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Abstract: Network coding approaches typically consider an unrestricted recoding of coded packets in
the relay nodes to increase performance. However, this can expose the system to pollution attacks that
cannot be detected during transmission, until the receivers attempt to recover the data. To prevent
these attacks while allowing for the benefits of coding in mesh networks, the cache coding protocol
was proposed. This protocol only allows recoding at the relays when the relay has received enough
coded packets to decode an entire generation of packets. At that point, the relay node recodes and
signs the recoded packets with its own private key, allowing the system to detect and minimize the
effect of pollution attacks and making the relays accountable for changes on the data. This paper
analyzes the delay performance of cache coding to understand the security-performance trade-off
of this scheme. We introduce an analytical model for the case of two relays in an erasure channel
relying on an absorbing Markov chain and an approximate model to estimate the performance in
terms of the number of transmissions before successfully decoding at the receiver. We confirm our
analysis using simulation results. We show that cache coding can overcome the security issues of
unrestricted recoding with only a moderate decrease in system performance.
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1. Introduction

Mobile Ad-hoc Networks (MANET) constitute an infrastructure-less network architecture for
mobile devices. In MANETs, network coding has been shown to increase reliability and throughput [1].
In network coding, data are encoded in a sender and transmitted through a network to be decoded at
one or multiple receivers. Intermediate nodes in the network can also recombine coded packets (recode)
without decoding the original data. Network coding can be considered as a generalized routing,
in which relay nodes not only store and forward packets, but also combine packets received from
multiple input paths before sending them to any output path [2,3]. Random Linear Network Coding
(RLNC) is a simple, yet asymptotically optimal method, where packets are linearly combined using
coefficients drawn uniformly at random from the elements of a finite field [2] and then transmitted
through the network [4].

However, RLNC with unrestricted and unsupervised recoding is vulnerable to pollution attacks.
A pollution attack occurs when a malicious or faulty node injects invalid linear combinations of
generation into the network [5]. These invalid coded packets can quickly propagate into other
packets via recoding in relay nodes and can prevent the destination node from decoding properly [6].
To prevent pollution attacks, homomorphic signatures, which are preserved through linear combination
and recoding, can be used [7–9]. This method allows the system to check the integrity of network
coded data and also to track and find malicious nodes in the network. However, due to high processing
cost, this method is not practical [6]. While there exist alternatives for preventing pollution attacks
with reduced processing costs, these solutions place limitations on topologies, require loose clock
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synchronization on the order of 100 ms, limit the hop count, require large field sizes or demand new
public keys to be generated per generation. These requirements are not feasible in dynamic MANET
networks. Thus, a new integrity mechanism is needed to mitigate pollution attacks [10].

As an alternative, the authors of [5] proposed a protocol solution called cache coding.
Cache coding allows certified relay nodes to recode data only when they have decoded an entire
generation. At that time, the relay nodes can generate new recoded packets and sign them with their
own identifier. This mechanism generates trusted packets from both the source node and the trusted
relay nodes, thus allowing the network to detect pollution attacks before they propagate.

Although [5] presents the protocol to cope with this vulnerability and identifies some bounds
on the number of transmissions, a precise analytical model to characterize the performance of cache
coding in multi-relay networks is missing. This performance analysis is critical to understand the
security-delay trade-off imposed by the protocol. This paper provides two models for analysis of the
cache coding protocol. The first model is a simple, yet accurate approximation to predict the number
of required transmissions. The second model is based on an absorbing Markov chain inspired by
previous works (e.g., [11]) and is used to accurately characterize the total number of transmissions in
the system, as well as the number of linearly independent packets in all nodes after some constant
transmissions from the source node. Although we focus on a simple relay policy from the cache coding
protocol, future work can exploit the Markov chain structure of the problem to derive optimal policies
using Markov Decision Processes (MDP) as in recent RLNC work (e.g., [12–14]).

