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Abstract: The objective of this work is image classification, whose purpose is to group images into
corresponding semantic categories. Four contributions are made as follows: (i) For computational
simplicity and efficiency, we directly adopt raw image patch vectors as local descriptors encoded
by Fisher vector (FV) subsequently; (ii) For obtaining representative local features within the FV
encoding framework, we compare and analyze three typical sampling strategies: random sampling,
saliency-based sampling and dense sampling; (iii) In order to embed both global and local spatial
information into local features, we construct an improved spatial geometry structure which shows
good performance; (iv) For reducing the storage and CPU costs of high dimensional vectors, we adopt
a new feature selection method based on supervised mutual information (MI), which chooses features
by an importance sorting algorithm. We report experimental results on dataset STL-10. It shows very
promising performance with this simple and efficient framework compared to conventional methods.
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1. Introduction

In recent years, image classification has been an active and important research topic in the field of
computer vision and machine learning applications, e.g., image and video retrieval [1], biometrics [2],
web content analysis [3] and video surveillance [4], etc. A standard pipeline to describe an image for
image classification, is to extract a set of local descriptors, encode them into a high dimensional vector
and pool them into an image-level signature. The feature extraction part is commonly accomplished
by a wide spectrum of different local or global descriptors, like the well-known SIFT [5], SURF [6],
HOG [7], LBP [8] and the recently proposed LIOP [9] and KAZE [10]. Although these hand-crafted
features lead to reasonable results in various applications, they are only suitable for a particular data type
or research domain and would result in dismal performance for other unknown usages [11]. Besides,
designing a local descriptor is based on expert knowledge and experience. The cost of running an image
detector per category is quite high [12]. Recently, there is a growing consensus that it is an alternative
approach to utilize deep learning methods to obtain machine-learned features for image classification.
Convolutional neural networks (CNN) is the most widely-used approach of deep learning methods. Due to
the computational resources massively improved by GPU implementations and distributed computing
clusters, deep CNNs have achieved remarkably high performance by surpassing the hand-crafted features
on many visual recognition tasks [13]. In practice, there are some CNN models (e.g., Zeiler and Fergus [14]
and Gao et al. [15]) popularly used as the deep feature extractor in image related tasks. In [15], the authors
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further happily combines the extracted CNN features and FV. Their work is based on the pre-trained CNN
released by [16] (i.e., VGG Net-D). The number of parameters for this configuration is 138 M (here ‘M’
denotes million). Besides, training this architecture took 2–3 weeks depending on a system equipped with
four NVIDIA Titan Black GPUs. Chandrasekhar et al. [17] combine CNN descriptors with FV for image
instance retrieval. In [17], they consider four different pre-trained CNN models: OxfordNet, AlexNet,
PlacesNet and HybridNet, with 138 M, 60 M, 60 M and 60 M parameters respectively. Although these
promising results are presented in these publications to demonstrate the potential benefits of the deep
CNNs, these models require numerous parameters to be tuned via iterative operations through layers;
therefore, their computational cost is immense. Besides, learning such deep CNN networks useful for
image classification critically depends on some ad hoc tricks. In recent years, the computational cost has
become a central issue in object detection/image classification [12]. Most existing image classification
methods use computationally expensive feature extraction, which is a very limiting factor considering the
huge amount of data to be processed.

Aggregation of local features has been widely used to realize the task of classification or retrieval
of 2D images. Our work is based on the FV feature encoding approach. The basic conception of this
work is that a set of local image patches are sampled using several methods (e.g., randomly, densely,
or using a key-point detector) and then each independent patch is evaluated to a vector of visual
descriptor. The sampler is a critical part, which should focus attention on the image regions that are the
most informative for classification. Within the Bag of Words (BOW) framework, Jurie and Triggs in [18]
and Nowak et al. [19] show that sampling many different patches using either a regular dense grid [18]
or a random strategy [19] works better than using interest points [20]. Hu et al. [21] divide the existing
sampling methods into two types: random sampling and saliency-based sampling, and embed them
in the BOW framework for scene classification of high-resolution remote sensing images. Although
these authors investigate and quantitatively compare different sampling strategies in detail in their
work, it is still not clear which sampling strategy is suitable for natural images under FV framework.

