
 information

Article

Non-Negative Tensor Factorization for Human
Behavioral Pattern Mining in Online Games

Anna Sapienza * ID , Alessandro Bessi and Emilio Ferrara

USC Information Sciences Institute, Marina del Rey, CA 90292, USA;
abessi@nextbit.it (A.B.); ferrarae@isi.edu (E.F.)
* Correspondence: annas@isi.edu; Tel.: +1-310-448-8763

Received: 24 January 2018; Accepted: 14 March 2018; Published: 16 March 2018

Abstract: Multiplayer online battle arena is a genre of online games that has become extremely
popular. Due to their success, these games also drew the attention of our research community, because
they provide a wealth of information about human online interactions and behaviors. A crucial
problem is the extraction of activity patterns that characterize this type of data, in an interpretable
way. Here, we leverage the Non-negative Tensor Factorization to detect hidden correlated behaviors
of playing in a well-known game: League of Legends. To this aim, we collect the entire gaming
history of a group of about 1000 players, which accounts for roughly 100K matches. By applying
our framework we are able to separate players into different groups. We show that each group
exhibits similar features and playing strategies, as well as similar temporal trajectories, i.e., behavioral
progressions over the course of their gaming history. We surprisingly discover that playing strategies
are stable over time and we provide an explanation for this observation.

Keywords: Non-negative Tensor Factorization; temporal and topological pattern mining; human
behavior; multiplayer online game

1. Introduction

Multiplayer Online Battle Arena (MOBA) is a genre of strategy online games that has drawn
growing attention and has become extremely popular. MOBA consist of match-based games,
where players, divided into two opposing teams, compete against each other. Each player during the
match controls a single character (a.k.a., champion), having a specific role and abilities. The main goal
in each match is to destroy the enemy team’s base, while enhancing the player level, increasing the
abilities of the controlled character, and cooperating with one’s own teammates.

This genre of games, including Heroes of the Storm, Dota 2, and League of Legends, has attracted
researchers from different fields, especially because they provide a unique way to study the influence
of role-playing in competitive games [1,2], the impact of cooperation [3,4] versus individual player
attitudes [5,6], social behaviors [7–9], user commitment [10], etc. The analysis of MOBA games also
allows for the discovery of useful information to study the social dynamics of player communities.
For example, by extracting players’ social activities and relations, researchers addressed issues such as
gender gap [11] and improved the user experience [12].

One advantage of analyzing players’ records in online games is the possibility of monitoring how
their behaviors evolve over time. The temporal dimension exhibited by such data enables the study of
the evolution of player performance, specifically how players learn, adapt, and modify their playing
strategies over time.

We propose to study both the temporal and social dynamics of players in MOBA games at once.
Here, we will focus on the analysis of League of Legends (LoL), a popular MOBA game. Our goal will
be that of identifying different groups of players with common strategies, such as collaborative versus

Information 2018, 9, 66; doi:10.3390/info9030066 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-0842-7987
http://dx.doi.org/10.3390/info9030066
http://www.mdpi.com/journal/information

Information 2018, 9, 66 2 of 18

individualist players, and understanding how these groups of players behave in time, i.e., how their
strategies evolve over time.

To this aim, we take advantage of Non-negative Tensor Factorization (NTF) [13–15] techniques,
which derive from multi-linear algebra. Non-negative Tensor Factorization models can be seen as
an extension of Matrix Factorization, a method which provides a low-rank approximation of the
data that has been widely used to detect hidden structures among data in several contexts, such as
face recognition [16–18], hyperspectral unmixing [19,20], community detection [21,22], recommender
systems [23,24], etc. Analogously to matrix factorization, tensor factorization allows to approximate
data in a lower dimensional space. However, due to their multiple dimensions, tensors are suitable
objects to represent multimodal data [25]. This allows to identify correlation in the data at different
levels [26]: on the one hand, the application of the NTF helps in the identification of hidden
topological structures in the data, like groups or communities, which are easy to interpret as they reflect
individuals’ social dynamics [27]. On the other hand, these topological structures share correlated
activity patterns [28,29]. A major advantage in mining tensors, instead of using more common matrix
factorization techniques, is the possibility of extracting these correlations in the data in more than two
dimensions, thus avoiding studying data at an aggregated level. Moreover, the use of non-negative
constraints eases the interpretation of the patterns provided by the tensor factorization. Our purpose
is therefore to leverage NTF to detect groups of players characterized by similar features (i.e., actions
they perform during the game) and strategies as well as their temporal trajectories, i.e., their evolution.

Contributions

In this work, we present a framework based on NTF to study players’ behavior in online games.
The framework, shown in Figure 1, consists of a combination of machine learning and classification
methods. In particular, we use Decision Tree to select the features in the data that will become part of
the input of the NTF. We then apply the NTF in combination with other methods, such as k-means,
to extract meaningful information about users’ activity. Through the lens of this framework, we study
the gaming history of about 1000 League of Legends players accounting for a total of roughly 100K
matches. Our analysis will:

• Highlight the existence of an underlying structure in the data, that allows us to divide players
into groups characterized by similar features and having correlated temporal behaviors;

• Provide an interpretation of the components extracted by the NTF;
• Validate the interpretation of the NTF results by analyzing the uncovered groups and their

evolution over time;
• Discover, by analyzing the temporal components, that players’ playing strategies are consistent

over time;
• Provide and validate an explanation for players behavioral stability, namely that the design of the

game strongly impacts team formation in each match, thus manipulating the team’s probability
of victory.