We validate our analytical models using simulation results showing the difference between the
absorbing Markov chain model, and the simulation results are negligible for all analyzed generation
sizes and packet loss rates. For moderate loss rates, there is a 10% deviation in terms of the
square average of the difference between our heuristic model and the simulation results. However,
the heuristic model loses accuracy for high loss rates. Finally, we show that the cache coding protocol
is at most 12% worse than RLNC with unrestricted recoding in terms of the number of transmissions.
However, on average, there is only a 7% deviation in terms of the square average of the difference
between the expected number of transmissions of cache coding and unrestricted coding protocols.

This paper is organized as follows. In Section 2, we discuss the system model and different coding
methods in relay nodes. In Sections 3 and 4, we discuss our two analytical models, while Section 5
focuses on validating those models using simulation results. We present our conclusions in Section 6.

2. System Model

We consider a network topology with one source node S, two relay nodes R1 and R2 and
a destination node D. A total number of n packets must be sent from S to D. This transmission
occurs by using the links shown in Figure 1. Each link has a fixed packet loss rate, e. The packet loss
rates are considered constant throughout the transmission and independent of each other.

We define the Degrees of Freedom (DoF ) of a node as the number of linearly independent packets
received by that node. In any topology, the transmission will be carried on until the DoF of the
destination node are equal to the generation size, i.e., when the destination has enough information to
decode the original data. We also define the generation size (n packets) as the number of original data
packets that are linearly combined to generate network coded packets.

S generates packets using RLNC. It uses data packets p1, p2,..., pn in the generation to create
a linear combination with coding coefficients a1, a2,..., an, i.e., ∑n

i=1 ai pi. These coefficients are randomly
selected from q elements of a Galois field, i.e., GF(q) [12]. If the field size is not considered very large,
there is a chance that a packet received by D is not innovative and hence does not increase the DoF
of D. However, in our analysis, we assume that the field size is large enough so that the probability
of generating a linearly dependent coded packets for R1 and R2 is negligible until they decode
the generation.
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Figure 1. The topology of a two-relay network.

Data are sent in three broadcast transmissions in three time slots as shown in Figure 2, with Tx
and Rx indicating the transmission and reception of data, respectively. The first time slot is used for
broadcasting from S to both R1 and R2. The second and third time slots are used by R1 and R2 to
broadcast to D, respectively. This whole process is called a transmission round. We assume a shared
channel between all nodes for sending data in this topology, and the TDMA protocol is used to manage
each node’s access to this shared channel.
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Figure 2. A transmission round.

We assume that whenever a relay node receives a packet, it is permitted to transmit a packet.
This packet is determined by one of the following three coding methods.

Source coding (S− C): Upon reception of a transmission from S, R1 and/or R2 send a packet to
D, which is identical to the packet received from S. Thus, D receives only one independent packet if it
receives packets from more than one relay in the same time slot. Repeated coded packets are discarded.

Unrestricted coding (U − C): In this method, R1 and R2 receive encoded packets from S. R1 and
R2 recode packets with previously received coded packets in each relay’s buffer and send the newly
generated recoded packet to D. Each relay transmits a recoded packet when they receive a coded
packet from S.

Cache coding (C− C): In this method, R1 and R2 will act like the source coding method until its
DoF is equal to the generation size (n). Then, the relay decodes the whole generation. After decoding all
packets, the mentioned relay recodes the original packets and sends recoded data to D. This mechanism
continues until the end of transmission, where the DoF of D are equal to the generation size (n).

3. Heuristic

This section derives an approximation to evaluate the performance of the three coding methods
described in Section 2 in a system with the topology of Figure 1. We address each method in different
subsections. We focus on the expected number of transmissions from S until D decodes a generation
of n packets, as well as the expected total number of transmissions in all links in the network.
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3.1. Source Coding

The probability that a packet is received by D from R1 and the probability of receiving a packet
by D from R2 are:

Pr1 = Pr2 = (1− e)2. (1)

Meanwhile, the probability of receiving a packet by D from both R1 and R2 is:

Pr1∩r2 = (1− e)4. (2)

Since the assumption is based on a high field size, a new packet is innovative at D if it is received
from either R1 or R2. This probability is equal to Pr1 + Pr2 − Pr1∩r2 . Thus, the probability of receiving
a linearly independent packet by D is:

Pindep = 2(1− e)2 − (1− e)4. (3)

Using Equation (3), the expected number of required transmissions from S to decode the
generation completely in D is:

ksc(2(1− e)2 − (1− e)4) = n. (4)

where n is the size of the generation that D needs to decode and ksc is the number of required
transmissions from S to have n linearly independent packets in D. In source coding, every transmission
round includes a transmission from S; therefore, this metric is equal to the total number of transmission
rounds in the system.

