) = min {TH1(u), TH2(u)}, IH4(u) = max{IH1(u), IH2(u)}
FH4(u) = max {FH1(u), FH2(u)}, ∀ u ∈ U.

Example 6. Let H1 and H2 be two SVNSs in U presented as follows:

H1 = <(0.6, 0.3, 0.4)> and H2 = <(0.7, 0.3, 0.6)>.

Then intersection of H1 and H2 is presented as follows:

H1∩H2 = <(0.6, 0.3, 0.6)>

3. NS-Cross Entropy Measure

In this section, we define a new single-valued neutrosophic cross-entropy measure for measuring
the deviation of single-valued neutrosophic variables from an a priori one.

Definition 8 NS-cross entropy measure. Let H1 and H2 be any two SVNSs in U = { u1, u2, u3, . . . , un}.
Then, the single-valued cross-entropy of H1 and H2 is denoted by CENS (H1, H2) and defined as follows:

CENS (H1, H2) =
1
2

 n
∑

i = 1

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉

(1)

Example 7. Let H1 and H2 be two SVNSs in U, which are given by H1 = {u, (0.7, 0.3, 0.4)| u ∈ U} and
H2 = {u, (0.6, 0.4, 0.2)| u ∈ U}. Using Equation (1), the cross entropy value of H1 and H2 is obtained as
CENS(H 1, H2) = 0.707.

Theorem 1. Single-valued neutrosophic cross entropy CENS(H 1, H2) for any two SVNSs H1, H2, satisfies
the following properties:

i. CENS(H 1, H2) ≥ 0.
ii. CENS(H 1, H2) = 0 if and only if TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) =

FH2(ui), ∀ ui ∈ U.
iii. CENS(H 1, H2) = CENS (Hc

1, Hc
2)

iv. CENS (H1, H2) = CENS (H2, H1)
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Proof. (i) For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0,
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0.

Then,

 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2|IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2|FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Therefore, CENS (H 1, H2) ≥ 0.
Hence complete the proof.

(ii)

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0 ⇔ IH1(ui) = IH2(ui) , and, 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

Therefore, CENS(H 1, H2) = 0, iff TH1(ui) = TH2(ui), IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),
∀ ui ∈ U.

Hence complete the proof.
(iii) Using Definition 5, we obtain the following expression

CENS (Hc
1, Hc

2) =
1
2

 n
∑

i =1

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i=1

〈 2|TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
+ 2|IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2|FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CESN(H1, H2)

Therefore, CENS(H 1, H2) = CENS(H
c
1, Hc

2).
Hence complete the proof.

(iv) Since,
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =∣∣IH2(ui)− IH1(ui)

∣∣, ∣∣FH1(ui)− FH2(ui)
∣∣ =

∣∣FH2(ui)− FH1(ui)
∣∣, ∣∣∣(1− TH1

(ui))− (1− TH2(ui))
∣∣∣ =∣∣(1− TH2(ui))− ( 1− TH1(ui))

∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))
∣∣ =

∣∣(1− IH2(ui))− (1− IH1(ui))
∣∣,
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∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, then,
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U.

Therefore, CENS(H 1, H2) = CENS (H2, H1).
Hence complete the proof.

Definition 9 Weighted NS-cross entropy measure. We consider the weight wi (i = 1, 2, ..., n) for the

element ui (i = 1, 2, .., n) with the conditions wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Then the weighted cross entropy between SVNSs H1 and H2 can be defined as follows:

CEw
NS (H1, H2) =

1
2

〈
n
∑

i = 1
wi


 2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2
+

2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui)) −(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1 −IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2


〉 (2)

Theorem 2. Single-valued neutrosophic weighted NS-cross-entropy (defined in Equation (2)) satisfies the
following properties:

i. CEw
NS (H 1, H2) ≥ 0.

ii. CEw
NS (H 1, H2) = 0, if and only if TH1(ui) = TH2(ui) IH1(ui) = IH2(ui), FH1(ui) = FH2(ui),

∀ ui ∈ U.
iii. CEw

NS (H 1, H2) = CEw
NS (Hc

1, Hc
2)

iv. CEw
NS (H 1, H2)= CEw

NS ( H 2, H1)

Proof. (i). For all values of ui ∈ U,
∣∣TH1(ui)

∣∣ ≥ 0
∣∣TH2(ui)

∣∣ ≥ 0,
∣∣TH1(ui)− TH2(ui)

∣∣ ≥ 0,√
1 +

∣∣TH1(ui)
∣∣2 ≥ 0,

√
1 +

∣∣TH2(ui)
∣∣2 ≥ 0,

∣∣∣(1− TH1
(ui))

∣∣∣ ≥ 0,
∣∣(1− TH2(ui))

∣∣ ≥ 0,∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ ≥ 0,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 ≥ 0,

√
1 +

∣∣∣(1− TH2
(ui))

∣∣∣2 ≥ 0, then, 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 ≥ 0.

