
  information

Article

A Novel Approach for Group Decision-Making from
Intuitionistic Fuzzy Preference Relations and
Intuitionistic Multiplicative Preference Relations

Rui Wang 1,* and Yan-Lai Li 1,2

1 School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China;
lyl_swjtu@163.com

2 National Lab of Railway Transportation, Southwest Jiaotong University, Chengdu 610031, China
* Correspondence: wryuedi@my.swjtu.edu.cn; Tel.: +86-28-8760-0165

Received: 27 December 2017; Accepted: 26 February 2018; Published: 5 March 2018

Abstract: During the decision-making process, evaluation information may be given in different
formats based on the decision makers’ research fields or personal customs. To address the
situation that alternatives are evaluated by both intuitionistic fuzzy preference relations (IFPRs)
and intuitionistic multiplicative preference relations (IMPRs), a new priority approach based on a net
flow score function is proposed. First, the two preference relations above are transformed into the
corresponding interval-valued fuzzy preference relations (IVFPRs) and interval-valued multiplicative
preference relations (IVMPRs), respectively. Second, the net flow score functions of individual IFPRs
and IMPRs are obtained. Third, according to information theory, a mean deviation maximization
model is constructed to compute the weights of decision-makers objectively. Finally, the collective
net flow score of each alternative is obtained to determine the ranking result. The proposed method
is certified to be simple, valid, and practical with three examples.

Keywords: group decision-making; intuitionistic fuzzy preference relations; intuitionistic multiplicative
preference relations; net flow score

1. Introduction

During daily life, group decision-making (GDM) problems happen in many cases or fields when
determining the best one of several alternatives. Preference relations are a powerful form of information
by which to convey the evaluation information. Through pairwise comparison of the alternatives
concerning the related criteria, the decision makers’ evaluation matrices are obtained, in which each
value indicates the preference level of one option over the another. Next, the ranking of the alternatives
can be obtained by the fusion techniques of preference relations [1].

Fuzzy preference relations (FPRs) [2] and multiplicative preference relations (MPRs) [1] are
the two general preference relations most researched by scholars. However, decisionmakers may
not be very familiar with the nature of GDM problems in actuality; the two aforementioned kinds
of preference relations cannot deal with uncertain information effectively. To solve this problem,
Atanassov [3] extended the traditional fuzzy set by applying the non-membership and hesitancy
degrees, and subsequently the intuitionistic fuzzy set (IFS) was proposed. Furthermore, Atanassov
and Gargov [4] proposed the interval-valued intuitionistic fuzzy set (IVIFS). IFS and IVIFS have
been extensively used in economic, technical, and management GDM problems [5–10]. In addition,
many scholars have extended the application of COPRAS [11], ANP [12], MULTIMOORA [13,14],
EDAS [15], ELECTRE III [16], and TOPSIS [17] methods in the context of an intuitionistic fuzzy
environment. Therefore, decision makers can express the preference, non-preference, and hesitancy
information combined with IFS to obtain their IFPRs [18]. Similarly, Xia et al. [19] extended the MPRs
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into IMPRs. Because of the uncertainty and incompleteness of evaluation information in real life,
IFPRs and IMPRs are extensively used in various GDM fields [19–22]. However, to the best of our
knowledge, few studies have investigated the GDM processes in which the evaluation information
is provided by both IFPRs and IMPRs; thus, in this paper, we will construct a novel GDM method
considering this situation.

With respect to GDM problems concerning preference relations, the key step is the means of
computing the priority of each alternative. In the aspect of IFPRs, many methods of determining
priority have been proposed in previous research. The priority values can largely be divided into
three types; namely, crisp priorities, interval-valued priorities, and intuitionistic fuzzy priorities [21].
For example, Xu [23] transformed the IFPRs into the corresponding score matrices, and subsequently
two optimization models were developed to obtain the crisp priorities. Combined with the
corresponding consistent matrix, Gong et al. [24] proposed the least squares optimization model to
determine the ranking of alternatives. Furthermore, a deviation minimization optimization model was
developed for determining the interval-valued priorities [25]. Xu [26] determined the interval-valued
priorities according to the error propagation formula. Xu and Liao [27] transformed the IFPR into the
corresponding IVFPR and derived the interval-valued priorities; next, each interval-valued priority
was transformed into an intuitionistic fuzzy number to rank the alternatives. Wang [28] developed
linear programming for minimizing the distances between each IFPR and the corresponding additive
consistent IFPR, to obtain the intuitionistic fuzzy priorities. In addition, Zeng et al. [29] constructed a
new model to choose the best alternative by computing the compatibility measures of IFPR.

Compared with the priority methods of IFPRs, the related research concerning IMPRs is relatively
limited; the consistency of IMPRs needs to be further studied. Nevertheless, several priority methods
have been proposed. For instance, Xu [30] defined the concepts of expected IMPR and error
matrices, and the error-analysis-based method was proposed to determine the ranking result. Zhang
and Pedrycz [22] used a transformation formula to obtain the consistent IMPRs, and constructed
optimization models to compute the intuitionistic fuzzy priorities. Zhang and Guo [31] proposed two
approaches to compute the intuitionistic multiplicative priorities with the complete and incomplete
IMPRs, respectively. Jin et al. [32] put forward an optimization model for determining the intuitionistic
multiplicative priorities of alternatives. Zhang and Pedrycz [20] proposed an algorithm to revise
inconsistent IMPRs into acceptably consistent IMPRs, and developed the IMAHP method to choose
the best alternative.

To summarize the research on IFPRs and IMPRs as described above, the priority approaches are
mainly proposed according to the consistency of IFPRs and IMPRs, and the computational procedures
using them are often very complicated. Moreover, the existing literature invariably focuses on the
priority methods concerning IFPRs or IMPRs; thus far, few scholars have addressed the GDM problems
which concern the evaluation information provided by both IFPRs and IMPRs. In practical GDM
problems, decision makers often have diverse research areas and may give different formats of
preference relations. Wang and Fan [33] transformed FPRs and MPRs into uniform representations,
and determined the ranking based on a net flow score function [34]. Furthermore, Xu et al. [35]
proposed a GDM method using FPRs and MPRs without this transformation, which can allow the
completeness of preference information to be retained.

Inspired by Wang and Fan [33] and Xu et al. [35], this paper considers the GDM problems where
preference information is provided in the form of both IFPRs and IMPRs. By integrating the hesitancy
degree into the membership and non-membership degrees, IFPRs and IMPRs are decomposed into
IVFPRs and IVMPRs, respectively. Then, the net flow score functions of individual IFPRs and IMPRs
are obtained according to the net flow score theory. A mean deviation maximization model is put
forward to obtain the decision maker weights. Finally, the collective net flow scores are computed to
rank all the alternatives. The rest of this paper is organized as follows: Several preference relations
are introduced in Section 2. Section 3 presents the process that transforms IFPRs and IMPRs into
IVFPRs and IVMPRs, respectively; and constructs the net flow score functions of IFPRs and IMPRs.
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Section 4 develops an optimization model to compute the decision maker weights, and proposes a new
approach to determine the best alternative when the preference information is provided by both IFPRs
and IMPRs. Section 5 presents three examples of GDM problems to demonstrate the practicability of
the new GDM approach. Finally, some conclusions are summarized in Section 6.