The expected number of transmissions in all links requires us to determine the expected number
of transmissions from each relay. Since each relay transmits a packet when it receives a packet from
S, the expected number of transmissions from each relay is equal to k(1− e). Hence, the expected
number of transmissions in all links is:

Tsc = 2ksc(1− e) + ksc. (5)

Note that the expected number of linearly dependent packets received in D, i.e., coded packets
received by D from both R1 and R2 in the case of this scheme, is given by:

LDsc = ksc·(1− e)4. (6)

3.2. Unrestricted Coding

In the analysis of unrestricted coding, our assumption is that the system operates optimally,
i.e., each transmitted coded packet from S is linearly independent for D, as well as for the joint
information of both R1 and R2. The latter means that if a transmission from S is successfully received
by at least one of R1 or R2 and increases their joint DoF, then it is considered a useful transmission. Thus,
the approximations derived for the expected number of transmission rounds and total expected number
of transmissions in this section are lower bounds to the experimental values. Although this optimal
scheme is achievable, from a practical perspective, it may impose increased signaling requirements in
the network. A practical scheme requires the same or more coded packet transmissions.

Since the probability that neither R1 nor R2 receive the coded packet from S is e2, hence the
probability of receiving a transmitted packet from S by either R1 or R2 is 1− e2. As we require R1 and
R2 to receive n packets, the expected number of transmissions from S to R1 and R2 is:

kuc =
n

1− e2 . (7)
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D requires n packets to decode the whole generation. As the probability of receiving a packet by D
from a relay node is 1− e, the expected number of transmissions from R1 and R2 to D until D can
decode the whole generation is:

k′uc =
n

1− e
. (8)

Summation of Equations (7) and (8) results in the expected number of transmissions in all
links being:

Tuc =
n(2− e)
(1− e)2 . (9)

3.3. Cache Coding

For the cache coding protocol, the total number of transmissions from all links can be separated
into three separate contributions, as follows.

1. The probability of receiving a packet by a relay node R1 or R2 is 1− e. As we need n packets
in each relay node, the expected number of transmissions from S to R1 and R2 until the relays
decode the whole generation is equal to n

1−e .
2. Until R1 and R2 decode the whole generation, they forward the packets received from S. As each

relay node receives n packets until decoding the whole generation, each relay node forwards n
coded packets received from S. Thus, the expected number of transmissions from R1 and R2 to D
until both R1 and R2 have decoded the whole generation is equal to 2n.

3. The expected number of transmissions from R1 and R2 to D after they have decoded the whole
generation requires us to determine the expected number of linearly independent packets received
by D before R1 and R2 have decoded the whole generation. Before the relay nodes decode the
whole generation, the expected number of packets received by D from R1 is equal to n(1− e).
Meanwhile, the expected number of packets received by D only from R2 is equal to n(1− e)e.
Hence, the expected number of linearly independent packets in D, before the relay nodes decode
the whole generation, is equal to n(1− e) + n(1− e)e = n(1− e2). In order to decode the whole
generation, D needs a total of n linearly independent packets; hence, after R1 and R2 have decoded
the whole generation, D must receive another n− n(1− e2) linearly dependent packets. Since the
probability of receiving a packet by D from R1 and the probability of receiving a packet by D from
R2 is 1− e, the expected number of transmissions from R1 and R2 to D after they have decoded

the whole generation is equal to n−n(1−e2)
1−e .