Information 2018, 9, 66 3 of 18

Decision
Tree

Feature
Selection

Tensor
Creation

us
er

s

features

tim
e

Tensor
Decomposition

Users’
membership
(k-means)

Features’
membership
(95% norm)

Temporal
activation

(time-series)Groups of users with
similar characteristics and

temporal behavior
O

ut
co

m
e

U
se

rs

Fe
at

ur
es

Input

Figure 1. Framework. Our methodology is divided into several steps. First, we use Decision Trees to
find the features of the dataset that are meaningful in predicting users’ performance (the outcome is
the feature “winner”). Once the features are selected, we create a tensor whose dimensions coincide to
users, selected features, and time. We then decompose the tensor by applying NTF and detect the factor
matrices A, B, and C, providing the users’ and features membership, and temporal activity respectively.
Finally, we use this information to analyze the discovered groups of users characterized by similar
features and temporal behavior.

2. Materials and Methods

Given a dataset composed by users (i.e., players), whose features (i.e., actions performed
by the players) evolve over time, we aim at extracting meaningful patterns of behavior by
applying tensor decomposition techniques. To this aim, we need to represent our data as a tensor
(i.e., a multi-dimensional array). This can be done by assigning to each dimension of the tensor the
different dimensions of the data, namely users, features, and time. However, not all the available
features might be predictive of a user’s performance or behavior. Thus, our framework, shown in
Figure 1, includes a feature selection step (described in the following) that allows us to identify the
most informative features that will be then used to create the tensor.

2.1. Feature Selection

The first step in our framework is to evaluate which features we need to build our
multi-dimensional representation (tensor) of the data. We use Decision Trees to design a simple
prediction task and detect those features that are mostly predictive of users’ performance.
Decision Trees are well-known machine learning techniques used for predicting a target outcome
(in our case, users’ performance) by learning decision rules through the features describing the data.
The model also provides as an output the importance of each feature, i.e., the Gini importance or
impurity. (https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm) Each node of
a decision tree indeed represents a condition on one feature to split the dataset in two parts. The Gini
importance is the measure used by the algorithm (here we use the Python scikit-learn implementation
(http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#r251) to
chose the optimal split condition, and it is defined as

IG(p) = 1−
J

∑
j=1

p2
j , (1)

where J is the set of classes, and pj is the fraction of items labeled with the j-th class. The features
in the datasets can then be ranked according to the Gini importance yielded by their addition to the
model. We select those features whose sum of Gini values explain more than 90% of the overall sum
(i.e., sum of Gini values of all features).

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#r251

Information 2018, 9, 66 4 of 18

Finally, as the selected features might be characterized by different ranges of values, we normalize
them as follows. Given the vector x f related to feature f , we normalize each entry i of the vector as

x̂ f ,i =
x f ,i − xmin

xmax − xmin
, (2)

where xmin and xmax respectively are the minimum and maximum values of vector x f .

2.2. Non-Negative Tensor Factorization

The dataset now composed by users, selected features and their temporal sequence, which in our
data is the series of matches played by each player, can be represented as a tensor. This tensor will be
then decomposed in our framework to identify groups of users with similar behaviors in time and
characterized by common sets of features.

Following the notation reported in Table 1, we thus define a three-dimensional array, denoted as
X ∈ RI×J×K, where I is the number of users, J is the number of features, and K is the number of time
steps (i.e., played matches). In this formulation, the entry xijk of the tensor corresponds to the entry
related to the i-th user in the j-th feature at the k-th match in her/his gaming history.

Once the dataset is represented in the tensor form, we can decompose the tensor to perform
a dimensionality reduction on the data. Here, we focus on the Non-negative Tensor Factorization which
is given by the PARAFAC/CANDECOMP (CP) decomposition with non-negative constraints [30].
The NTF approximates the tensor X into the sum of rank-one tensors, called components:

X ≈
R

∑
r=1

λrar ◦ br ◦ cr , (3)

where R is the rank of the tensor, which is the number of lower-dimensional components found by
the decomposition to approximate the data; λr are the values of the tensor core L = diag(λ); and the
outer product ar ◦ br ◦ cr identifies the component r, with r = 1, . . . , R.

Table 1. Notation used throughout the text.

Notation Definition

X constant
x scalar
x vector
X matrix
xij matrix entry
X tensor
xijk entry of a three-dimensional tensor
◦ outer product

The vectors ar, br and cr respectively provide the level of membership of the users to the
component r, the level of membership of the features to the component r, and the temporal
activation of the component r. These vectors can be encoded in three matrices A ∈ RI×R, B ∈ RJ×R,
and C ∈ RK×R, called factor matrices, whose r-th columns coincide to the vectors ar, br and cr.
Therefore, the approximation in Equation (3) can be rewritten in the Kruskal form [31] as

X ≈ JL; A, B, CK . (4)

Note that the Kruskal operator J.K is just a compact notation to write Equation (3) in terms of the
core and factor matrices.

Information 2018, 9, 66 5 of 18

To obtain the factor matrices, and thus the approximated tensor, we need to solve an optimization
problem of the form:

min ‖X − JL; A, B, CK‖2
F (5)

s.t. λ, A, B, C ≥ 0

where ‖ · ‖F is the Frobenius norm, and non-negativity constraints are imposed on the factor matrices.
To solve the optimization problem, we rely on the Alternating Non-negative Least Squares (ANLS) [32],
combined with the Block Principal Pivoting (BPP) method, developed by [33]. In particular, we use the
Python package available online (https://github.com/panisson/ntf-school/blob/master/ncp.py) to
compute the tensor decomposition.

2.3. Rank Selection

To find the best approximation, we run 5 simulations for each rank value and we assess the
suitable number of components, i.e., rank, by using two approaches: the Core Consistency Diagnostic
(CORCONDIA) by [34] and the Automatic Relevance Determination (ARD) for Tucker models
(i.e., a generalization of the CP decomposition) [35].

CORCONDIA
We compute the core consistency value for each simulation and look at the change in the slope

of the resulting core consistency curve to select a suitable number of components R. In particular,
the core consistency values provide an evaluation of the closeness of the computed decomposition to
the ideal one. This is done by comparing the core tensor L of the decomposition to a super-diagonal
tensor G, i.e., a tensor having entries equal to 1 on the diagonal and 0 otherwise. Therefore, the core
consistency between L and G is defined as:

cc = 100

(
1− ∑R

l=1 ∑R
m=1 ∑R

n=1 (λlmn − glmn)
2

R

)
, (6)

where λlmn are the entries of the core tensor L ∈ RR×R×R and glmn are the entries of the ideal core
G ∈ RR×R×R.