Similarly,

 2 |IH1 (ui)−IH2 (ui)|√
1+|IH1 (ui)|2+

√
1+|IH2 (u)|

2 +
2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 ≥ 0,

and

 2 |FH1 (ui)−FH2 (ui)|√
1+|FH1 (ui)|2+

√
1+|FH2 (ui)|2

+
2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 ≥ 0.

Since wi ∈ [0, 1] and
n
∑

i=1
wi = 1, therefore, CEw

NS (H 1, H2) ≥ 0.

Hence complete the proof.
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(ii) Since,

 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 = 0, ⇔ TH1(ui) = TH2(ui) , 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui) |2+
√

1+|IH2 (u) |
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
 = 0, ⇔ IH1(ui) = IH2(ui) , 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui))−(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
 = 0, ⇔ F H1(ui) = FH2(ui)

and wi ∈ [0, 1] ,
n
∑

i=1
wi = 1, wi ≥ 0. Therefore, CEw

NS (H1, H2) = 0 iff TH1(ui) = TH2(ui),

IH1(ui) = IH2(ui), FH1(ui) = FH2(ui), ∀ ui ∈ U.
Hence complete the proof.

(iii) Using Definition 5, we obtain the following expression

CEw
NS (Hc

1, Hc
2) =

1
2

 n
∑

i =1
wi

〈 2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2 +
2 |TH1 (ui)−TH2 (ui)|√

1+|TH1 (ui)|2+
√

1+|TH2 (ui)|2

 + 2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2 +
2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2

+ 2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2 +
2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2

〉
= 1

2

 n
∑

i =1
wi

〈 2 |TH1 (ui)−TH2 (ui)|√
1+|TH1 (ui)|2+

√
1+|TH2 (ui)|2

+
2
∣∣∣(1−TH1

(ui))−(1−TH2 (ui))
∣∣∣√

1+
∣∣∣(1−TH1

(ui))
∣∣∣2+√1+

∣∣∣(1−TH2
(ui))

∣∣∣2
 + 2 |IH1 (ui)−IH2 (ui)|√

1+|IH1 (ui)|2+
√

1+|IH2 (u)|
2 +

2
∣∣∣(1−IH1

(ui))−(1−IH2 (ui))
∣∣∣√

1+
∣∣∣(1−IH1

(ui))
∣∣∣2+√1+

∣∣∣(1−IH2
(ui))

∣∣∣2
+ 2 |FH1 (ui)−FH2 (ui)|√

1+|FH1 (ui)|2+
√

1+|FH2 (ui)|2
+

2
∣∣∣(1−FH1

(ui)) −(1−FH2 (ui))
∣∣∣√

1+
∣∣∣(1−FH1

(ui))
∣∣∣2+√1+

∣∣∣(1−FH2
(ui))

∣∣∣2
〉 = CEw

NS (H1, H2)

Therefore, CEw
NS (H1, H2) = CEw

NS (Hc
1, Hc

2).
Hence complete the proof.

(iv) Since
∣∣TH1(ui)− TH2(ui)

∣∣ =
∣∣TH2(ui)− TH1(ui)

∣∣, ∣∣IH1(ui)− IH2(ui)
∣∣ =

∣∣IH2(ui)− IH1(ui)
∣∣,∣∣FH1(ui)− FH2(ui)

∣∣ =
∣∣FH2(ui)− FH1(ui)

∣∣, ∣∣∣(1− TH1
(ui))− (1− TH2(ui))

∣∣∣ =∣∣(1− TH2(ui))− (1− TH1(ui))
∣∣, ∣∣(1− IH1(ui))− (1− IH2(ui))

∣∣ =
∣∣(1− IH2(ui))− (1− IH1(ui))

∣∣,∣∣∣(1− FH1
(ui))− (1− FH2(ui))

∣∣∣ =
∣∣(1− FH2(ui))− (1− FH1(ui))

∣∣, we obtain
√

1 +
∣∣TH1(ui)

∣∣2 +√
1 +

∣∣TH2(ui)
∣∣2 =

√
1 +

∣∣TH2(ui)
∣∣2 +

√
1 +

∣∣TH1(ui)
∣∣2,
√

1 +
∣∣IH1(ui)