In this paper, instead of working towards more complex models, we focus on the local descriptors
and their FV encoding. We will adopt raw image patches as local descriptors directly, which is simple,
yet, is sufficiently efficient for image classification. Here, the term “efficient” refers to the relatively
lower cost and complexity of applying raw image patches as local descriptors. It will reduce the
complexity of the process of feature extraction and improve computing efficiency. For patch sampling
strategy, we refer to the three methods as sparse sampling, dense sampling and saliency-guided
sampling, and we investigate the effects of three different methods. Building on these advances,
this paper proposes to combine FV with raw image patch vectors adapted to the representation of
images, and to use the resultant representation to describe images. In order to embed both global and
local spatial information into local features, we refine an existing spatial geometry structure which
shows good performance. Finally, we address high dimensionality using a feature selection method
called supervised MI based importance sorting algorithm; this was proposed by [22].

The paper is organized as follows: After introducing the proposed approach in Section 2, Section 3
shows the overall image classification framework and Section 4 gives the details of experiments and
compares them with relevant literature. Section 5 elaborates on the conclusion of the study with a summary.

2. Description of the Proposed Approach

2.1. Constructing Local Patch Vectors

We now give the implementation details of constructing local patch vectors by extracting
image patches. Patch sampling consists of selecting a compact but representative sub set of images.
Given an image, we may use different sampling methods (e.g., saliency-based sampling, or random
strategies) to select a set of local image patches, which can form a representative and informative subset
of the image. The comparative studies [19,21,23] are devoted to these different sampling methods,
which have a great influence on the results. Hence, this step is also the first and key part of our work.



Information 2018, 9, 38 3 of 12

We first extract large quantities of small patches in training images. Note that each patch has
dimension r-by-r and has c channels (for natural images, there are only R, G, B channels), so each r-by-r
patch can be represented as a vector in Rn of pixel intensity values, with n = r·r·c. For concreteness, the raw
training image patch vectors can be denoted as {x(i) ∈ Rn}i = 1, ..., N, where N is the number of patches. So,
our base representation of an image is as a set of local patch vectors. Before running a learning algorithm
on our input data x(i), it is useful to pre-process these image patch vectors. That is, for each dimension
of x(i), we subtract out the mean of its corresponding dimension and divide by the standard deviation.
A small value is added to the variance before division to avoid dividing by zero.

We also considered zero component analysis (ZCA) whitening in this stage. In preliminary
experiments (results not shown), we found that not using ZCA was more effective, and we did not use
it in all of our experiments. The local patch vectors are Principal Component Analysis (PCA)-projected
to reduce their dimensionality and to de-correlate their coefficients. PCA is usually applied to the
SIFT features or fully connected layer activations, since it is empirically shown to improve the overall
recognition performance. As the FV size scales linearly with feature dimension, using PCA can decrease
the storage requirements and speed up the FV computation. De-correlating the data can make the
data better fit the diagonal covariance assumption for Gaussian components. Finally, these vectors
are power and L2-normalized to improve Fisher vector representation. In the above process, patch
sampling strategies are most worth noting.

Patch sampling strategies The idea of representing images as collections of independent local
patches has proved its worth for image classification or object recognition, but raises the issue of
which patches to choose [19]. We investigate this question mainly by comparing three patch sampling
strategies. Random: local patches are selected randomly in the spatial domain of the image. This means
that every patch has the same probability to be sampled to represent the image content; all the patches
are regarded to be equal. Dense: local patches are sampled evenly across the image on a dense grid
with certain pixel spacing. This sampling strategy (processing every pixel of the image) captures the
most information, but it is also computation and memory intensive, with much of the computation
being spent on processing relatively featureless (and hence possibly uninformative) regions [19].
Saliency-based: Ideally, the sampler should focus attention on the image regions that are the most
informative for classification [19]. This sampling strategy is inspired by attention mechanisms in the
human visual system. Recently, selective attention models have drawn a lot of research attention [24,25].
The idea in selective attention is that not all parts of an image give us information. If we attend only to
the relevant parts, we can recognize the image more quickly while using less resources [24]. An image’s
visual saliency map can be used as a weighting function to indicate the importance of a local region
to the human visual system [26]. In our work, we adopt the idea in [27] to obtain a visual saliency
map, which has been proved to be effective, simple, and can generate excellent results in most cases.
An image from the STL-10 dataset and its corresponding visual saliency map are illustrated in Figure 1.