The core consistency has an upper bound: its values cannot exceed 100. As a result, high values of
the core consistency mean high similarity between the cores, while low values indicate that the model
selected could be problematic. Finally, the core consistency can assume negative values, thus indicating
that the model selected is inappropriate. In the Results section (see Section 4) we will discuss the
optimal number of components as discovered by the the Core Consistency Diagnostic.

ARD Tucker
The algorithm is based on a hierarchical Bayesian framework, whose parameters directly

define features importance. Thus, approximating the tensor ARD automatically optimizes the
hyperparameters and prunes irrelevant components. In particular, the minimization problem based
on the least square objective function coincides to the minimization of the negative log-likelihood
assuming i.i.d. tensor’s values with Gaussian noise. We refer the interested reader to [35] for
further details.

As a result the ARD Tucker algorithm detects the relevant components, while pruning the others
and minimizing the negative log-likelihood corresponding to the ANLS problem. The best model
corresponds to the one having the largest log-likelihood. In the Results section (see Section 4) we will
show the detected model and to select the rank we will compare this result with the one provided by
the CORCONDIA.

Once the number of components is identified, we can analyze the information provided by the
resulting factor matrices. By the study of the matrices A and B, we can define the level of membership

https://github.com/panisson/ntf-school/blob/master/ncp.py

Information 2018, 9, 66 6 of 18

of each user to a specific component, as well as the level of membership of each feature to the
components. It is worth noting that NTF allows users (or features) to belong to several components
leading to overlapping groups, but also allows users (or features) to have a low level of membership
such that it could be not enough to label users (or features) as members of a specific component.

The are two possible strategies to define whether a user (analogously for features) belongs to
a component: either we accumulate the membership of a component until the 95% of its norm is
reached [28]; or, we compute an intra-component k-means with k = 2 clusters [27], i.e., for each
component we divide the users into two groups: those who belong to the specific component, and
those who do not. These methods allow to identify user clusters that might overlap. However, the use
of such methods could lead to having users that do not belong to any component.

We use the first of the two methods to analyze the level of membership of the features, provided
by the matrix B. This decision is justified by our expectation that, in League of Legends (and in MOBA
games in general), players can exhibit different strategies during each match, reflecting different
personal goals: for example, a user may try to kill as many enemies as possible to earn a great
amount of gold; this however would potentially incur in risking her/his hero’s death more frequently;
an alternative could be avoiding getting the hero killed too often by helping (assisting) other teammates,
which however results in earning less gold at the end of the match.

However, since our aim is to identify groups of users with different behaviors, we decided to
study the user membership as follows. We consider the components of A as observations recorded for
each user, and we fit the k-means algorithm by imposing k = R, i.e., we want to obtain one cluster of
users for each component. In this way, the users are divided in k disjoint clusters. Here, the k-means is
applied on the lower-dimensional representation provided by the NTF, and thus on the components’
values in A. The algorithm aims at finding centroids that minimize the distance between elements in
each cluster. Formally, given a set of observations the algorithm partitions, the observations into k sets
S = {S1, · · · , Sk} so that the within-cluster sum of squares will be minimized:

min
S

k

∑
i=1

∑
a∈Si

‖a− µi‖2 , (7)

where a is one observation (here a row of A) and µi is the mean of set Si. As the values of A provide
how strongly each component represents a user, we can thus select the group of users that mostly
belong to each component. Note that the use of k-means on the raw data would not provide the same
level of information given by NTF, which discovers correlations in the data in multiple dimensions at
a time, and allows to follow the temporal evolution of the uncovered groups.

Finally, we can recover the temporal activation of each component in the columns of the factor
matrix C. This information can be used to investigate the evolution of each extracted behavior.

3. Data and Feature Selection

3.1. League of Legends

We tested our framework on a dataset of a MOBA game: League of Legends. League of legends is
a match-based game developed by Riot Games, in which each player, i.e., user, controls a champion
characterized by specific abilities and fight, together with other players, against a team of other
players. The final goal is to defeat the opposing team in an arena. Each champion starts the match
with a low strength level which increases by killing adversaries, helping members of the team in
kills, i.e., assists, and performing other actions. During the match, each champion can be killed many
times, i.e., number of deaths. The player can earn gold (i.e., the LoL currency) by performing some
actions, such as killing or assisting in kills, and can use the earned gold to improve the abilities of
the champion.

We collected the LoL data by means of the Riot Games API, (https://developer.riotgames.com/)
which provides metadata related to each match, including players’ performance, such as number of

https://developer.riotgames.com/

Information 2018, 9, 66 7 of 18

assists, kills, deaths, etc. Each player is identified by a unique label and each match is marked by
temporal information, such as match datetime and duration.

3.2. The League of Legends Dataset

The dataset analyzed in the present work consists of 961 players, and the complete game history
of their first 100 matches are played exclusively in one specific battle arena, i.e., the characteristic
map in which LoL teams fight. We decided to focus on a specific battle arena to minimize the
variability in players’ behaviors (and their evolution) induced by different game scenarios. To this
purpose, we selected the most popular LoL battle arena, namely the Summoner’s Rift (map_id = 11):
the largest map in LoL, composed by three lanes (paths) connecting the opponents’ bases, jungles
at the edges, and a central river. This is (by a large margin) the most played battle arena in the
game; its choice provided us with a significant amount of players who played this scenario at least
100 times. We decided to set this threshold because we wanted to guarantee that a sufficient number of
matches were played by each single individual to capture a pattern of temporal behavior evolution.
One hundred matches resulted in a good trade-off between the number of users (nearly 1000) and the
number of total matches (nearly 100K) yielded by the selected threshold.