∣∣2 +
√

1 +
∣∣IH2(ui)

∣∣2 =√
1 +

∣∣IH2(ui)
∣∣2 +

√
1 +

∣∣IH1(ui)
∣∣2,

√
1 +

∣∣FH1(ui)
∣∣2 +

√
1 +

∣∣FH2(ui)
∣∣2 =

√
1 +

∣∣FH2(ui)
∣∣2 +√

1 +
∣∣FH1(ui)

∣∣2,

√
1 +

∣∣∣(1− TH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− TH2(ui))

∣∣2 =
√

1 +
∣∣(−TH2(ui) )

∣∣2 +√
1 +

∣∣(1− TH1(ui))
∣∣2,
√

1 +
∣∣(1− IH1(ui))

∣∣2 +
√

1 +
∣∣(1− IH2(ui))

∣∣2 =
√

1 +
∣∣(1− IH2(ui))

∣∣2 +√
1 +

∣∣(1− IH1(ui))
∣∣2,

√
1 +

∣∣∣(1− FH1
(ui))

∣∣∣2 +
√

1 +
∣∣(1− FH2(ui))

∣∣2 =
√

1 +
∣∣(1− FH2(ui))

∣∣2 +√
1 +

∣∣(1− FH1(ui))
∣∣2, ∀ ui ∈ U and wi ∈ [0, 1] ,

n
∑

i=1
wi = 1.

Therefore, CEw
NS (H1, H2) = CEw

NS (H2, H1).
Hence complete the proof.
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4. MAGDM Strategy Using Proposed Ns-Cross Entropy Measure under SVNS Environment

In this section, we develop a new MAGDM strategy using the proposed NS-cross entropy measure.

Description of the MAGDM Problem

Assume that A = {A1, A2, A3, . . . , Am} and G = {G1, G2, G3, . . . , Gn} be the discrete set
of alternatives and attributes respectively and W = {w1, w2, w3, . . . , wn} be the weight vector of

attributes Gj(j = 1, 2, 3, . . . , n), where wj ≥ 0 and
n
∑

j=1
wj = 1. Assume that E =

{
E1, E2, E3, . . . , Eρ

}
be the set of decision-makers who are employed to evaluate the alternatives. The weight vector
of the decision-makers Ek (k = 1, 2, 3, . . . , ρ) is λ =

{
λ1, λ2, λ3, . . . , λρ

}
(where, λk ≥ 0 and

ρ

∑
k=1

λk = 1), which can be determined according to the decision-makers’ expertise, judgment quality

and domain knowledge.
Now, we describe the steps of the proposed MAGDM strategy (see Figure 1) using NS-cross

entropy measure.
MAGDM Strategy Using Ns-Cross Entropy Measure

Step 1. Formulate the decision matrices

For MAGDM with SVNSs information, the rating values of the alternatives Ai (i = 1, 2, 3, . . . , m)

based on the attribute Gj ( j = 1, 2, 3, . . . , n) provided by the k-th decision-maker can be expressed in
terms of SVNN as ak

ij =< Tk
ij, Ik

ij, Fk
ij > (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ). We present

these rating values of alternatives provided by the decision-makers in matrix form as follows:

Mk =


G1 G2 . . . . Gn

A1 ak
11 ak

12 . . . ak
1n

A2 ak
21 ak

2n ak
22

. . . . . .
Am ak

m1 ak
m2 . . . ak

mn

 (3)

Step 2. Formulate priori/ideal decision matrix

In the MAGDM, the a priori decision matrix has been used to select the best alternatives among
the set of collected feasible alternatives. In the decision-making situation, we use the following decision
matrix as a priori decision matrix.

P =


G1 G2 . . . . Gn

A1 a∗11 a∗12 . . . a∗1n
A2 a∗21 a∗22 a∗2n
. . . . . .

Am a∗m1 a∗m2 . . . a∗mn

 (4)

where, a∗ij =< max
i

(Tk
ij), min

i
(Ik

ij), min
i

(Fk
ij) >) corresponding to benefit attributes and a∗ij =<

min
i

(Tk
ij), max

i
(Ik

ij), max
i

(Fk
ij) > corresponding to cost attributes, and (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . ,

n; k = 1, 2, 3, . . . , ρ).