2. Preliminaries

In this section, some basic concepts are presented, such as IVFPRs, IVMPRs, operations of interval
numbers, IFPRs, and IMPRs, which are used in the subsequent research.

2.1. IVFPRs and IVMPRs

Since FPRs [2] and MPRs [1] were proposed as a means of ranking the alternatives, much research
has focused on improving preference relations. Xu [36], and Satty and Vargas [37] extended the two
aforementioned preference relations into an interval fuzzy environment, respectively.

Definition 1 [36]. Let X = {x1, x2, . . . , xn} be n alternatives; an IVFPR F is expressed as F =
(
aij
)

n×n.

Where aij =
[

a−ij , a+ij
]
(i, j = 1, 2, . . . , n) is an interval number, and represents the degree to which xi is preferred

to xj with the conditions a−ij + a+ji = a+ij + a−ij = 1.

Definition 2 [37]. Let X = {x1, x2, . . . , xn} be n alternatives; an IVMPR M is expressed as M =
(
bij
)

n×n.

Where bij =
[
b−ij , b+ij

]
(i, j = 1, 2, . . . , n) is an interval number that represents the degree to which xi is preferred

to xj, which satisfies the conditions b−ij = 1/b+ji , b+ij = 1/b−ji .

The elements in both IVFPRs and IVMPRs are interval numbers; then, the operations between
them follow the operational laws as presented below.

Definition 3 [38]. Let p = [p−, p+] and q = [q−, q+] be two interval numbers, then:

p + q =
[
p− + q−, p+ + q+

]
; (1)

p− q =
[
p− − q+, p+ − q−

]
. (2)

2.2. IFPRs and IMPRs

Due to the uncertainty and incompleteness of evaluation information in real life, Xu [18] proposed
the combination of IFPRs with IFS.

Definition 4 [18]. Let X = {x1, x2, . . . , xn} be n alternatives; an IFPR RF is expressed by RF =
(

rF
ij

)
n×n

.

Where rF
ij =

〈(
xi, xj

)
, uij, vij

〉
(i, j = 1, 2, . . . , n) is an intuitionistic fuzzy number, and uij indicates the degree

of xi is preferred to xj, vij indicates the degree of xi is non-preferred to xj. Furthermore, πij indicates the
hesitancy degree, 0 ≤ uij + vij ≤ 1, uij = vji, vji = uij, uij = vij = 0.5.

Similarly, Xia [19] proposed the intuitionistic multiplicative set and IMPRs.

Definition 5 [19]. Let X = {x1, x2, . . . , xn} be n alternatives; an IMPR RM is expressed by RM =
(

rM
ij

)
n×n

.

Where rM
ij =

〈(
xi, xj

)
, ρij, σij

〉
(i, j = 1, 2, . . . , n) is an intuitionistic multiplicative number, composed by the

degree ρij of xi is preferred to xj, the degree σij of xi is non-preferred to xj, and the hesitancy degree τij. In addition,
ρij and σij satisfy the conditions: ρji = σij, σji = ρij, ρijσij ≤ 1, ρii = σii = 1 and 1/9 ≤ ρij, σij ≤ 9.
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3. The Net Flow Score Function for Priority Ranking

Gong et al. [39] established the relationship between IFPRs and IVFPRs, which is utilized to obtain
the net flow scores of IFPRs. This section investigates the relationship between IMPRs and interval
multiplicative preference relation, and proposes a priority method for IFPRs and IMPRs based on net
flow score function.

3.1. The Relationship between IFPRs and IVFPRs

We can decompose the IFPR F into three matrices as in the following:

u =


u11 u12 · · · u1n
u21 u22 · · · u2n

...
...

. . .
...

un1 un2 · · · unn

; v =


v11 v12 · · · v1n
v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn

; π =


π11 π12 · · · π1n
π21 π22 · · · π2n

...
...

. . .
...

πn1 πn2 · · · πnn

.

If we integrate the hesitancy degree πij into the degrees uij and vij, the three matrices above can
be transformed into two interval matrices as follows:

F+ = (a+ij )n×n
=
([

uij, pij
])

n×n =


[u11, p11] [u12, p12] · · · [u1n, p1n]

[u21, p21] [u22, p22] · · · [u2n, p2n]
...

...
. . .

...
[un1, pn1] [un2, pn2] · · · [unn, pnn]

, (3)

F− = (a−ij )n×n
=
([

vij, qij
])

n×n =


[v11, q11] [v12, q12] · · · [v1n, q1n]

[v21, q21] [v22, q22] · · · [v2n, q2n]
...

...
. . .

...
[vn1, qn1] [vn2, qn2] · · · [vnn, qnn]

. (4)

where pij = 1− vij, qij = 1− uij, and both F+ and F− are IVPFRs [39]. In other words, the IFPR F can
be decomposed into the two IVPFRs of F+ and F−; the interval number a+ij =

[
uij, pij

]
indicates the

degree range in which xi is preferred to xj; and the interval number a−ij =
[
vij, qij

]
denotes the degree

range in which xi is not preferred to xj.

3.2. The Relationship between IMPRs and IVMPRs

Inspired by Gong et al. [39], similarly, we can divide the IMPR M into three matrices as follows:

ρ =


ρ11 ρ12 · · · ρ1n
ρ21 ρ22 · · · ρ2n

...
...

. . .
...

ρn1 ρn2 · · · ρnn

; σ =


σ11 σ12 · · · σ1n
σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn

; τ =


τ11 τ12 · · · τ1n
τ21 τ22 · · · τ2n
...

...
. . .

...
τn1 τn2 · · · τnn

.

If we integrate the hesitancy degree τij into the degrees ρij and σij, the three matrices above can be
transformed into two interval matrices as represented below:

M+ = (b+ij )n×n
=
([

ρij, αij
])

n×n =


[ρ11, α11] [ρ12, α12] · · · [ρ1n, α1n]

[ρ21, α21] [ρ22, α22] · · · [ρ2n, α2n]
...

...
. . .

...
[ρn1, αn1] [ρn2, αn2] · · · [ρnn, αnn]

, (5)



Information 2018, 9, 55 5 of 15

M− = (b−ij )n×n
=
([

σij, βij
])

n×n =


[σ11, β11] [σ12, β12] · · · [σ1n, β1n]

[σ21, β21] [σ22, β22] · · · [σ2n, β2n]
...

...
. . .