3.3. Feature Selection

For each match, the Riot Games API returns 51 features (https://developer.riotgames.com/api-
methods) (full list and explanations are provided in the Appendix A) associated with different aspects
of the game. In summary, the API provides: IDs (e.g., map ID, player ID, match ID, etc.); temporal
information related to the match; features related to minions (i.e., the AI-controlled characters that
spawn in the game map); damages dealt and taken by players, gold (i.e., the currency of LoL, used to
purchase items and champions’ upgrades), all the different types of kills (such as killing champions,
minions, towers, or other entities in the game); other types of actions, such as assisting, dying, healing,
wards related actions; the binary feature “winner” which provides the final outcome of the game
(win/lose); and some additional in-game detailed scores (cf., Appendix A). Not all these features are
predictive of players’ game performance, thus we first apply our feature selection step. To identify
informative features in LoL, we use Decision Trees to predict whether a user had won a specific match,
given the vector of all the features describing her/his performance in that match (as shown in Figure 1).
Here, the target values are provided by the feature “winner”, a binary feature which is 1 if the player
won the game and 0 otherwise.

We then rank features, as described in Section 2, based on their Gini importance. The best model,
which obtains a prediction accuracy above 80%, selects the following four features as cumulatively
responsible for over 99% of the Gini importance: (1) number of assists; (2) number of kills; (3) number
of deaths; and (4) gold earned. We retain these four features, normalize them as in Equation (2),
and discard all the others in the rest of the analysis. The final dataset is available online in the
Supplementary Materials: data are provided in a table format in which each line contains the id of a
user playing in a certain match, and his/her number of actions.

We can finally build the tensor X I×J×K used for the analysis. This is a three-dimensional array
where I = 961 users, J = 4 features, and K = 100 time steps, i.e., number of successive matches.

4. Results and Discussion

Our LoL data is now represented as a tensor X I×J×K, where I = 961, J = 4, and K = 100.
Therefore, the resulting three-way tensor has dimensions related to the players, the selected features,
and the time steps, which here coincide with the matches. Once the tensor is created, we compute its
approximation Xapp by applying NTF to detect the groups of players with similar characteristics and
temporal evolution. As shown in Section 2, NTF decomposes the tensor into the sum of R components.
Thus, we first have to find the value of R which provide the best approximation of the tensor. To this

https://developer.riotgames.com/api-methods
https://developer.riotgames.com/api-methods

Information 2018, 9, 66 8 of 18

aim we compare the results provided by the Core Consistency Diagnostic (CORCONDIA) and the
Automatic Relevance Determination (ARD) for Tucker models.

CONCORDIA
We run 5 simulations for each number of components r. We performed the simulations for the

rank values r = 1, . . . , 10 and study the core consistency curve. The number of components that yields
the largest knee in the slope of the core consistency curve is R = 3.

ARD Tucker
As we are comparing two PARAFAC/CANDECOMP (CP) decomposition models [30] (see details

in Section 2), we require to have a diagonal core in the ARD Tucker. By following [35], we run
20 different ARD CP models initialized with 10 components based on Gaussian priors. Results indicate
that 7 components out of 10 were pruned during the approximation, thus leading to the rank value
R = 3.

As the results provided by the two techniques are consistent, we set R = 3 (i.e., three components)
for the following analysis and then select the best approximation, by choosing the one corresponding
to the maximum value of core consistency for the selected rank R. Each component can be interpreted
as a group of users sharing similar temporal trajectories and being characterized by some features.
We reiterate that each component is described by the columns of the three factor matrices A, B, C
(which we examine in the following): the first component corresponds to the first column of each
matrix, the second component to the second column, and the third component to the third column.

We first analyze the results provided in the matrix B, which are shown in Figure 2. Here, we report
the values of the matrix B that have a key role in the components. To this aim, for each component we
sort their squared values in descending order, sum them (starting from the highest value) until we
reach the 95% of the overall component norm, and set the remaining values equal to zero. The result of
this procedure, shown in Figure 2, highlights the features that are involved in each component. As an
example, the component 0 is characterized by the features related to the assists and the earned gold.
Here, the features are marked as follows: (0) number of assists; (1) number of deaths; (2) number of
kills; (3) amount of earned gold.

0 1 2 3
Feature

0

1

2

C
om

p
on

en
t

#

Feature membership

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2. Feature membership in the components: we show the matrix B in which we zero-out the
entries which are not included in the 95% of the norm of the component. Here, the colorbar indicates
the level of membership of each feature to the three different components. The features are respectively:
assists (0), deaths (1), kills (2), and gold (3).

We then analyze the factor matrix A to find user memberships to each component. As we explain
in detail in Section 2, we find the users belonging to each component through a k-means method with
a number of clusters equal to the number of components, k = 3 in this case. This assumption is also
supported by the Silhouette scores, computed for several values of k. In particular, for k = 3 the score
is equal to 0.35, while by increasing the number of clusters the score decreases, assuming values equal

Information 2018, 9, 66 9 of 18

to 0.32 and 0.29 respectively for k = 4 and k = 5 and stabilizing below 0.29 for k > 5. Thus, by fixing
k = 3 the method assigns a unique label to each user and divides them into three disjoint groups.

As we can observe from Figure 3a, the k-means with k = 3 finds three clusters of users, which are
disjoint in the component space, i.e., given a user i its coordinates in the component space are
given by the entries in the columns of the factor matrix A. This grouping allows to identify the
users whose membership to a specific component is higher than to the others. Clusters 0, 1, and
2 respectively contain 411, 304, and 246 users. Figure 3b shows the Silhouette profiles of the three
clusters, proportional to their sizes.