Step 3. Determinate the weights of decision-makers

To find the decision-makers’ weights we introduce a model based on the NS-cross entropy
measure. The collective NS-cross entropy measure between Mk and P (Ideal matrix) is defined
as follows:

CEc
NS(Mk, P) =

1
m

m

∑
i=1

CENS

(
Mk(Ai), P(Ai)

)
(5)



Information 2018, 9, 37 10 of 21

where, CENS

(
Mk(Ai), P(Ai)

)
=

n
∑

j=1
CENS(Mk(Ai(Gj)), P(Ai(Gj))).

Thus, we can introduce the following weight model of the decision-makers:

λK =

(
1÷ CEc

NS(Mk, P)
)

ρ

∑
k=1

(
1÷ CEc

NS(Mk, P)
) (6)

where, 0 ≤ λK ≤ 1 and
ρ

∑
k=1

λK = 1 for k = 1, 2, 3, . . . , ρ.
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Figure 1. Decision-making procedure of the proposed MAGDM strategy.
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Step 4. Formulate the weighted aggregated decision matrix

For obtaining one group decision, we aggregate all the individual decision matrices (Mk) to
an aggregated decision matrix (M) using single valued neutrosophic weighted averaging (SVNWA)
operator ([51]) as follows:

aij = SVNSWAλ( a1
ij, a2

ij, a3
ij, . . . , aρij) = (λ1a1

ij ⊕ λ2a2
ij ⊕ λ3a3

ij ⊕ . . .⊕ λρaρij) =

< 1−
ρ

∏
k=1

(1 − Tk
ij)

λk ,
ρ

∏
k=1

(Ik
ij)

λk ,
ρ

∏
k=1

(Fk
ij)

λk >
(7)

Therefore, the aggregated decision matrix is defined as follows:

M =


G1 G2 . . . . Gn

A1 a11 a12 . . . a1n
A2 a21 a22 a2n
. . . . . .

Am am1 am2 . . . amn

 (8)

where, aij =< Tij, Iij, Fij >, (i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ρ).

Step 5. Determinate the weight of attributes

To find the attributes weight we introduce a model based on the NS-cross entropy measure.
The collective NS-cross entropy measure between M (Weighted aggregated decision matrix) and P
(Ideal matrix) for each attribute is defined by

CEj
NS(M, P) =

1
m

m

∑
i=1

CENS
(

M(Ai(Gj)), P(Ai(Gj))
)

(9)

where, i = 1, 2, 3, . . . , m; j = 1, 2, 3, . . . , n.
Thus, we defined a weight model for attributes as follows:

wj =

(
1÷ CEj

NS(M, P)
)

n
∑

J=1

(
1÷ CEj

NS(M, P)
) (10)

where, 0 ≤ wj ≤ 1 and
n
∑

j=1
wj = 1 for j = 1, 2, 3, . . . , n.

Step 6. Calculate the weighted NS-cross entropy measure

Using Equation (2), we calculate weighted cross entropy value between weighted aggregated
matrix and priori matrix. The cross entropy values can be presented in matrix form as follows:

NS Mw
CE =


CEw

NS (A1)

CEw
NS (A2)

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .

CEw
NS (Am)

 (11)

Step 7. Rank the priority

Smaller value of the cross entropy reflects that an alternative is closer to the ideal alternative.
Therefore, the preference priority order of all the alternatives can be determined according to the
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increasing order of the cross entropy values CEw
NS (Ai) (i = 1, 2, 3, . . . , m). Smallest cross entropy value

indicates the best alternative and greatest cross entropy value indicates the worst alternative.

Step 8. Select the best alternative

From the preference rank order (from step 7), we select the best alternative.

5. Illustrative Example

In this section, we solve an illustrative example adapted from [12] of MAGDM problems to reflect
the feasibility, applicability and efficiency of the proposed strategy under the SVNS environment.

Now, we use the example [12] for cultivation and analysis. A venture capital firm intends to make
evaluation and selection of five enterprises with the investment potential:

(1) Automobile company (A1)
(2) Military manufacturing enterprise (A2)
(3) TV media company (A3)
(4) Food enterprises (A4)
(5) Computer software company (A5)

On the basis of four attributes namely:

(1) Social and political factor (G1)
(2) The environmental factor (G2)
(3) Investment risk factor (G3)
(4) The enterprise growth factor (G4).