...
[σn1, βn1] [σn2, βn2] · · · [σnn, βnn]

. (6)

where αij and βij are denoted as: αijσij = 1, βijρij = 1. Combined with the Definition 5, we can
obtain that:

[ρii, αii] = [1, 1], ρijαji = 1, αijρji = 1; (7)

[σii, βii] = [1, 1], σijβ ji = 1, βijσji = 1, (8)

which demonstrates that both M+ and M− are IVMPRs. Consequently, we can decompose the IMPR
M into the two IVMPRs of M+ and M−; the interval number b+ij =

[
ρij, αij

]
represents the degree

range in which xi is preferred to xj; and the interval number b−ij =
[
σij, βij

]
is the degree range in

which xi is not preferred to xj.

3.3. The Net Flow Scores of IFPRs and IMPRs

Wang and Fan [33] and Xu et al. [35] constructed the entering and leaving flow functions of FPRs
and MPRs, respectively; then, the method for determining the ranking result from FPRs and MPRs
was proposed according to the net flow score function. Motivated by this research, we put forward
the net flow scores of IFPRs and IMPRs, which are utilized to obtain the ranking of alternatives in the
subsequent decision.

According to Section 3.1, an IFPR F can be split into the two IVFPRs of F+ and F−. For each
element of F+ and F−, a+ij + a−ji is regarded as the total preference degree range of xi over xj.

Subsequently, the leaving flow score φ+
F (xi) that represents the total preference degree range of

xi over the other alternatives can be determined by

φ+
F (xi) = ∑n

j=1 a+ij + ∑n
j=1 a−ji , i = 1, 2, . . . , n. (9)

Besides, a+ji + a−ij is regarded as the total preference degree range of xj over xi, and the entering

flow score φ−F (xi) that represents the total preference degree range of the other alternatives over xi is
defined by

φ−F (xi) = ∑n
j=1 a+ji + ∑n

j=1 a−ij . (10)

Then, the net preference degree range of xi over the other alternatives is obtained by

φF(xi) = φ+
F (xi)− φ−F (xi) =

(
∑n

j=1 a+ij + ∑n
j=1 a−ji

)
−
(
∑n

j=1 a+ji + ∑n
j=1 a−ij

)
. (11)

And φF(xi) =
[
a−i , a+i

]
is an interval number, the lager the net flow score, the higher the ranking

of alternative.
Similarly, an IMPR can be divided into the two IVMPRs of M+ and M−. Based on the elements

in M+ and M−, b+ij + b−ji is regarded as the total preference degree range of xi over xj. Subsequently,

the leaving flow score φ+
M(xi) that represents the total preference degree range of xi over the other

alternatives can be determined by

φ+
M(xi) =

(
∏n

j=1 b+ij
)1/n

+
(
∏n

j=1 b−ji
)1/n

, i = 1, 2, . . . , n. (12)

Meanwhile, b+ji + b−ij is regarded as the total preference degree range of xj over xi, and the entering

flow score φ−M(xi) that represents the total preference degree range of the other alternatives over xi is
presented as below:

φ−M(xi) =
(
∏n

j=1 b+ji
)1/n

+
(
∏n

j=1 b−ij
)1/n

. (13)
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And the net preference degree range of xi over the other alternatives is expressed as the following:

φM(xi) = φ+
M(xi)− φ−M(xi) =

((
∏n

j=1 b+ij
)1/n

+
(

∏n
j=1 b−ji

)1/n
)
−
((

∏n
j=1 b+ji

)1/n
+
(

∏n
j=1 b−ij

)1/n
)

(14)

where φM(xi) =
[
b−i , b+i

]
is an interval number, and the larger the net flow score, the higher the

ranking of the alternative.

4. The Proposed Method for Group Decision-Making

Suppose DM = {DM1, DM2, . . . DMm} is a set of decision makers, X = {x1, x2, . . . , xn} is a set of
alternatives, and w = (w1, w2, . . . , wm)

T is the decision maker weights, which satisfies the conditions
of ∑m

k=1 wk = 1, wk ≥ 0. Furthermore, we assume that decision makers DMk

(
k = 1, 2, . . . , m f

)
use

IFPRs to express their evaluation information, while decision makers DMk

(
k = m f+1, m f+2 . . . , m

)
use IMPRs. Let F(k) be the IFPR of DMk

(
k = 1, 2, . . . , m f

)
and M(k) be the IMPR of

DMk

(
k = m f+1, m f+2 . . . , m

)
. Based on these assumptions above, we propose the priority method

for GDM as shown in Figure 1, and the best alternatives can be determined according to the steps
as below:

Information 2018, 9, x FOR PEER REVIEW  6 of 15 

 

Meanwhile, ji ijb b+ −+  is regarded as the total preference degree range of jx  over ix , and the 

entering flow score ( )M ixφ −  that represents the total preference degree range of the other 
alternatives over ix  is presented as below: 

( ) ( ) ( )1/ 1/

1 1
.

n nn n
M i ji ijj j
x b bφ − + −

= =
= +∏ ∏  (13) 

And the net preference degree range of ix  over the other alternatives is expressed as the 
following: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1/ 1/ 1/ 1/

1 1 1 1

n n n nn n n n
M i M i M i ij ji ji ijj j j j
x x x b b b bφ φ φ+ − + − + −

= = = =

   = − = + − +   
   

∏ ∏ ∏ ∏  (14) 

where ( ) ,M i i ix b bφ − + =    is an interval number, and the larger the net flow score, the higher the 

ranking of the alternative. 

4. The Proposed Method for Group Decision-Making 

Suppose { }1 2, , mDM DM DM DM=   is a set of decision makers, { }1 2, , , nX x x x=   is a set of 

alternatives, and ( )1 2, , , T
mw w w=w   is the decision maker weights, which satisfies the conditions 

of 
1

1, 0.m
k kk
w w

=
= ≥  Furthermore, we assume that decision makers ( )1,2, ,k fDM k m=   use 

IFPRs to express their evaluation information, while decision makers ( )1 2, ,k f fDM k m m m+ +=   use 

IMPRs. Let ( )kF  be the IFPR of ( )1,2, ,k fDM k m=   and ( )kM  be the IMPR of 

( )1 2, ,k f fDM k m m m+ +=  . Based on these assumptions above, we propose the priority method for 

GDM as shown in Figure 1, and the best alternatives can be determined according to the steps as 
below: 

The IFPR

The alternatives are evaluated with IFPR and IMPR

( ) ( )1,2, ,=  fkF k m The IMPR ( ) ( )1 2, ,+ += f fkM k m m m

The corresponding IVFPRs and( )
+
kF ( )

−
kF The corresponding IVMPRs and( )

+
kM ( )

−
kM

The net flow score function ( )φ ix The weights of decision makers

mean deviation 
maximization model

kw

The net flow score vector of alternatives ( ) ( ) ( )( )1 2, , ,φ φ φΦ = 
T

nx x x

The ranking of alternatives
 

Figure 1. Flow diagram of the proposed method. IFPR: intuitionistic fuzzy preference relations. 
IMPR: intuitionistic multiplicative preference relations. IVFPRs: interval-valued fuzzy preference 
relations. IVMPRs: interval-valued fuzzy preference relations. 