0.0 0.02 0.04 0.06 0.08
Component 0

0.0

0.02

0.04

0.06

0.08

C
om

p
on

en
t

1

Player membership

Cluster 0

Cluster 1

Cluster 2

(a) Clusters of players

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

coefficient values

cl
u

st
er

s

0

1

2

Silhouette score

(b) Silhuette score of the clusters

Figure 3. K-means results: (a) 2-dimensional projection of the three clusters identified by the k-means.
Each dot represents a player in its corresponding cluster, and the dot’s coordinates are given by the
first two columns of the matrix A. (b) Silhouette scores of the users belonging to the three clusters. The
red line identifies the final Silhouette score of 0.35, and the width of the Silhouette profiles indicates the
size of the corresponding clusters.

The difference in the level of membership of users belonging to the different clusters is clear if
we look at the values of A and how they are modulated in time. This is possible by computing for
each r-th component the product P = arcT

r ∈ RI×K, which represents the membership of each user to
the r-th component modulated over time by the temporal activity of the r-th component. In Figure 4,
we report the average membership score over time and the related standard error (represented by
error bars), computed by separately taking into account the three clusters of users. Each cluster is
systematically characterized by an overall level of membership to one specific component that is much
greater than to the other components. Figure 4a demonstrates the strong relation between Cluster
0 and Component 1 (cf. black squares), Figure 4b shows the strong relation between Cluster 1 and
Component 2 (cf. dark red circles), while Figure 4c exhibits the strong relation between Cluster 2 and
Component 0 (cf., dark green triangles). It is worth noting that there is a high gap between the average
memberships over time to the cluster-related component and the remaining two components. This
pattern indicates that:

• Users belonging to Cluster 0 and thus to Component 1 are strongly characterized by the features
kills and earned gold;

• Users in Cluster 1 and thus belonging to Component 2 are characterized by deaths, kills, and
earned gold;

• Users belonging to Cluster 2 and Component 0 are strongly characterized by assists and earned gold.

Information 2018, 9, 66 10 of 18

0 20 40 60 80 100
Time step

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045
M

em
b

er
sh

ip
le

ve
l

(a) Cluster 0

Component 0 Component 1 Component 2

0 20 40 60 80 100
Time step

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

M
em

b
er

sh
ip

le
ve

l

(b) Cluster 1

Component 0 Component 1 Component 2

0 20 40 60 80 100
Time step

0.0015
0.0020
0.0025
0.0030
0.0035
0.0040
0.0045
0.0050
0.0055

M
em

b
er

sh
ip

le
ve

l

(c) Cluster 2

Component 0 Component 1 Component 2

Figure 4. Membership modulated in time, given by the product arcT
r . The product is computed by

separately taking into account the users belonging to the different clusters. For each cluster we report
the mean of the users’ membership to each component over time, and the related standard error,
marked with an error bar. Different shades of blue for cluster 0, red for cluster 1, and green for cluster 2
are assigned to distinguish the components.

Through the analysis of NTF results, we are able not only to identify the features that play a key
role in a certain component, but we can easily find the user membership to the component. This enables
linking each user in the component to the features that characterize the strategy used in the game.
An interpretation for these results is indeed that different groups of users are characterized by a playing
behavior which is different from group to group. In particular, some users, such as those related to
Component 0, tend to collaborate more than others with their teammates, as they prefer to assist
in fighting an enemy rather than killing him directly. Other users (e.g., Component 1) are prone to
performing individual actions, focusing on personal goals, such as earning a greater amount of gold,
which can be spent to upgrade the player’s champion abilities. Finally, in Component 2 we detect
a group of users that perform individual actions, such as a high number of kills, but are significantly
more likely to cause their hero to die during these actions. This might pinpoint a group of users
characterized by an overall lower performance if compared with the other players.

4.1. Validation

To validate the results obtained via NTF and the related interpretation, we selected the players in
each cluster, and then we computed the mean and standard error of the different feature values at each
time step (i.e., each match). The results are shown in Figure 5, where each plot is related to a specific
feature, namely (a) number of assists; (b) number of deaths; (c) number of kills; and (d) amount of
earned gold.

Information 2018, 9, 66 11 of 18

0 20 40 60 80 100
Time step

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30
A

ss
is

ts
#

(a) Assists

Cluster 0 Cluster 1 Cluster 2

0 20 40 60 80 100
Time step

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

D
ea

th
s

#

(b) Deaths

Cluster 0 Cluster 1 Cluster 2

0 20 40 60 80 100
Time step

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

K
ill

s
#

(c) Kills

Cluster 0 Cluster 1 Cluster 2

0 20 40 60 80 100
Time step

0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35

G
ol

d
ea

rn
ed

(d) Gold

Cluster 0 Cluster 1 Cluster 2

Figure 5. Mean values and related standard errors over time of: (a) number of assists; (b) number of
deaths; (c) number of kills; and (d) amount of gold earned. We computed the mean and the standard
error over the values related to users belonging to the same cluster. Clusters are marked by a unique
symbol and color, which is maintained in all the figures, to highlight the different cluster characteristics.

The results support the hypothesis and interpretation derived by the NTF analysis: Cluster 0
(cf., blue squares) is composed by players whose major behavior dynamic over time is summarized by
performing a high number of kills and earning at the same time a greater amount of gold than other
players (as we mentioned earlier, the amount of gold is proportional to the number of kills, which here
serves as a further sanity check). Cluster 1 (cf., red circles) consists of players that obtain a number of
kills comparable to the users in Cluster 0, however their higher-than-average number of deaths causes
them to systematically collect less gold (if compared with the other two clusters). Finally, Cluster 2
involves players characterized by stronger social behavior, resulting in collaboration with the other
team members, as conveyed by the larger number of assists and smaller number of kills. This strategy
allows players in Cluster 2 to collect a good amount of gold while at the same time keeping a low level
of deaths.

One of the strengths of using a technique such as NTF is that we can disentangle the topological
characteristics in the data, such as group of users characterized by similar features, from the temporal
behaviors. The temporal information is indeed contained in the matrix C, whose columns represent the
timeseries of the temporal activation of each component, from which we can extract some meaningful
interpretation of the evolution of players’ behaviors.