Summing these three equations, we can calculate the expected number of transmissions in all
links as:

Tcc =
n

1− e
+ 2n +

n− n(1− e2)

1− e
. (10)

While the expected number of transmission rounds in the system is:

kcc =
n

1− e
+

n− n(1− e2)

2(1− e)
. (11)

The expected number of transmission rounds before R1 and R2 have decoded the data equals
the expected number of transmissions from S to R1 and R2, i.e., n

1−e . Moreover, the expected number
of transmission rounds after R1 and R2 have decoded the data is equal to the expected number of
transmissions from R1 and R2 to D divided by the number of relays.

In order to determine the expected number of linearly dependent packets in D, we use the fact
that the expected number of packets received by D from R1 or R2 is equal to n(1− e) and that the
expected number of packets received by D from only one of R1 and R2 is equal to ne(1− e). Thus, the
expected number of linearly dependent packets is equal to the subtraction of these two equations.

LDcc = n(1− e)2. (12)
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4. Absorbing Markov Chain Model

This section provides a full characterization of the cache coding protocol using an analytical
model based on an absorbing Markov chain. We define the states as a triple (r1, r2, r), where r1 and r2

are the DoFs in R1 and R2, respectively, and r represents the DoFs in D. Note that r1 + r2 ≥ r based
on these states. The absorbing states are the states where r = n. This absorbing Markov chain will
also include a cost matrix C alongside the matrix of transition probabilities P. While Pij indicates the
transition probability from state i to state j, Cij is the total number of transmissions in all links required
for the transition from state i to state j. We have derived closed-form expressions for each element of
these two matrices.

4.1. Transition Probabilities

The transition probabilities between states S = (r1, r2, r) and S ′ = (r1 + i, r2 + j, r + k) are
dependent on the the cache coding protocol’s stage in the communication process. Thus, we organize
the transition probabilities into five cases as follows. In each case, we show how to derive one of the
probabilities. Other probabilities are derived in the same way.

1. r1 ≤ n− 1 and r2 ≤ n− 1

No single relay node has decoded the data or decodes the data after receiving the new coded
packet. Thus, both relays receive the coded packet and forward the received packet to D. Thus,

PS→S ′ =



e2 if i = 0 and j = 0 and k = 0

e2·(1− e) if i = 0 and j = 1 and k = 0

e·(1− e)2 if i = 0 and j = 1 and k = 1

e2·(1− e) if i = 1 and j = 0 and k = 0

e·(1− e)2 if i = 1 and j = 0 and k = 1

e2·(1− e)2 if i = 1 and j = 1 and k = 0

(1 + e)·(1− e)3 if i = 1 and j = 1 and k = 1

0 Otherwise

In this case, for example, consider the probability where i = 1, j = 1 and k = 1. This case is the
union of three possibilities.

• R1 and R2 receive from S. D receives from both R1 and R2. In this case, all receptions are
successful, so the probability of this incident is equal to (1− e)4.

• R1 and R2 receive from S. D receives only from R1. In this case, three of four receptions are
successful, so the probability of this incident is equal to e·(1− e)3.

• R1 and R2 receive from S. D receives only from R2. In this case, three of four receptions are
successful, so the probability of this incident is equal to e·(1− e)3.

2. r1 = n− 1 and r2 ≤ n− 1 or r1 ≤ n− 1 and r2 = n− 1.

In this case, if one the relay node with DoFs equal to n− 1 receives a new packet, it decodes the
generation completely and starts to send recoded data to D. However, the other relay node still
forwards the received coded packet. Thus,
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PS→S ′ =



e2 if i = 0 and j = 0 and k = 0

e2·(1− e) if i = 0 and j = 1 and k = 0

e·(1− e)2 if i = 0 and j = 1 and k = 1

e2·(1− e) if i = 1 and j = 0 and k = 0

e·(1− e)2 if i = 1 and j = 0 and k = 1

e2·(1− e)2 if i = 1 and j = 1 and k = 0

2e·(1− e)3 if i = 1 and j = 1 and k = 1

(1− e)4 if i = 1 and j = 1 and k = 2

0 Otherwise

In this case, for example, consider the probability where i = 1, j = 1 and k = 2. This case occurs
when R1 and R2 both receive a packet from S and D receives a packet from both R1 and R2.
Therefore, all four transmissions must be successful; hence, this incident must have a probability
of (1− e)4.