Step 1. Transform the IFPR ( )kF  and IMPR ( )kM . 

The IFPR ( )kF  is divided into two IVFPRs, using the Equations (3) and (4) as in the following: 

Figure 1. Flow diagram of the proposed method. IFPR: intuitionistic fuzzy preference relations. IMPR:
intuitionistic multiplicative preference relations. IVFPRs: interval-valued fuzzy preference relations.
IVMPRs: interval-valued fuzzy preference relations.

Step 1. Transform the IFPR F(k) and IMPR M(k).

The IFPR F(k) is divided into two IVFPRs, using the Equations (3) and (4) as in the following:

F+
(k) =

(
a+(k)

ij

)
n×n

=
([

u(k)
ij , p(k)ij

])
n×n

, F−
(k) =

(
a−(k)ij

)
n×n

=
([

v(k)ij , q(k)ij

])
n×n

. (15)

Similarly, combined with Equations (5) and (6), we can transform the IMPR M(k) into two interval
multiplicative preference relations, as presented below:

M+
(k) =

(
b+(k)

ij

)
n×n

=
([

ρ
(k)
ij , α

(k)
ij

])
n×n

, M−
(k) =

(
b−(k)ij

)
n×n

=
([

σ
(k)
ij , β

(k)
ij

])
n×n

. (16)
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Step 2. Calculate the net flow score φ(xi).

Considering the weights of decision makers, the collective net flow scores φ(xi) of preference
degree of xi over the other alternatives are denoted by

φ(xi) = ∑
m f
k=1 wkφ

(k)
F (xi) + ∑m

k=m f +1 wkφ
(k)
M (xi)

= ∑
m f
k=1 wk

(
φ
+(k)
F (xi)− φ

−(k)
F (xi)

)
+ ∑m

k=m f +1 wk

(
φ
+(k)
M (xi)− φ

−(k)
M (xi)

)
= ∑

m f
k=1 wk

((
∑n

j=1 a+(k)
ij + ∑n

j=1 a−(k)ji

)
−
(

∑n
j=1 a+(k)

ji + ∑n
j=1 a−(k)ij

))
+

∑m
k=m f +1 wk

(((
∏n

j=1 b+(k)
ij

)1/n
+
(

∏n
j=1 b−(k)ji

)1/n
)
−
((

∏n
j=1 b+(k)

ji

)1/n
+
(

∏n
j=1 b−(k)ij

)1/n
))

.

(17)

Step 3. Obtain the decision matrix ∆.

Let

δ̃ik =
(

∑n
j=1 a+(k)

ij + ∑n
j=1 a−(k)ji

)
−
(

∑n
j=1 a+(k)

ji + ∑n
j=1 a−(k)ij

)
=
[
a−ik , a+ik

]
, k = 1, 2, . . . , m f , i = 1, 2, . . . , n, (18)

δ̃ik =

((
∏n

j=1 b+(k)
ij

)1/n
+
(

∏n
j=1 b−(k)ji

)1/n
)
−
((

∏n
j=1 b+(k)

ji

)1/n
+
(

∏n
j=1 b−(k)ij

)1/n
)
=[

b−ik , b+ik
]
, i = 1, 2, . . . , n; k = m f + 1, . . . , m.

(19)

Because δ̃ik is an interval number, we can convert δ̃ik into a real number as the following:

δik =
a−ik + a+ik

2
, (20)

δik =
b−ik + b+ik

2
. (21)

The Equation (17) is simplified as

φ(xi) = ∑m
k=1 wkδik, i = 1, 2, . . . , n; (22)

or
Φ = ∆w. (23)

where Φ = (φ(x1), φ(x2), . . . , φ(xn))
T and ∆ can be seen as a decision matrix:

∆ = (δik)n×m =

x1

x2
...

xn

DM1 DM2 · · · DMm
δ11 δ12 · · · δ1m
δ21 δ22 · · · δ2m
...

...
. . .

...
δn1 δn2 · · · δnm

 . (24)

Step 4. Construct a mean deviation maximization model.

According to information theory [40], if similar evaluation information is given by a decision
maker, then small weights should be assigned to her/him because she/he contributes less in
differentiating the alternatives. Therefore, we adopt the concept of mean deviation MDk [35] to
represent the distance between preference information of xi, and the mean preference information of
all the alternatives as

MDk =
1
n∑n

i=1

∣∣∣∣δik −
1
n∑n

j=1 δjk

∣∣∣∣. (25)
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Combined with the aforementioned principle, we can summarize that a preference relation is
more important with a larger value of MDk. Thus, a mean deviation maximization model is presented
to obtain the decision maker weights:

max ∑m
k=1(wk ·MDk) = ∑m

k=1 wk

(
1
n ∑n

i=1

∣∣∣δik − 1
n ∑n

j=1 δjk

∣∣∣)
s.t. ∑m

k=1 (wk)
2 = 1, wk ≥ 0.

(26)

Step 5. Determine the decision maker weights.

To solve the model combined with Lagrange function as

L(w, λ) = ∑m
k=1 wk

(
1
n∑n

i=1

∣∣∣∣δik −
1
n∑n

j=1 δjk

∣∣∣∣)+
λ

2

(
∑m

k=1 (wk)
2 − 1

)
, (27)

where λ is the Lagrange multiplier. Differentiating Equation (27) concerning wk, let the partial
derivatives be equal to zero as

∂L(w, λ)

∂wk
=

1
n∑n

i=1

∣∣∣∣δik −
1
n∑n

j=1 δjk

∣∣∣∣+ λwk = 0. (28)

By solving Equation (28), we can obtain the optimal solution based on the condition of
∑m

k=1 (wk)
2 = 1:

w∗k =

1
n ∑n

i=1

∣∣∣δik − 1
n ∑n

j=1 δjk

∣∣∣√
∑m

k=1

(
1
n ∑n

i=1

∣∣∣δik − 1
n ∑n

j=1 δjk

∣∣∣)2
. (29)

Finally, the normalized weights of decision makers are determined by normalizing Equation (29) as

wk =
∑n

i=1

∣∣∣δik − 1
n ∑n

j=1 δjk

∣∣∣
∑m

k=1 ∑n
i=1

∣∣∣δik − 1
n ∑n

j=1 δjk

∣∣∣ . (30)

Step 6. Obtain the ranking result.

We can compute the net flow score vector of alternatives Φ using Equation (17). Then, the best
alternative can be obtained based on the value of φ(xi); the larger the net flow score, the higher the
ranking of alternative.