The investment firm makes a panel of three decision-makers.
The steps of decision-making strategy (4.1.1.) to rank alternatives are presented as follows:

Step: 1. Formulate the decision matrices

We represent the rating values of alternatives Ai (i = 1, 2, 3, 4, 5) with respects to the attributes Gj
(j = 1, 2, 3, 4) provided by the decision-makers Ek (k = 1, 2, 3) in matrix form as follows:

Decision matrix for E1 decision-maker

M1 =



G1 G2 G3 G4

A1 (0.9, 0.5, 0.4) (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.5, 0.4, 0.9)
A2 (0.7, 0.2, 0.3) (0.8, 0.4, 0.3) (0.9, 0.6, 0.5) (0.9, 0.1, 0.3)
A3 (0.8, 0.4, 0.4) (0.7, 0.4, 0.2) (0.9, 0.7, 0.6) (0.7, 0.3, 0.3)
A4 (0.5, 0.8, 0.7) (0.6, 0.3, 0.4) (0.7, 0.2, 0.5) (0.5, 0.4, 0.7)
A5 (0.8, 0.4, 0.3) (0.5, 0.4, 0.5) (0.6, 0.4, 0.4) (0.9, 0.7, 0.5)


(12)

Decision matrix for E2 decision-maker

M 2 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.3) (0.5, 0.4, 0.5) (0.9, 0.4, 0.5) (0.6, 0.5, 0.3)
A2 (0.7, 0.4, 0.4) (0.7, 0.3, 0.4) (0.7, 0.3, 0.4) (0.6, 0.4, 0.3)
A3 (0.6, 0.4, 0.4) (0.5, 0.3, 0.5) (0.9, 0.5, 0.4) (0.6, 0.5, 0.6)
A4 (0.7, 0.5, 0.3) (0.6, 0.3, 0.6) (0.7, 0.4, 0.4) (0.8, 0.5, 0.4)
A5 (0.9, 0.4, 0.3) (0.6, 0 .4, 0.5) (0.8, 0.5, 0.6) (0.5, 0.4, 0.5)


(13)
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Decision matrix for E3 decision-maker

M 3 =



G1 G2 G3 G4

A1 (0.7, 0.2, 0.5) (0.6, 0.4, 0.4) (0.7, 0.4, 0.5) (0.9, 0.4, 0.3)
A2 (0.6, 0.5, 0.5) (0.9, 0.3, 0.4) (0.7, 0.4, 0.3) (0.8, 0.4, 0.5)
A3 (0.8, 0.3, 0.5) (0.9, 0.3, 0.4) (0.8, 0.3, 0.4) (0.7, 0.3, 0.4)
A4 (0.9, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.2, 0.4) (0.7, 0.3, 0.5)
A5 (0.8, 0.3, 0.3) (0.6, 0.4, 0.3) (0.6, 0.3, 0.4) (0.7, 0.3, 0.5)


(14)

Step: 2. Formulate priori/ideal decision matrix

A priori/ideal decision matrix Please provide a sharper picture

P =



G1 G2 G3 G4

A1 (0.9, 0.2, 0.3) (0.7, 0.4, 0.4) (0.9, 0.3, 0.4) (0.9, 0.4, 0.3)
A2 (0.7, 0.2, 0.3) (0.9, 0.3, 0.3) (0.9, 0.3, 0.3) (0.9, 0.1, 0.3)
A3 (0.8, 0.3, 0.4) (0.9, 0.3, 0.2) (0.9, 0.3, 0.4) (0.7, 0.3, 0.3)
A4 (0.9, 0.3, 0.3) (0.6, 0.3, 0.4) (0.7, 0.2, 0.4) (0.7, 0.3, 0.4)
A5 (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.8, 0.3, 0.4) (0.9, 0.3, 0.5)


(15)

Step: 3. Determine the weight of decision-makers

By using Equations (5) and (6), we determine the weights of the three decision-makers as follows:

λ1 =
(1÷ 0.9)

3.37
≈ 0.33, λ2 =

(1÷ 1.2)
3.37

≈ 0.25, λ1 =
(1÷ .07)

3.37
≈ 0.42.

Step: 4. Formulate the weighted aggregated decision matrix

Using Equation (7) the weighted aggregated decision matrix is presented as follows:
Weighted Aggregated decision matrix

M =



G1 G2 G3 G4

A1 (0.8, 0.3, 0.4) (0.6, 0.4, 0.4) (0.8, 0.4, 0.4) (0.7, 0.4, 0.5)
A2 (0.7, 0.3, 0 .4) (0.8, 0.3, 0.4) (0.8, 0.4, 0.4) (0.8, 0.2, 0.3)
A3 (0.8, 0.4, 0.4) (0.8, 0.3, 0.3) (0.9, 0.5, 0.5) (0.7, 0.3, 0.4)
A4 (0.7, 0.5, 0.5) (0.6, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.4, 0.5)
A5 (0.8, 0.4, 0.4) (0.6, 0.4, 0.4) (0.7, 0.4, 0.4) (0.8, 0.5, 0.5)


(16)

Step: 5. Determinate the weight of the attributes

By using Equations (9) and (10), we determine the weights of the four attribute as follows:

w1 =
(1÷ 0.26)

25
≈ 0.16, w2 =

(1÷ 0.11)
25

≈ 0.37, w3 =
(1÷ 0.20)

25
≈ 0.20, w4 =

(1÷ 0.15)
25

≈ 0.27.