We expect that by testing different strategies, players can modify or adapt their way of playing to
achieve better performances. This fact would be described by a change (such as an abrupt jump) in
the temporal activity of a component, meaning that the component would activate or deactivate at
a certain time.

However, by the analysis of the factor matrix C, we can notice that each component is
systematically active over time, i.e., despite different levels of activation, no significant behavioral
change is noticeable in the behavioral trajectories of the players over the course of their 100 matches.

Information 2018, 9, 66 12 of 18

This result, illustrated in Figure 6, suggests that the group of users characterized by a specific
strategy (i.e., one of the three leading strategies we highlighted above) is consistent over time; in other
words, players are reluctant to continuously in changing their gaming behavior and strategy, even if
that could occasionally entail a benefit.

We found an explanation for this phenomenon, which we suspect is related to the game design.
League of Legends is based on a mathematical framework, that at the beginning of each match compares
the players’ skills to create the opposing teams as follows. Each player in LoL is characterized by
an Elo-like rating (https://en.wikipedia.org/wiki/Elo_rating_system) which represents the player skill
level, based on the performances in the previous matches. Thus, the resulting matchmaking rating is used
by the system in assembling the teams and creating a game in which both teams have an equal chance of
winning. (https://support.riotgames.com/hc/en-us/articles/201752954-Matchmaking-Guide).

0 20 40 60 80 100
Time step

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

C
om

p
on

en
t

ac
ti

va
ti

on

Temporal activity

Component 0 Component 1 Component 2

Figure 6. Temporal activity of each component. The values displayed coincide to those in the columns
of C. The different markers characterize the different components, according to the clusters colouring.

Considering the LoL game design, we then compute the probability distribution of match winning
for all players in each cluster identified by NTF. In Figure 7, we report the Kernel Density Estimation
(KDE) for the distribution of the victories in each cluster. The KDE estimates the probability density
function of the feature winner of each player involved in a certain cluster. This binary feature is equal
to 1 if a player wins a match, and 0 otherwise.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

victories

0

1

2

3

4

5

6

7

8

9

d
en

si
ty

Kernel Density Estimation (KDE)

Cluster 0

Cluster 1

Cluster 2

Figure 7. Kernel Density Estimation (KDE) computed on the values related to the feature winner (binary
feature equal to 1 if a player wins the match and equal to 0 if a player loses). The figure shows the
probability density function for each cluster. We maintained the color code used throughout the text to
discriminate the different clusters.

https://en.wikipedia.org/wiki/Elo_rating_system
https://support.riotgames.com /hc/en-us/articles/201752954-Matchmaking-Guide

Information 2018, 9, 66 13 of 18

By looking at the density function for each cluster, it appears that the distributions are centered
around 0.5, suggesting that each player at the beginning of each match has roughly a 50% probability
of winning or losing the match. However, closer inspection shows that these distributions are slightly
skewed: Cluster 0 leans toward values higher than 0.5, suggesting that the individualist strategy
(aiming for a larger number of kills and less assists), in the long run yields marginally more victories
than the cooperative strategy of Cluster 2. We verified, using a pairwise two-tailed t-test, that these
distributions are indeed statistically significantly different (all p-values ≤ 10−3).

In conclusion, the League of Legends game design, and in particular the method used to create
the opposing teams of a match, strongly affects the matches’ outcomes. Each user has roughly the
same probability of winning a match, which is largely independent from the strategy used by players.
Marginal changes can be noticed thanks to our NTF analysis that would otherwise get lost in the
aggregated statistical analysis if oblivious of the social and temporal behavioral dynamics. We suggest
that players do not have enough incentives to change their natural behavior as they likely perceive
themselves to achieve the same winning performances of players characterized by a different strategy.
This explains the temporal activity patterns discovered by NTF and their continuous and almost
constant activation over time.

The findings of the present work might benefit players and game companies alike. As for players,
knowing the features that characterize them the most could help to identify better strategies or
character that align more to their play-style, skills, and performance. For instance, if a player can be
informed that s/he belongs to the group mostly characterized by number of kills, s/he might prefer
to focus on champions with a focus on combat that better align to the player’s skills. Conversely,
if a player belongs to the group of those better characterized by supporting roles, they may benefit
from learning about their effectiveness and choose champions accordingly. Moreover, realizing how
players’ performance evolves would constitute an incentive to the players to improve their strategies
and focus their efforts on certain aspects of the game as opposed to others. For example, discovering
that the number of deaths is the strongest indicator of one’s performance may encourage a player to
try different strategies and improve their scores.

Monitoring how players perform over time can provide useful insights for game developers
aimed to improve engagement and game experience. For example, if a player changes his/her playing
behavior and the performance in terms of actions decreases over time, this might be a signal that the
player’s engagement in the game is diminishing: detecting these change-points in a timely manner
may yield an opportunity to the game designers to intervene (for example by providing in-game
digital incentives) to prevent the player to ultimately quit the game.

4.2. Related Work

Several facets of League of Legends, including players behaviors, expertise, and features have
been already investigated [36,37]. Many works are focused on the analysis of League of Legends
team composition. In [38], the authors analyze player behaviors by developing a framework based on
unsupervised learning techniques to discover behavior clusters in the data. In particular, they try to
learn the optimal team composition and demonstrate how the result of matches can be predicted on
the basis of the features characterizing the team. In our work, we used the winning prediction task to
determine the most informative features that characterize players’ behaviors.

In [3] the authors study the social interactions and organization patterns of LoL players, to
understand how collaboration arises during MOBA games. They collected a dataset based on
interviews of experienced LoL players and found that team members collaborate and coordinate
to reach the same goal and increase their performance in the game.