5. Numerical Examples

Finally, we introduce three numerical examples to indicate the effectiveness and rationality of the
new GDM approach. First, Example 1 adopts the original preference information as in the study of
Wang [28], in which all the decision makers use IFPRs to evaluate alternatives, i.e., m f = m. Second,
Example 2 adopts the original preference information as in the study of Xu [30], in which all the
decision makers use IMPRs to evaluate alternatives, i.e., m f = 0. Finally, in Example 3, two decision
makers use IFPRs to evaluate alternatives, and the decision makers use IMPRs, i.e., m f = 2.
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5.1. Implementation

Example 1. Suppose that four doctoral students investigate the potential opportunity of international
communication, and a committee that is composed of three decision makers evaluates the four candidates
by using IFPRs. After the pairwise comparison of the four candidates, the IFPRs are obtained as presented below:

F(1) =


(0.50, 0.50) (0.35, 0.55) (0.40, 0.35) (0.55, 0.35)
(0.55, 0.35) (0.50, 0.50) (0.70, 0.10) (0.60, 0.20)
(0.35, 0.40) (0.10, 0.70) (0.50, 0.50) (0.55, 0.30)
(0.35, 0.55) (0.20, 0.60) (0.30, 0.55) (0.50, 0.50)

, (31)

F(2) =


(0.50, 0.50) (0.55, 0.25) (0.65, 0.20) (0.35, 0.55)
(0.25, 0.55) (0.50, 0.50) (0.40, 0.25) (0.55, 0.30)
(0.20, 0.65) (0.25, 0.40) (0.50, 0.50) (0.60, 0.20)
(0.55, 0.35) (0.30, 0.55) (0.20, 0.60) (0.50, 0.50)

, (32)

F(3) =


(0.50, 0.50) (0.60, 0.30) (0.75, 0.15) (0.60, 0.20)
(0.30, 0.60) (0.50, 0.50) (0.45, 0.20) (0.60, 0.20)
(0.15, 0.75) (0.20, 0.45) (0.50, 0.50) (0.40, 0.40)
(0.20, 0.60) (0.20, 0.60) (0.40, 0.40) (0.50, 0.50)

. (33)

Step 1. According to Equation (15), the three IFPRs are decomposed into six corresponding IVFPRs as

F+
(1) =


[0.50, 0.50] [0.35, 0.45] [0.40, 0.65] [0.55, 0.65]
[0.55, 0.65] [0.50, 0.50] [0.70, 0.90] [0.60, 0.80]
[0.35, 0.60] [0.10, 0.30] [0.50, 0.50] [0.55, 0.70]
[0.35, 0.45] [0.20, 0.40] [0.30, 0.45] [0.50, 0.50]

,

F−
(1) =


[0.50, 0.50] [0.55, 0.65] [0.35, 0.60] [0.35, 0.45]
[0.35, 0.45] [0.50, 0.50] [0.10, 0.30] [0.20, 0.40]
[0.40, 0.65] [0.70, 0.90] [0.50, 0.50] [0.30, 0.45]
[0.55, 0.65] [0.60, 0.80] [0.55, 0.70] [0.50, 0.50]

,

F+
(2) =


[0.50, 0.50] [0.55, 0.75] [0.65, 0.80] [0.35, 0.45]
[0.25, 0.45] [0.50, 0.50] [0.40, 0.75] [0.55, 0.70]
[0.20, 0.35] [0.25, 0.60] [0.50, 0.50] [0.60, 0.80]
[0.55, 0.65] [0.30, 0.45] [0.20, 0.40] [0.50, 0.50]

,

F−
(2) =


[0.50, 0.50] [0.25, 0.45] [0.20, 0.35] [0.55, 0.65]
[0.55, 0.75] [0.50, 0.50] [0.25, 0.60] [0.30, 0.45]
[0.65, 0.80] [0.40, 0.75] [0.50, 0.50] [0.20, 0.40]
[0.35, 0.45] [0.55, 0.70] [0.60, 0.80] [0.50, 0.50]

,

F+
(3) =


[0.50, 0.50] [0.60, 0.70] [0.75, 0.85] [0.60, 0.80]
[0.30, 0.40] [0.50, 0.50] [0.45, 0.80] [0.60, 0.80]
[0.15, 0.25] [0.20, 0.55] [0.50, 0.50] [0.40, 0.60]
[0.20, 0.40] [0.20, 0.40] [0.40, 0.60] [0.50, 0.50]

,

F−
(3) =


[0.50, 0.50] [0.30, 0.40] [0.15, 0.25] [0.20, 0.40]
[0.60, 0.70] [0.50, 0.50] [0.20, 0.55] [0.20, 0.40]
[0.75, 0.85] [0.45, 0.80] [0.50, 0.50] [0.40, 0.60]
[0.60, 0.80] [0.60, 0.80] [0.40, 0.60] [0.50, 0.50]

.
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In Steps 2 and 3, we can obtain the decision matrix ∆ using Equation (24) as

∆ =

DM1 DM2 DM3

x1

x2

x3

x4


0.10 1.10 2.60
2.40 0.20 0.70
−0.80 −0.40 −1.70
−1.70 −0.90 −1.60

.

In Steps 4 and 5, by solving the mean deviation maximization model, i.e., Equation (26), the normalized
weights of decision makers are calculated combined with Equation (30) as

w = (w1, w2, w3)
T = (0.3521, 0.1831, 0.4648)T .

Step 6. We can compute the net flow score vector Φ using Equation (23) as

Φ = (φ(x1), φ(x2), φ(x3), φ(x4))
T = (1.4451, 1.2070,−1.1451,−1.5070)T . (34)

Then, the ranking of four candidates is determined as x1 � x2 � x3 � x4.

Example 2. Suppose that four students choose the most appropriate internet service from four potential internet
companies. The four students give their preference relations for the final choice, and the IMPRs are obtained
as follows:

M(1) =


(1, 1)

(
1
5 , 3
) (

1
3 , 1
) (

1
2 , 1
)(

3, 1
5

)
(1, 1)

(
1
4 , 2
) (

1
3 , 2
)(

1, 1
3

) (
2, 1

4

)
(1, 1)

(
1
3 , 1
)(

1, 1
2

) (
2, 1

3

) (
1, 1

3

)
(1, 1)

, M(2) =


(1, 1)

(
1
3 , 2
) (

1
4 , 2
) (

1
3 , 1
)(

2, 1
3

)
(1, 1)

(
1
5 , 3
) (

1
4 , 2
)(

2, 1
4

) (
3, 1

5

)
(1, 1)

(
1
2 , 1
)(

1, 1
3

) (
2, 1

4

) (
1, 1

2

)
(1, 1)

,

M(3) =


(1, 1)

(
2, 1

3

) (
1
3 , 2
) (

1, 1
3

)(
1
3 , 2
)

(1, 1)
(

1
4 , 3
) (

1
5 , 3
)(

2, 1
3

) (
3, 1

4

)
(1, 1)