Step: 6. Calculate the weighted SVNS cross entropy matrix

Using Equation (2) and weights of attributes, we calculate the weighted NS-cross entropy values
between ideal matrix and weighted aggregated decision matrix.
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NS Mw
CE =


0.195
0.198
0.168
0.151
0.184

 (17)

Step: 7. Rank the priority

The cross entropy values of alternatives are arranged in increasing order as follows:

0.151 < 0.168 < 0.184 < 0.195 < 0.198.

Alternatives are then preference ranked as follows:

A4 > A3 > A5 > A1 > A2.

Step: 8. Select the best alternative

From step 7, we identify A4 is the best alternative. Hence, Food enterprises (A4) is the best
alternative for investment.

In Figure 2, we draw a bar diagram to represent the cross entropy values of alternatives which
shows that A4 is the best alternative according our proposed strategy.

In Figure 3, we represent the relation between cross entropy values and acceptance values of
alternatives. The range of acceptance level for five alternatives is taken by five points. The high
acceptance level of alternatives indicates the best alternative for acceptance and low acceptance level
of alternative indicates the poor acceptance alternative.

We see from Figure 3 that alternative A4 has the smallest cross entropy value and the highest
acceptance level. Therefore A4 is the best alternative for acceptance. Figure 3 indicates that alternative
A2 has highest cross entropy value and lowest acceptance value that means A2 is the worst alternative.
Finally, we conclude that the relation between cross entropy values and acceptance value of alternatives
is opposite in nature.Information 2018, 9, x  15 of 22 
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6. Comparative Study and Discussion

In literature only two MADM strategies [144,145] have been proposed. No MADGM strategy
is available. So the proposed MAGDM is novel and non-comparable with the existing cross entropy
under SVNS for numerical example.

i. The MADM strategies [144,145] are not applicable for MAGDM problems. The proposed
MAGDM strategy is free from such drawbacks.

ii. Ye [144] proposed cross entropy that does not satisfy the symmetrical property straightforward
and is undefined for some situations but the proposed strategy satisfies symmetric property and
is free from undefined phenomenon.

iii. The strategies [144,145] cannot deal with the unknown weight of the attributes whereas the
proposed MADGM strategy can deal with the unknown weight of the attributes

iv. The strategies [144,145] are not suitable for dealing with the unknown weight of decision-makers,
whereas the essence of the proposed NS-cross entropy-based MAGDM is that it is capable of
dealing with the unknown weight of the decision-makers.

7. Conclusions

In this paper, we have defined a novel cross entropy measure in SVNS environment. The proposed
cross entropy measure in SVNS environment is free from the drawbacks of asymmetrical behavior
and undefined phenomena. It is capable of dealing with the unknown weight of attributes and the
unknown weight of decision-makers. We have proved the basic properties of the NS-cross entropy
measure. We also defined weighted NS-cross entropy measure and proved its basic properties. Based
on the weighted NS-cross entropy measure, we have developed a novel MAGDM strategy to solve
neutrosophic multi-attribute group decision-making problems. We have at first proposed a novel
MAGDM strategy based on NS-cross entropy measure with technique to determine the unknown
weight of attributes and the unknown weight of decision-makers. Other existing cross entropy
measures [144,145] can deal only with the MADM problem with single decision-maker and known
weight of the attributes. So in general, our proposed NS-cross entropy-based MAGDM strategy is not
comparable with the existing cross-entropy-based MADM strategies [144,145] under the single-valued
neutrosophic environment. Finally, we solve a MAGDM problem to show the feasibility, applicability
and efficiency of the proposed MAGDM strategy. The proposed NS-cross entropy-based MAGDM
can be applied in teacher selection, pattern recognition, weaver selection, medical treatment selection
options, and other practical problems. In future study, the proposed NS-cross entropy-based MAGDM
strategy can be also extended to the interval neutrosophic set environment.
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