3. r1 = n and r2 < n

In this case, R1 recodes and sends data to D, while R2 forwards the received coded packets.
Even if R2 receives a new packet and decodes data completely (the case r2 = n− 1), it recodes
data and sends a recoded packet to the destination, which is different from the packet sent by
R1. The difference between this case and Case 2 is the fact that R1 sends a recoded packet to D
whether or not it receives a packet from S. However, this event does not occur in Case 2. Thus,

PS→S ′ =



e2 if i = 0 and j = 0 and k = 0

e·(1− e) if i = 0 and j = 0 and k = 1

(1− e)·e2 if i = 0 and j = 1 and k = 0

2e·(1− e)2 if i = 0 and j = 1 and k = 1 and r 6= n− 1

(1− e2)·(1− e) if i = 0 and j = 1 and k = 1 and r = n− 1

(1− e)3 if i = 0 and j = 1 and k = 2

0 Otherwise

In this case, consider the probability where i = 0, j = 1 and k = 1. If r 6= n− 1, this incident
occurs when R2 receives a packet from S, and also D receives a packet from either R1 or R2.
Each of these incidents have a probability of e(1− e)2. Hence, the total probability is equal to
2e(1− e)2.

4. Case 4 : r1 < n and r2 = n

In this case, R2 recodes and sends data to D, while R1 forwards the received coded packets.
Even if R1 receives a new packet and decodes data completely (the case r1 = n− 1), it recodes
data and sends a recoded packet to the destination, which is different from the packet sent by
R2. The difference between this case and Case 2 is the fact that R2 sends a recoded packet to
D whether or not it receives a packet from S. However, this event does not occur in Case 2.
The probabilities in this case are identical to the previous case. Thus,
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PS→S ′ =



e2 if i = 0 and j = 0 and k = 0

e·(1− e) if i = 0 and j = 0 and k = 1

(1− e)·e2 if i = 1 and j = 0 and k = 0

2e·(1− e)2 if i = 1 and j = 0 and k = 1 and r 6= n− 1

(1− e2)·(1− e) if i = 1 and j = 0 and k = 1 and r = n− 1

(1− e)3 if i = 1 and j = 0 and k = 2

0 Otherwise

5. Case 5 : r1 = n and r2 = n

In this case, both R1 and R2 have decoded the data. Therefore, S will not transmit any longer to
R1 or R2, while R1 and R2 will recode the decoded data and send different coded packets to D.

PS→S ′ =


e2 if i = 0 and j = 0 and k = 0

2e·(1− e) if i = 0 and j = 0 and k = 1

(1− e2) if i = 0 and j = 0 and k = 2

0 Otherwise

4.2. Cost of Transitions

The cost of any transition is 0, 1, 2 or 3 depending on the number of broadcast transmissions that
occur. Using the cases introduced in Section 4.1, we can derive the cost of transitions. The cost of
transition is derived using these two facts.

1. S sends a packet unless the DoF of both R1 and R2 is equal to n.
2. R1 and R2 send a packet when their DoF is equal to n or they receive a packet from S.

Thus, the cost of transitions is as follows.