(
1, 1

2

)(
1
3 , 1
) (

3, 1
5

) (
1
2 , 1
)

(1, 1)

, M(4) =


(1, 1)

(
1
3 , 1
) (

1
2 , 1
) (

1
2 , 1

2

)(
1, 1

3

)
(1, 1)

(
1
5 , 4
) (

1
4 , 3
)(

1, 1
2

) (
4, 1

5

)
(1, 1)

(
1
2 , 1
)(

1
2 , 1

2

) (
3, 1

4

) (
1, 1

2

)
(1, 1)

.
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Step 1. According to Equation (16), we can transform the four IMPRs into eight corresponding interval
multiplicative preference relations as

M+
(1) =


[1, 1]

[
1
5 , 1

3

] [
1
3 , 1
] [

1
2 , 1
]

[3, 5] [1, 1]
[

1
4 , 1

2

] [
1
3 , 1

2

]
[1, 3] [2, 4] [1, 1]

[
1
3 , 1
]

[1, 2] [2, 3] [1, 3] [1, 1]

, M−
(1) =


[1, 1] [3, 5] [1, 3] [1, 2][
1
5 , 1

3

]
[1, 1] [2, 4] [2, 3][

1
3 , 1
] [

1
4 , 1

2

]
[1, 1] [1, 3][

1
2 , 1
] [

1
3 , 1

2

] [
1
3 , 1
]

[1, 1]

,

M+
(2) =


[1, 1]

[
1
3 , 1

2

] [
1
4 , 1

2

] [
1
3 , 1
]

[2, 3] [1, 1]
[

1
5 , 1

3

] [
1
4 , 1

2

]
[2, 4] [3, 5] [1, 1]

[
1
2 , 1
]

[1, 3] [2, 4] [1, 2] [1, 1]

, M−
(2) =


[1, 1] [2, 3] [2, 4] [1, 3][
1
3 , 1

2

]
[1, 1] [3, 5] [2, 4][

1
4 , 1

2

] [
1
5 , 1

3

]
[1, 1] [1, 2][

1
3 , 1
] [

1
4 , 1

2

] [
1
2 , 1
]

[1, 1]

,

M+
(3) =


[1, 1] [2, 3]

[
1
3 , 1

2

]
[1, 3][

1
3 , 1

2

]
[1, 1]

[
1
4 , 1

3

] [
1
5 , 1

3

]
[2, 3] [3, 4] [1, 1] [1, 2][
1
3 , 1
]

[3, 5]
[

1
2 , 1
]

[1, 1]

, M−
(3) =


[1, 1]

[
1
3 , 1

2

]
[2, 3]

[
1
3 , 1
]

[2, 3] [1, 1] [3, 4] [3, 5][
1
3 , 1

2

] [
1
4 , 1

3

]
[1, 1]

[
1
2 , 1
]

[1, 3]
[

1
5 , 1

3

]
[1, 2] [1, 1]

,

M+
(4) =


[1, 1]

[
1
3 , 1
] [

1
2 , 1
] [

1
2 , 2
]

[1, 3] [1, 1]
[

1
5 , 1

4

] [
1
4 , 1

3

]
[1, 2] [3, 5] [1, 1]

[
1
2 , 1
][

1
2 , 2
]

[3, 4] [1, 2] [1, 1]

, M−
(4) =


[1, 1] [1, 3] [1, 2]

[
1
2 , 2
][

1
3 , 1
]

[1, 1] [4, 5] [3, 4][
1
2 , 1
] [

1
5 , 1

3

]
[1, 1] [1, 2][

1
2 , 2
] [

1
4 , 1

3

] [
1
2 , 1
]

[1, 1]

.

In Steps 2 and 3, we can obtain the decision matrix ∆ using Equation (24) as

∆ =

DM1 DM2 DM3 DM4

x1

x2

x3

x4


−2.4693 −2.7484 0.5668 −0.9756
−0.5955 −1.5643 −3.9981 −2.1945
1.1208 2.1981 2.6877 1.9614
1.9226 2.1099 0.4783 1.5392

 .

In Steps 4 and 5, by solving the mean deviation maximization model, i.e., Equation (26), the normalized
weights of students are calculated combined with Equation (30) as

w = (w1, w2, w3, w4)
T = (0.2093, 0.2954, 0.2694, 0.2259)T .

Step 6. We can compute the net flow score vector Φ using Equation (23) as

Φ = (φ(x1), φ(x2), φ(x3), φ(x4))
T = (−1.3963,−2.1945, 1.9614, 1.5392)T .

Finally, we can determine the ranking of internet companies as x3 � x4 � x1 � x2.

Example 3. Suppose a high-speed railway station is to be built in a city, and four railway transportation experts
make a pairwise comparison between four potential location plans. Decision makers DM1 and DM2 reveal their
IFPRs as follows:

F(1) =


(1, 1)

(
1
3 , 2
) (

3, 1
5

) (
2, 1

3

)(
2, 1

3

)
(1, 1)

(
3, 1

4

) (
4, 1

5

)(
1
5 , 3
) (

1
4 , 3
)

(1, 1)
(

1
5 , 4
)(

1
3 , 2
) (

1
5 , 4
) (

4, 1
5

)
(1, 1)

, F(2) =


(1, 1)

(
1
4 , 3
) (

4, 1
5

) (
3, 1

3

)(
3, 1

4

)
(1, 1)

(
5, 1

7

) (
3, 1

4

)(
1
5 , 4
) (

1
7 , 5
)

(1, 1)
(

1
2 , 2
)(

1
3 , 3
) (

1
4 , 3
) (

2, 1
2

)
(1, 1)

.
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In addition, decision makers DM3 and DM4 use IMPRs to evaluate the plans as

RF
3 =


(0.50, 0.50) (0.15, 0.55) (0.75, 0.10) (0.65, 0.15)
(0.55, 0.15) (0.50, 0.50) (0.70, 0.20) (0.85, 0.15)
(0.10, 0.75) (0.20, 0.70) (0.50, 0.50) (0.10, 0.60)
(0.15, 0.65) (0.15, 0.85) (0.60, 0.10) (0.50, 0.50)

,

RF
4 =


(0.50, 0.50) (0.20, 0.60) (0.85, 0.10) (0.55, 0.35)
(0.60, 0.20) (0.50, 0.50) (0.85, 0.15) (0.75, 0.15)
(0.10, 0.85) (0.15, 0.85) (0.50, 0.50) (0.15, 0.65)
(0.35, 0.55) (0.15, 0.75) (0.65, 0.15) (0.50, 0.50)

.

In Steps 1–3, the decision matrix ∆ can be obtained using Equation (24) as

∆ =

DM1 DM2 DM3 DM4

x1

x2

x3

x4


1.3989 1.3828 1.50 1.10
4.1854 5.1497 3.20 3.40
−4.8873 −4.6640 −3.30 −3.90
−0.9085 −1.6960 −1.40 −0.60

 .