Other studies of LoL are focused on the analysis of specific game features, such as the usage of
different characters (i.e., champions) [39], or the player choice of a specific role with respect to the one
selected by the other team members [40]. The main goal in these studies is to investigate how roles
and specific features have an impact on the players’ performance, to recommend team design and

Information 2018, 9, 66 14 of 18

evaluations that can be used by players when selecting a character. Our study, however, discovers in
an unsupervised fashion the playing behaviors and the players’ roles during the matches: we believe
that our strategy could enrich the insights that game designers and analysts need to improve the
game experience.

It is also worth noting that most of the existing studies are mainly focused on the analysis
of LoL from a team-based perspective, to characterize groups performance. In the present work,
we investigated individual player behaviors, and how that related to player performances at the
level of single matches. In our analysis, we also highlighted the crucial importance of the temporal
dimension. We monitored the evolution of features over time, to determine whether and how players
learn or modify their strategy, and to detect if a common activity pattern can be found.

5. Conclusions

League of Legends is a multiplayer online battle game in which two teams fight each other to
destroy the respective enemy base. We collected data related to League of Legends matches and player
performances with the aim of extracting meaningful information about human behavioral patterns.
For this purpose, we took advantage of Non-negative Tensor Factorization (NTF), a technique that
allows to extract correlation in the data in several dimensions at a time. The advantage of using such a
technique lies indeed in the opportunity of disentangling the topological and temporal characteristics
in the data, and exploring and validating them separately.

Here, we analyzed a dataset composed by nearly 1000 players, characterized by different features,
e.g., number of kills, number of deaths, etc., which varies over time, from match to match. We
represented the data as a tensor and we applied NTF to extract the factor matrices related to the
players, the features, and the temporal activities.

The analysis of the NTF outcome and the application of clustering methods, such as the k-means,
highlighted the presence in the data of several groups of players, characterized by a correlated
behavior in time and topology. In particular, players belonging to the same component (cluster)
are characterized by similar features and activation over time. We carried out the analysis of the
topological characteristics of each group of player by looking at the features highlighted by NTF,
and comparing the interpretation derived by these results with the original data. We found good
agreement between the NTF output and the characteristics of the discovered groups of players in the
original data. Therefore, NTF successfully identified groups of distinct behaviors in the data that can
be interpreted as different player strategies.

It would be expected that different strategies (e.g., collaborative vs. individualist playing) would
lead to diverse performances (e.g., affecting the winning/losing ratio). However, by investigating
the temporal activity patterns of the player groups, we found that they are mainly characterized by
a constant behavior that is active continuously over time. Thus, the analysis of the temporal activation
of the NTF components stressed the reluctance of players to adapt their strategy and gaming behavior
over time.

This finding might be due to the game design of League of Legends: the team formation in
the game is based on a mathematical rule which aims at contrasting teams with comparable skills,
thus yielding the same prior probability of victory to each team.

We supported this fact by computing the Kernel Density Estimation over the feature winner for
each player, divided by clusters. Only marginal, yet statistically significant, differences emerged,
which are likely not perceivable by the players. Thus, players are not incentivized to change their
strategy with another one.

In conclusion, the techniques and approaches used in this work are promising, and open new
questions about human behaviors in multiplayer online games. The information provided by our
framework could help game developers to design recommending systems for users and enhance users’
engagement. Uncovering players’ strategies would allow to recommend different types of champions,
such as “support” champions if players are characterized by assisting actions, or “action” champions

Information 2018, 9, 66 15 of 18

if they are otherwise more inclined in killing. Moreover, monitoring the group each user belongs to
over time could help in promoting engagement in the game, through the use of custom rewards.

Future work will be devoted to the analysis of both different aspects of the game and of additional
game datasets with the aim of exploring behavioral patterns in different scenarios. We are indeed
interested in verifying if player strategies change depending on the champion player select and how
different roles affect their performance over time. Moreover, we would like to study if the characteristics
identified by the NTF might reflect the strategies of players with different skill levels. We are working
on reproducing the evolution of skill level for players in LoL by computing a proxy, namely the
TrueSkill (https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/), for the
actual score used in the game, which is not publicly available in the game data. We also aim to
investigate, given the possibility of disentangling player’s behaviors over time, if it is possible to
nudge players to change their strategies by the use of incentives, such as high percentage of victory.
We finally plan to test other tensor factorization techniques, such as PARAFAC2, which will allow to
integrate players having variable numbers of matches in their gaming history.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/2078-2489/9/3/66/s1.

Acknowledgments: The authors are grateful to DARPA for support (grant #D16AP00115). This project does not
necessarily reflect the position/policy of the Government; no official endorsement should be inferred. Approved
for public release; unlimited distribution.

Author Contributions: All authors substantially contributed to the present work. A.S. and E.F. conceived and
designed the experiments. A.B. collected the data. A.S. performed the experiments. All authors analyzed the data
and contributed to writing the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we report the complete list of features (51 total features) provided by the Riot API
for each match of LoL. The features can be divided into the following unofficial categories: IDs (5),
Temporal Informations (3), Minions (4), Wards (3), Damages (12), Heals (2), Gold (2), Kills (10), Other
Actions (4), Scores (5), Game Outcome (1).

Appendix A.1. IDs

This category refers to the in-game identification numbers of the player, of the match, of the
champion used by the player, of the team in the match (100 or 200 in each match), and id of the map
(battle arena of the match).

Appendix A.2. Temporal Information

In this category we find information about the date-time of the match, the match duration, and
the time needed to create the match.

Appendix A.3. Minions

Minions are AI controlled units that can be both allies of one of the two teams or neutral. They
automatically attack any enemy unit or structure they encounter. We have information about how
many minions are killed by the players. In particular, we have the total number of minions killed, the
number of neutral minions killed, the number of neutral minions killed in the enemy’s jungle, and the
number of minions killed in the team’s jungle.

Appendix A.4. Wards

A ward is a unit of the game that can be used to remove the “fog of war”, which is the area of
the map in which a team does not have sight over. We have information about how many wards are
bought, are placed and are destroyed in the match.

https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
www.mdpi.com/2078-2489/9/3/66/s1

Information 2018, 9, 66 16 of 18

Appendix A.5. Damages

There are four different types of damages in LoL: true, physical, magical and total damage. For
each of these types of damage we know the amount of damage that was dealt, dealt to champions, and
taken in the match.