1. r1 ≤ n− 1 and r2 ≤ n− 1

CS→S ′ =



1 if i = 0 and j = 0 and k = 0

2 if i = 0 and j = 1 and k = 0

2 if i = 0 and j = 1 and k = 1

2 if i = 1 and j = 0 and k = 0

2 if i = 1 and j = 0 and k = 1

3 if i = 1 and j = 1 and k = 0

3 if i = 1 and j = 1 and k = 1

0 Otherwise
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2. r1 = n− 1 and r2 ≤ n− 1 or r1 ≤ n− 1 and r2 = n− 1

CS→S ′ =



1 if i = 0 and j = 0 and k = 0

2 if i = 0 and j = 1 and k = 0

2 if i = 0 and j = 1 and k = 1

2 if i = 1 and j = 0 and k = 0

2 if i = 1 and j = 0 and k = 1

3 if i = 1 and j = 1 and k = 0

3 if i = 1 and j = 1 and k = 1

3 if i = 1 and j = 1 and k = 2

0 Otherwise

3. r1 = n and r2 < n

CS→S ′ =



2 if i = 0 and j = 0 and k = 0

2 if i = 0 and j = 0 and k = 1

3 if i = 0 and j = 1 and k = 0

3 if i = 0 and j = 1 and k = 1 and r 6= n− 1

3 if i = 0 and j = 1 and k = 1 and r = n− 1

3 if i = 0 and j = 1 and k = 2

0 Otherwise

4. r1 < n and r2 = n

CS→S ′ =



2 if i = 0 and j = 0 and k = 0

2 if i = 0 and j = 0 and k = 1

3 if i = 1 and j = 0 and k = 0

3 if i = 1 and j = 0 and k = 1 and r 6= n− 1

3 if i = 1 and j = 0 and k = 1 and r = n− 1

3 if i = 1 and j = 0 and k = 2

0 Otherwise

5. r1 = n and r2 = n

CS→S ′ =


2 if i = 0 and j = 0 and k = 0

2 if i = 0 and j = 0 and k = 1

2 if i = 0 and j = 0 and k = 2

0 Otherwise

4.3. Performance Analysis Using the Markov Chain

4.3.1. Calculation of the Number of Transitions

After establishing all transition probabilities in a transition matrix, we can build the fundamental
matrix F as follows [15]:

F =

[
Ir×r Zr×t

Rt×r Qt×t,

]
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where t is the number of transient (non-absorbing) states and r is the number of absorbing states.
Q is the matrix of transition probabilities between transient states. R is the matrix of transition
probabilities from transient states to absorbing states. I is the identity matrix, and Z is an all-zero
matrix. After building this matrix, the mean number of transitions can be calculated using Definition 1.

Definition 1. The expected number of transitions before being absorbed when starting in a transient state i
is the i-th element of the column vector:

M = (I −Q)−1Γ,

where I is the identity matrix with the same dimensions as Q and Γ is an all-one vector [16].

4.3.2. Calculation of the Number of Transmissions in All Links

The expected number of transmissions in all links is calculated using both transition matrix A and cost
matrix C.

Definition 2. For an absorbing Markov chain in state i, the expected number of transmissions in its next
transition is equal to [17]:

E[Tri] =
n

∑
j=0

AijCij.

Theorem 1. For an absorbing Markov chain with state probability π, the expected number of transmissions in
the next transition is equal to:

E[Tr] = π(A · C)Γ,

where A · C represents the element to element multiplication between two matrices A and C and Γ is an all-one
column vector.

Proof-sketch of Theorem 1. Using Definition 2, for a system in state i, the expected number of
transmissions is equal to ∑n

i=0 Aij · Cij. As πi shows the probability for the system to be in state
i, so the expected number of transmissions in the system is equal to ∑n

i=0 πi ∑n
j=0 Aij · Cij.

5. Results

In this section, we assess the validity of the proposed models and compare the three recoding
schemes using various performance measures. We simulate the network topology of Figure 1
using the KODO library [18] in C++ to perform encoding/decoding operations. We have carried
1000 independent experiments for each generation size and packet loss rate and report the average
of these measurements. These experiments were carried out by using Galois Field (28) for
encoding/decoding operations. In this section, the deviation between two plots is calculated by
the square average between two vectors. The calculation is carried out by using the second vector as
a reference vector for calculating the square average. For example “the deviation of x and y is 5%”

means that if x and y have n entries, then
√

1
n ∑n

i=1(
xi−yi

yi
)2 = 0.05.

We have calculated the expected number of transmissions in all links in source coding.
Using Equation (5) in Section 3, we can approximate the expected number of transmission in all
links for source coding. Figure 3 compares the simulation results with our heuristics, showing a
deviation of 10% between heuristics and simulation. This fact shows that the approximated model can
estimate this metric within 90–110% of the real value for a wide range of generation sizes and packet
loss rates. This difference comes from the fact that additional transmissions from S to both R1 and R2

occur, while these packets are not innovative for D.
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Figure 3. Average number of transmissions in all links in source coding.