Here the image’s visual saliency maps are used as masks to guide sampling: the brighter the
region, the more likely it is to be sampled from the image. With respect to sampling patches, [21] sorts
the values in a response map of every image in descending order and selects the first s proportion
as the sampled points. Afterward, the patches centered on the sampled points are chosen as the
representative set. In this paper, we adopt a more reasonable and preferable method proposed by [26].
Because the points of the visual saliency play a tiny role in human perception of the image quality,
we choose the patches of which the mean visual saliency is not so small. Subsequently, given an image,
we randomly sample N patches of which the mean visual saliency is larger than a threshold.
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Figure 1. Two images from STL-10 dataset and its corresponding visual saliency map computed by
using the saliency model proposed in [27].

2.2. The Fisher Vector

In this section, we introduce the FV framework for image classification. Supposing that we are
given an image, let M = {mt, t = 1, . . . N} be the set of N local descriptors that are already extracted
from it. The key idea of FV [28] is to model the generation process of local descriptors M by a probability
density function p(·; θ) with parameters θ. The gradient (i.e.,∇θ log p(M|θ)) of the log-likelihood with
respect to the parameters of the model can describe how that parameter contributes to the generation
process of M [29]. We usually model the probability density function by a Gaussian mixture model
(GMM) using Maximum Likelihood (ML) estimation. Besides, θ = {π1 , µ1, σ1, . . . πK , µK, σK}
are the model parameters denoting the mixture weights, means, and diagonal covariance matrices of
GMM, and K is the number of Gaussian components. After obtaining the GMM, image representations
are computed using FV, which has been demonstrated to outperform the BoW model by a wide
margin [30] and is a powerful method for aggregating local descriptors.

Let GM
µ,k and GM

σ,k be the gradients with respect to µk and σk of the component k. They can be
computed using the following derivations:
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where γt(k) is the weight of local feature mt for the k-th Gaussian:

γt(k) =
πkµk(mt)

∑K
j=1 πjµj(mt)

(3)

The final fisher vector is the concatenation of all GM
µ,k and GM

σ,k, which is a 2Kd-dimensional super
vector, and d is the dimension of local feature mt. In practice, the mt in FV is usually not a raw
local feature vector. Dimension reduction techniques are often first applied to the raw local features.
Furthermore, PCA is usually used, because PCA has been proved beneficial for the success of FV [30].

2.3. Incorporating Spatial Information

For successfully applying the important spatial information into FV image representation,
we propose a new spatial pyramid matching structure. The main spatial pyramid approach (repeatedly
sub-dividing the image into increasingly finer sub-regions by doubling the number of divisions on each
axis direction) usually improves recognition by integrating correspondence results in these regions.
It is straightforward to build a new one for our method. As shown in Figure 2a, the spatial regions are
obtained by dividing the image in 1 × 1, 3 × 1 (three horizontal stripes), and 2 × 2 (four quadrants)
grids pulsing a center block, for a total of 9 regions. We compute one encoding for each spatial region
and then stack the results. Note that each spatial region is normalized individually prior to stacking.

In our experiment, we have also developed another spatial pyramid structure, which is depicted in
Figure 2b. We add three vertical stripes in level 4 based on the former. Such structure does not improve
the performance on the STL-10 dataset, but leads to increased memory consumption and computation
time. Furthermore, it increases the dimension and storage of the final feature representation.