In Steps 4 and 5, by solving the mean deviation maximization model, i.e., Equation (26), the normalized
weights of decision makers are calculated combined with Equation (30) as

w = (w1, w2, w3, w4)
T = (0.2667, 0.3021, 0.2203, 0.2109)T .

Step 6. Combined with the decision maker weights and matrix ∆, the net flow score vector Φ can be
computed using Equation (23) as

Φ = (φ(x1), φ(x2), φ(x3), φ(x4))
T = (1.3533, 4.0940,−4.2620,−1.1896)T . (35)

At last, the ranking of four location plans is determined as x2 � x1 � x4 � x3; the plan x2 is the best
choice for building a high-speed railway station.

5.2. Comparison and Discussion

In order to further illustrate the validity of the new GDM approach, the ranking orders above are
compared with the results of the linear goal programming model [28], the intuitionistic fuzzy weighted
average (IFWA) operator [41], and the intuitionistic fuzzy weighted geometric (IFWG) operator [41]
for solving Example 1 as shown in Table 1. Similarly, the comparison result of Example 2 between the
proposed method and the error-analysis-based method [30], the IMWA operator [19], and the IMWG
operator [19] is shown in Table 2.

Table 1. Comparison result of Example 1.

Decision-Making Method
The Priority Values of Alternatives

Ranking
x1 x2 x3 x4

The proposed method 1.4451 1.2070 −1.1451 −1.5070 x1 � x2 � x3 � x4
The linear goal programming model 0.04 −0.31 −0.76 −0.96 x1 � x2 � x3 � x4

The IFWA operator 0.2153 0.1497 −0.0571 −0.1361 x1 � x2 � x3 � x4
The IFWG operator 0.1386 0.0607 −0.1773 −0.1924 x1 � x2 � x3 � x4
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Table 2. Comparison result of Example 2.

Decision-Making Method
The Priority Values of Alternatives

Ranking
x1 x2 x3 x4

The proposed method −1.3963 −2.1945 1.9614 1.5392 x3 � x4 � x1 � x2
The error-analysis-based method 0.1784 0.1549 0.3405 0.3262 x3 � x4 � x1 � x2

The IMWA operator 0.5492 0.5667 2.6412 2.3154 x3 � x4 � x2 � x1
The IMWG operator 0.4329 0.3384 1.9648 1.8975 x3 � x4 � x1 � x2

Tables 1 and 2 show that the ranking in Examples 1 and 2 are consistent with the linear goal
programming model [28] and the error-analysis-based method [30], respectively, which can indicate
the effectiveness of the new GDM approach. Table 2 shows that the result of the IMWA operator
is x3 � x4 � x2 � x1, while the result of other methods is x3 � x4 � x1 � x2; the loss of original
information from the operator causes the inconsistent ranking result. In addition, both Tables 1
and 2 show that all the priority values of different alternatives that were obtained using aggregation
operators [19,30] are very close, which would make the difference between alternatives difficult to
distinguish clearly. The weights of decision makers are assigned subjectively in the existing methods,
which may contribute to the inaccurate ranking. Furthermore, Example 3 shows that the new GDM
approach can also solve GDM problems with both IFPRs and IMPRs effectively, which cannot be
solved by other approaches. Therefore, the new GDM approach has the following advantages:
(1) Instead of assigning the decision maker weights subjectively, the proposed method can determine
them objectively based on information theory; (2) The operation process of the proposed method is
more simple and feasible, without constructing any programming models to obtain the priorities;
(3) The GDM problems with both IFPRs and IMPRs can be solved, which has not been studied in
previous research works. However, the consistency of IFPRs and IMPRs is not considered in this paper,
and this will be researched in the future to improve the accuracy of the ranking result.

6. Conclusions

A novel method is proposed to rank the alternatives in GDM problems with two preference
relations: IFPRs and IMPRs. By integrating the hesitancy degree into the membership and
non-membership degrees, IFPRs and IMPRs can be divided into IVFPRs and IVMPRs, respectively.
According to the net flow score function, the net flow scores that can be used to rank individual IFPRs
and IMPRs are obtained. Combined with a mean deviation maximization model, the decision maker
weights are computed objectively. Finally, the collective net flow scores are aggregated to choose
the best alternative. Numerical examples show the applications and advantages of the new GDM
approach. In real-life situations, when the alternatives are evaluated concerning the related criteria
using both IFPRs and IMPRs, we can apply the proposed method to solve these situations effectively.

As the consistency of IFPRs and IMPRs is ignored in the proposed method, in future research,
we will enhance the proposed method to enable solving GDM problems with inconsistent IFPRs and
IMPRs. Moreover, the proposed method will be improved to cope with the situation that other kinds
of preference relations are utilized to evaluate alternatives.
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factors of the application of nanotechnology in construction industry by using ANP technique under fuzzy
intuitionistic environment. J. Civ. Eng. Manag. 2017, 23, 914–925. [CrossRef]

13. Baležentis, T.; Baležentis, A. Group decision making procedure based on trapezoidal intuitionistic fuzzy
numbers: MULTIMOORA methodology. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 103–122.

14. Zavadskas, E.K.; Antucheviciene, J.; Hajiagha, S.H.R.; Hashemi, S.S. The interval-valued intuitionistic fuzzy
MULTIMOORA method for group decision making in engineering. Math. Probl. Eng. 2015, 2015, 1–13.
[CrossRef]

15. Kahraman, C.; Ghorabaee, M.K.; Zavadskas, E.K.; Onar, S.C.; Yazdani, M.; Oztaysi, B. Intuitionistic fuzzy
EDAS method: An application to solid waste disposal site selection. J. Environ. Eng. Landsc. Manag. 2017, 25,
1–12. [CrossRef]

16. Hashemi, S.S.; Hajiagha, S.H.R.; Zavadskas, E.K.; Mahdiraji, H.A. Multicriteria group decision making with
ELECTRE III method based on interval-valued intuitionistic fuzzy information. Appl. Math. Model. 2016, 40,
1554–1564. [CrossRef]

17. Yang, W.; Chen, Z.P.; Zhang, F. New group decision making method in intuitionistic fuzzy setting based on
TOPSIS. Technol. Econ. Dev. Econ. 2015, 23, 441–461. [CrossRef]

18. Xu, Z.S. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177,
2363–2379. [CrossRef]

19. Xia, M.M.; Xu, Z.S.; Liao, H.C. Preference relations based on intuitionistic multiplicative information.
IEEE Trans. Fuzzy Syst. 2013, 21, 113–133.