Figure 4 shows the expected number of transmissions in all links for unrestricted coding.
This figure shows that there is a 20% deviation between our heuristic model and simulation results for
all generation sizes and packet loss rates. However, for a moderate loss rate, which means less than
a 20% loss rate, there is only a 10% deviation between heuristic and simulation results. This gap is
created because the proposed heuristic is a lower bound for unrestricted coding.

Figure 4. Average number of transmissions in all links in unrestricted coding.

Figure 5 illustrates the expected number of transmission rounds in order to decode the data in
D for different generation sizes in cache coding. We compare our simulation results with the two
proposed models. Figure 6 shows the expected number of transmission rounds for different generation
sizes in cache coding. In both of these metrics, there is at most a 10% deviation between heuristics
and simulation. The deviation between the absorbing Markov chain and simulation is at most 6%.
The absorbing Markov chain model is more precise than the heuristics, because we did not consider
the number of relay nodes in our heuristic model. Tables 1 and 2 summarize our key results for
cache coding.

Figure 5. Average number of transmission rounds in cache coding.
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Figure 6. Average number of transmissions in all links in cache coding.

Table 1. Total number of transmission rounds in cache coding.

Generation Size
Error = 0.5 Error = 0.75

Simulation Heuristic Markov Simulation Heuristic Markov

8 10.469500 10.854200 10.387300 40.071900 32.562500 37.576200
16 21.913100 21.708300 21.261800 79.952000 65.125000 76.481200
32 44.574400 43.416700 43.685100 158.715000 130.250000 152.631800
64 89.816200 86.833300 84.539200 322.970000 260.500000 308.481900

Table 2. Total number of transmissions in all links in cache coding.

Generation Size
Error = 0.5 Error = 0.75

Simulation Heuristic Markov Simulation Heuristic Markov

8 26.373600 27.333300 26.527300 69.231800 66.000000 68.246300
16 54.644400 54.666700 54.638100 135.878000 132.000000 134.491700
32 112.070000 109.333000 111.984200 268.762000 264.000000 265.871200
64 226.947000 218.667000 223.247100 534.164000 528.000000 528.796300

Figures 7 and 8 show the expected number of linearly dependent packets received in D for cache
coding and source coding, respectively. As shown, this number decreases by increasing the packet loss
rate. This comes from the fact that there is a lower probability of receiving the same packets by R1 and
R2 for higher packet loss rates, which decreases the probability of receiving non-innovative packets
in D.

Figure 7. Number of linearly dependent packets in D in cache coding.
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Figure 8. Number of linearly dependent packets in D in source coding.

We also compare the performance of cache coding and unrestricted coding. In Figures 9 and 10,
we show the expected number of transmissions in all links for these coding schemes. The results for
the simulation confirm that there is only a 5% deviation between cache coding and unrestricted coding
in terms of expected total number of transmissions. This gap is larger for the results of the heuristics.
There is at most a 9% derivation between heuristic models of cache coding and unrestricted coding.
These results also show that the deviation between cache coding and unrestricted coding is only 12%
in the worst case.

Figure 9. Average number of transmissions in cache coding and unrestricted coding by the
simulation results.

Figure 10. Average number of transmissions in cache coding and unrestricted coding by the
heuristic results.

6. Conclusions and Future Work

This paper presents a model and full characterization for the cache coding protocol presented
in [5], as well as an approximated, yet accurate model for this protocol and other protocols of interest.
This analysis also considers an achievable lower bound for the number of transmissions in the network,
which serves as the gold standard to measure various protocols, including the cache coding protocol.

Using our models and simulation results, we have confirmed that the cache coding protocol,
which was originally designed to overcome the security issues of unrestricted coding, can overcome
the security issues with a negligible decrease in the performance of the two-relay system analyzed
in this paper. Although this fact had been shown by simulations [5], our paper provides the first
confirmation using analytical models to describe the system.
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Our future work will consider closed-form expressions for other performance metrics, such as the
number of linearly dependent packets received by the destination node. Moreover, we will consider
extensions of the analytical model to systems with more than two relays. Regarding the probabilistic
method, we will take the impact of field size on the probability of receiving an uninnovative packet by
the relay and destination nodes into consideration.
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