The reason for this could be that too finely subdivided levels resulting in individual bins yield
too few matches when in a larger spatial structure level. This is also one of the limits of the spatial
pyramid structure.
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2.4. Feature Selection Based on MI

As previously discussed, the FV suffers from a disadvantage with respect to the BoW: while the
latter is typically quite sparse, the FV is almost dense. This will lead to serious challenges for both
feature vector storage and the subsequent classifier learning for image classification task. For this
problem, feature compression has been proposed as a remedy, by compressing high dimensional
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feature vectors into feasible lengths. In [31], the authors divided these feature compression methods
into three categories. The first category of these methods is Product Quantization (PQ) [12,32], which is
a widely used feature compression method. The second are hashing based [33], which transform
a real-valued feature vector into a shorter binary string. The last category transforms long vectors into
shorter ones by using dimension reduction techniques. The authors [31] also proved that strong
multi-collinearity may not exist among feature dimensions, which limits feature compression’s
effectiveness and renders feature selection a better choice. Thus, we adopt a supervised mutual
information (MI) based importance sorting algorithm to choose features, which is proposed in [31].
Specifically, we denote image labels as y, which we use to estimate how useful a single dimension is.
We label the i-th dimension FV values as x:i, and the mutual information as I(x:i,y). The MI value is our
importance score for each dimension, and can be computed as:

I(x:i, y) = H(y) + H(x:i)− H(x :i, y) (4)

where H is the entropy of a random variable. We just need to compute H(x :i)−H(x :i, y) because y
remains unchanged for different i. In [31], the authors use quantized discrete variables to compute
entropy instead of estimating its probability distribution function by kernel density estimation.
They also find that the 1-BIT quantization is better than 4-BINS and 8-BINS. We absorb this important
observation in our work and use 1-bit quantization which quantizes a real number x into 2 discrete
bins. The first bin (x≥ 0) is stored as a value 1 in the bit, and the second bin (x < 0) is stored as a value 0.

3. Image Classification Framework

The image classification flowchart based on our proposed method is depicted in Figure 3.
To summarize, the whole image classification process can be mainly divided into five separate parts.
These parts are, respectively:

1. Extract patches. With the images as the input, the outputs of this step are image patches.
This process is implemented via sampling local areas of images. Here we use three sampling
manners (e.g., dense sampling using fixed grids, random sampling, and saliency-based sampling)
to select a compact but representative subset of images. This step is the core part of our work.

2. Represent patches. Given image patches, the outputs of this step are their feature vectors.
We represent each image patch as a vector of pixel intensity values, and then pre-process these
image patch vectors, subsequently, PCA is usually applied to these local patch vectors.

3. Generate centroids. The inputs of this step are local image patch vectors extracted from all train
images and the outputs are centroids. In our work, the centroids are generated by applying GMM
over these local vectors. All centroids compose a discriminative codebook which can be used for
feature encoding.

4. Encode futures. In this step, the set of local feature descriptors are quantized with learned
codebook of 64–512 centroids. For these features quantized to each centroid, we can aggregate first
and second order residual statistics. Last, the final FV representation is obtained by concatenating
the residual statistics from each centroid.

5. Classification. This last step assigns a semantic class label to each image. This step usually relies
on some trained classifier (e.g., SVM and soft-max). FV vectors are usually very high dimensional,
especially in the case of employing the spatial pyramid structure. There exist many off-the-shelf
SVM solvers, such as SVMperf [34], or LibSVM/LIBLINEAR [35]. Limited by our main memory
size, these are not feasible for such huge training features. Hence, in our work, we use the
soft-max classifier for this discriminative stage.
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4. Experiments

The purpose of this section is to evaluate the performance of our proposed complete classification
pipeline. We first give the details of our implementation and baselines and then proceed to present
and discuss the results on the STL-10 dataset. For the classification stage, soft-max classifier is used.
Our experiments use the VLFeat [36] open source library to implement FV algorithms.

4.1. STL-10 Dataset

The STL-10 dataset is a natural image set for developing deep learning and unsupervised feature
learning algorithms. It contains 10 classes: (1) airplane; (2) car; (3) bird; (4) cat; (5) dog; (6) deer; (7) horse;
(8) monkey; (9) ship; and (10) truck with a resolution of 96 × 96. Figure 4 shows a few example images
representing different classes that are included in this dataset. Each class has 500 training images and
800 testing images. The primary challenge is due to the smaller number of labeled training examples
(100 per class for each training fold). We follow the standard setting in [37]: (1) train on each fold of
1000 examples and test on the full set of 8000 images; (2) report the average accuracy over the 10 folds
and the standard deviation. An additional 100,000 unlabeled images are provided for unsupervised
learning, which we do not use in our experiments, which is consistent with [37].
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4.1.1. Evaluating the Sampling Performance