20. Zhang, Z.M.; Pedrycz, W. Intuitionistic multiplicative group analytic hierarchy process and its use in
multicriteria group decision-making. IEEE Trans. Cybern. 2017, PP, 1–13. [CrossRef] [PubMed]

21. Xu, Z.S.; Liao, H.C. A survey of approaches to decision making with intuitionistic fuzzy preference relations.
Knowl.-Based Syst. 2015, 80, 131–142. [CrossRef]

22. Zhang, Z.M.; Pedrycz, W. Models of mathematical programming for intuitionistic multiplicative preference
relations. IEEE Trans. Fuzzy Syst. 2017, 245, 945–957. [CrossRef]

23. Xu, Z.S. Approaches to multiple attribute decision making with intuitionistic fuzzy preference information.
Syst. Eng. Theory Pract. 2007, 27, 62–71. [CrossRef]

24. Gong, Z.W.; Li, L.S.; Forrest, J.; Zhao, Y. The optimal priority models of the intuitionistic fuzzy preference
relation and their application in selecting industries with higher meteorological sensitivity. Expert Syst. Appl.
2011, 38, 4394–4402. [CrossRef]

http://dx.doi.org/10.1287/mnsc.32.7.841
http://dx.doi.org/10.1016/0165-0114(78)90001-5
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.3846/20294913.2016.1185047
http://dx.doi.org/10.15388/Informatica.2017.138
http://dx.doi.org/10.3846/20294913.2014.984254
http://dx.doi.org/10.24200/sci.2017.4131
http://dx.doi.org/10.3846/20294913.2014.989931
http://dx.doi.org/10.3846/20294913.2012.762953
http://dx.doi.org/10.3846/13923730.2017.1343202
http://dx.doi.org/10.1155/2015/560690
http://dx.doi.org/10.3846/16486897.2017.1281139
http://dx.doi.org/10.1016/j.apm.2015.08.011
http://dx.doi.org/10.3846/20294913.2015.1072754
http://dx.doi.org/10.1016/j.ins.2006.12.019
http://dx.doi.org/10.1109/TCYB.2017.2720167
http://www.ncbi.nlm.nih.gov/pubmed/28727567
http://dx.doi.org/10.1016/j.knosys.2014.12.034
http://dx.doi.org/10.1109/TFUZZ.2016.2587326
http://dx.doi.org/10.1016/S1874-8651(08)60069-1
http://dx.doi.org/10.1016/j.eswa.2010.09.109


Information 2018, 9, 55 15 of 15

25. Gong, Z.W.; Li, L.S.; Zhou, F.X.; Yao, T.X. Goal programming approaches to obtain the priority vectors from
the intuitionistic fuzzy preference relations. Comput. Ind. Eng. 2009, 57, 1187–1193. [CrossRef]

26. Xu, Z.S. An error-analysis-based method for the priority of an intuitionistic preference relation in decision
making. Knowl.-Based Syst. 2012, 33, 173–179. [CrossRef]

27. Xu, Z.S.; Liao, H.C. Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 2014, 22, 749–761.
[CrossRef]

28. Wang, Z.J. Derivation of intuitionistic fuzzy weights based on intuitionistic fuzzy preference relations.
Appl. Math. Model. 2013, 37, 6377–6388. [CrossRef]

29. Zeng, S.Z.; Palacios, M.D.; Zhu, F.C. A new model for interactive group decision making with intuitionistic
fuzzy preference relations. Informatica 2016, 27, 911–928. [CrossRef]

30. Xu, Z.S. Priority weight intervals derived from intuitionistic multiplicative preference relations. IEEE Trans.
Fuzzy Syst. 2013, 21, 642–654.

31. Zhang, Z.; Guo, C.H. Deriving priority weights from intuitionistic multiplicative preference relations under
group decision-making settings. J. Oper. Res. Soc. 2017, 68, 1582–1599. [CrossRef]

32. Jin, F.F.; Ni, Z.W.; Pei, L.D.; Chen, H.Y.; Li, Y.P. Goal programming approach to derive intuitionistic
multiplicative weights based on intuitionistic multiplicative preference relations. Int. J. Mach. Learn. Cybern.
2016, 1–10. [CrossRef]

33. Wang, Y.M.; Fan, Z.P. Fuzzy preference relations: Aggregation and weight determination. Comput. Ind. Eng.
2007, 53, 163–172. [CrossRef]

34. Fodor, J.; Roubens, M. Fuzzy Preference Modelling and Multicriteria Decision Support; Springer: Dordrecht,
The Netherlands, 1994.

35. Xu, Y.J.; Patnayakuni, R.; Wang, H.M. A method based on mean deviation for weight determination from
fuzzy preference relations and multiplicative preference relations. Int. J. Inf. Technol. Decis. Mak. 2012, 11,
627–641. [CrossRef]

36. Xu, Z.S. On compatibility of interval fuzzy preference relations. Fuzzy Optim. Decis. Mak. 2004, 3, 217–225.
[CrossRef]

37. Saaty, T.L.; Vargas, L.G. Uncertainty and rank order in the analytic hierarchy process. Eur. J. Oper. Res. 1987,
32, 107–117. [CrossRef]

38. Moore, R.; Lodwick, W. Interval analysis and fuzzy set theory. Fuzzy Sets Syst. 2003, 135, 5–9. [CrossRef]
39. Gong, Z.W.; Li, L.S.; Cao, J.; Zhou, F.X. On additive consistent properties of the intuitionistic fuzzy preference

relation. Int. J. Inf. Technol. Decis. Mak. 2010, 9, 1009–1025. [CrossRef]
40. Hwang, C.L.; Yoon, K.P. Multiple Attribute Decision Making: Methods and Applications; Springer: Berlin,

Germany, 1981.
41. Xu, Z.S.; Cai, X. Intuitionistic Fuzzy Information Aggregation: Theory and Applications; Science Press: Sydney,

Australia, 2012.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cie.2009.05.007
http://dx.doi.org/10.1016/j.knosys.2012.03.009
http://dx.doi.org/10.1109/TFUZZ.2013.2272585
http://dx.doi.org/10.1016/j.apm.2013.01.021
http://dx.doi.org/10.15388/Informatica.2016.117
http://dx.doi.org/10.1057/s41274-016-0171-6
http://dx.doi.org/10.1007/s13042-016-0590-3
http://dx.doi.org/10.1016/j.cie.2007.05.001
http://dx.doi.org/10.1142/S0219622012500149
http://dx.doi.org/10.1023/B:FODM.0000036864.33950.1b
http://dx.doi.org/10.1016/0377-2217(87)90275-X
http://dx.doi.org/10.1016/S0165-0114(02)00246-4
http://dx.doi.org/10.1142/S0219622010004160
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	IVFPRs and IVMPRs 
	IFPRs and IMPRs 

	The Net Flow Score Function for Priority Ranking 
	The Relationship between IFPRs and IVFPRs 
	The Relationship between IMPRs and IVMPRs 
	The Net Flow Scores of IFPRs and IMPRs 

	The Proposed Method for Group Decision-Making 
	Numerical Examples 
	Implementation 
	Comparison and Discussion 

	Conclusions 
	References