Patch sampling is the first and key procedure which has a great influence on the results. In this
section, we focus on the effects of different sampling strategies mentioned above so as to find
a suitable sampling strategy for the object classification of STL-10. For doing so, we fix the other
procedures of the pipeline shown in Figure 3 but vary the sampling method, and measure the sampling
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performances by using the classification accuracy. This section also describes the default settings
for our experimental studies. Besides, we discuss the impact of patch density and patch numbers
on classification performance. With our implementation, we employ the SPR at pyramid level 0
(full image i.e., 1 × 1) for selecting a suitable sampling strategy. At this point, one of 10 folds samples
are selected to train and the full set of 8000 images are for testing. At this pyramid level, the patch size
tested is r = 8. For dense sampling, the patches are spaced by p pixels and q pixels on a regular grid in
the direction of horizontal axis and vertical axis respectively. We can obtain the different numbers of
sample patches by changing the values of [p, q] in pairs. According to the image resolution of STL-10,
[p, q] are equipped as [3, 4], [3, 3], [2, 4], [3, 2] and [2, 2], respectively. Corresponding to these pairs,
the numbers of patches sampled are as follows: 690, 900, 1035, 1350 and 2025. For fair comparison,
we select the same number of patches based on saliency-based sampling and random sampling.

Supposing that we are given an image, the pixels of each patch are column reordered to form
a vector in a r·r·c = 8× 8× 3 dimensional feature space. All of these vectors are packed into the columns
of a matrix T motioned in Section 2.2. Then, for each mt inside T, we perform the PCA. The threshold
of PCA is chosen such that 99% energy is retained. After applying the L2 vector normalization,
we train a GMM with 256 centroids in all the experiments (unless stated otherwise). By default, for the
FV computation, we only compute the gradients with respect to the mean and standard deviation
parameters (but not the mixture weight parameters). In addition, the final FV fθ(M) is improved by
the power-normalization with the factor of 0.5, then followed by the L2 vector normalization.

Figure 5 shows the results using different sampling methods. The horizontal axis indicates the
numbers of sampled patches, and the vertical axis is classification accuracy with different sampling
numbers. As shown in Figure 5, all the curves share the same properties: they are increasing in the
general trend. This implies that the three sampling methods will give similar results when the information
contained in the sampled patches is close to some extent. However, saliency-based sampling obviously
outperforms others, except at 690. The next highest is dense sampling, which provides a very large
number of feature patches. We can also learn from the results that, as the sampled numbers become larger,
the differences between saliency-based sampling and the other two methods is even greater. This conclusion
is different from [19,21], which come to the consistent conclusion that: random sampling is the best choice
to improve the classification performance in high-resolution remote sensing imagery and natural images.
In their conclusion, saliency-based sampling cannot compete with random sampling. We conclude that
this is mainly due to the fact that key-point detectors are regarded as saliency-based sampling measures in
their literature. In our work, we adopt the mean visual saliency of patches as a measure, which is more
reasonable. In addition, it is clear that one of the main parameters governing classification accuracy is the
number of patches used. Theoretically, the more patches that we sample from the images, the more accurate
our method will be, but we find approximately 2000 patches are enough to catch sufficient information at
pyramid level 0.
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4.1.2. Main Results

According to the inference of Section 4.1.1, we apply the saliency sampling strategy to pyramid
level 1, 2 again. We adopt the structure of pyramid level 1, 2 to divide saliency maps of the dataset.
Please note that we compute one GMM for each spatial region and then the results of different
blocks are concatenated to form the final representation. We extract 1500 and 2000 patches for every
block of level 1 and 2 respectively. The same FV calculation process in Section 4.1.1 is also used
for spatial regions of level 1 and 2. FV vectors are usually very high dimensional, e.g., when the
number of centroids of GMM is set to 256, the total number of dimensions in FV is approximately
241,125 dimensions in this paper. Such high-dimensional features cause enormous memory storage and
CPU time requirements. We apply the MI-based feature selection [31], which is much more effective
than compression methods. The feature selection results with different selection ratios (c = 90%, 80%,
70%, 60%) are shown in Table 1. For some folds of STL-10 (e.g., fold 9 and fold 10), the MI-based
feature selection strategy can improve the baseline accuracy, although they only use 60% to 90% of
the original feature dimensions in the baseline. The reason for this is that, many dimensions in the
FV representation around these folds are noise and removing them will even improve classification
accuracy. For overall average accuracy, choosing the selection ratio from 60% to 90%, the recognition
accuracy degradation is also minuscule and gradual. This feature selection method that we used
can improve the image classification performance required and reduce the computational cost for
learning the classifier.

Table 1. Accuracy [%] of different selection ratios on 10 training folds. The rows labeled as “None” are
the accuracy of the unselected feature. When a different selection ratio is compared with the baselines,
a ↑ or ↓ sign indicates that the results of this selection ratio is better than or worse than the baseline; a =
sign indicates that the results of this selection ratio is equal to the baseline. c means the selection ratio.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average Accuracy

None 67.94 68.03 66.78 67.39 66.86 67.06 67.09 65.56 67.79 67.41 67.19 ± 0.72
c = 90% 67.94= 68.19↑ 66.65↓ 67.55↑ 66.65↓ 66.94↓ 66.94↓ 65.78↑ 67.88↑ 67.30↓ 67.18 ± 0.74
c = 80% 67.85↓ 68.08↑ 66.59↓ 67.44↑ 66.65↓ 66.98↓ 66.73↓ 65.73↑ 67.63↓ 67.35↓ 67.10 ± 0.71
c = 70% 67.76↓ 67.88↓ 66.43↓ 67.39= 66.56↓ 67.14↑ 66.49↓ 65.50↓ 67.71↓ 67.23↓ 67.01 ± 0.75
c = 60% 67.56↓ 67.43↓ 65.99↓ 67.35↓ 66.59↓ 66.89↓ 66.38↓ 65.59↑ 67.54↓ 67↓ 66.83 ± 0.68

We also compared our proposed method with some off-the-shelf image classification methods
that have reported recognition accuracy on the STL-10 dataset. We do not list the results of supervised
methods on STL-10 (the best of which currently exceed 70% accuracy). As can be seen in Table 2,
our results can be compared to and exceed the performance of many unsupervised algorithms on this
dataset. More importantly, our method has no more meta-parameters that need to be tuned, compared
with other algorithms (e.g., the meta-parameters required by [38] are weight decay, sparseness constant,
sparsity penalty).

Table 2. Comparison of test accuracy mean ± std% on all folds of STL-10.

Method Accuracy

Convolutional K-means Network [38] (2011) 60.1 ± 1.0
SCDAE 2 layer [39] (2017) 60.5 ± 0.9

Slowness on videos [40] (2012) 61.0
Sparse feature learning [41] (2014) 61.10 ± 0.58

View-Invariant K-means [42] (2013) 63.7
HMP [43] (2013) 64.5 ± 1

Stacked what-where AE [44] (2016) 74.33
Examplar CNN [45] (2014) 75.4 ± 0.3

Ours (c = 70%) 67.01 ± 0.75
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Here, we also discuss the classification rate of different spatial levels. The direct comparison is
shown in Table 3. We can see that a substantial increase in performance can be obtained with the spatial
level increase. To summarize, our method achieves satisfactory performance with few parameters
tuning on STL-10 at a low computational cost.

Table 3. Test accuracy mean ± std% over different spatial level.

Level Level 0 Level 0–1 Level 0–2

Mean Accuracy 60.69 ± 0.7 66.53 ± 0.5 67.01 ± 0.75

5. Conclusions

This paper presents a simple image classification model, which directly adopts raw image patch
vectors as local descriptors encoded by FV subsequently. This model appropriately compares and
analyzes three typical sampling strategies: random sampling, saliency-based sampling and dense
sampling. The final representation of each image is embedded spatial information, by constructing
an improved spatial geometry structure. Finally, we adopt a MI-based feature selection method to
choose features by importance sorting algorithm.

Experimental results show that our method based on local patch vectors and FV outperforms
several unsupervised approaches on the STL-10 dataset. Besides, it is easy to implement. It has nearly
no parameters to tune, and evaluates extremely fast. Meanwhile, it has the merits of low time and
space complexities compared with previous unsupervised works.
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