Appendix A.6. Heals

Heal is an action that instantly restores health to your champion and an ally, also granting
a temporary movement speed bonus. We have information about the total heal and the total units
healed in the match.

Appendix A.7. Gold

Gold is the internal currency of LoL, which is used to purchase items and upgrade champions.
We know for each player the amount of Gold earned in the game and the amount spent.

Appendix A.8. Kills

A kill is the action of decreasing an enemy champion’s health to zero. The act of killing several
champions within 10 s between each kill is a multi-kill. We have information about the total amount of
kills, double, triple, quadra, penta-kills, unreal kills (higher then penta-kills) and the largest multi-kill a
player performs. Another type of kill is the kill spree, which is the action of killing multiple champions
without dying. We have the total number of kill spree and the largest kill spree performed. Finally,
we know about the number of inhibitors kills, where an inhibitor is a structure that blocks the training
of minions.

Appendix A.9. Other Actions

Other features are related to the number of assists (when a player assists a teammate in killing),
the number of times a player dies (deaths). We also know the largest critical strike, which is a
basic attacks that deals twice its normal damage. Players can increase their probability to critically
strike by using items, abilities, etc. Finally, we have information about the total crowd control
dealt. Crowd control is a general term used to describe abilities that remove or diminish a unit’s
combat ability.

Appendix A.10. Scores

There are different scores and levels achieved during the match. The champion level is the final
level achieved during the match and related to the upgrades in abilities and powers a player do with
his/her champion, it goes from level 1 to level 18. Finally, the Riot API returns a combat, objective,
and total player score and a total score rank. However, these score values returned by the API for any
match and player are always 0.

Appendix A.11. Outcome

The outcome of the game is provided by the feature winner, which is a binary feature equal to 0 if
the team loses and 1 if wins.

References

1. Ferrari, S. From generative to conventional play: Moba and league of legends. In Proceedings of the
2013 DiGRA International Conference: DeFragging Game Studies, Atlanta, GA, USA, 26–29 August 2013;
pp. 1–17.

2. Foo, C.Y.; Koivisto, E.M. Defining grief play in MMORPGs: Player and developer perceptions. In Proceedings
of the 2004 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology,
Singapore, 3–5 June 2005; ACM: New York, NY, USA, 2004; pp. 245–250.

Information 2018, 9, 66 17 of 18

3. Kou, Y.; Gui, X. Playing with strangers: Understanding temporary teams in League of Legends.
In Proceedings of the First ACM SIGCHI Annual Symposium on Computer-Human Interaction in Play,
Toronto, ON, Canada, 19–21 October 2014; ACM: New York, NY, USA, 2014; pp. 161–169.

4. Brown, B.; Bell, M. CSCW at play: ‘there’ as a collaborative virtual environment. In Proceedings of the
2004 ACM conference on Computer Supported Cooperative Work, Chicago, IL, USA, 6–10 November 2004;
ACM: New York, NY, USA, 2004; pp. 350–359.

5. Nuangjumnong, T. The effects of gameplay on leadership behaviors: An empirical study on leadership
behaviors and roles in multiplayer online battle arena games. In Proceedings of the 2014 IEEE International
Conference on Cyberworlds (CW), Santander, Spain, 6–8 October 2014; pp. 300–307.

6. Sapienza, A.; Peng, H.; Ferrara, E. Performance Dynamics and Success in Online Games. In Proceedings
of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA,
18–21 November 2017; pp. 902–909.

7. Kou, Y.; Nardi, B. Regulating anti-social behavior on the Internet: The example of League of Legends.
In Proceedings of the iConference 2013, Fort Worth, TX, USA, 12–15 February 2013; pp. 616–622.

8. Ducheneaut, N.; Moore, R.J. The social side of gaming: A study of interaction patterns in a massively
multiplayer online game. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work, Chicago, IL, USA, 6–10 November 2004; ACM: New York, NY, USA, 2004; pp. 360–369.

9. Shores, K.B.; He, Y.; Swanenburg, K.L.; Kraut, R.; Riedl, J. The identification of deviance and its impact
on retention in a multiplayer game. In Proceedings of the 17th ACM Conference on Computer Supported
Cooperative Work & Social Computing, Baltimore, MD, USA, 15–19 February 2014; ACM: New York, NY,
USA, 2014; pp. 1356–1365.

10. Dabbish, L.; Kraut, R.; Patton, J. Communication and commitment in an online game team. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012;
ACM: New York, NY, USA, 2012; pp. 879–888.

11. Ratan, R.A.; Taylor, N.; Hogan, J.; Kennedy, T.; Williams, D. Stand by your man: An examination of gender
disparity in League of Legends. Games Cult. 2015, 10, 438–462.

12. Véron, M.; Marin, O.; Monnet, S. Matchmaking in multi-player on-line games: Studying user traces to
improve the user experience. In Proceedings of the Network and Operating System Support on Digital
Audio and Video Workshop, Singapore, 19–21 March 2014; ACM: New York, NY, USA, 2014; pp. 7–12.

13. Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. Nonnegative Matrix and Tensor Factorizations: Applications to
Exploratory Multi-Way Data Analysis and Blind Source Separation; John Wiley & Sons: Hoboken, NJ, USA, 2009.

14. Lim, L.H.; Comon, P. Nonnegative approximations of nonnegative tensors. J. Chemom. 2009, 23, 432–441.
15. Liavas, A.P.; Kostoulas, G.; Lourakis, G.; Huang, K.; Sidiropoulos, N.D. Nesterov-based Alternating

Optimization for Nonnegative Tensor Factorization: Algorithm and Parallel Implementation. IEEE Trans.
Signal Process. 2017, 66, 944–953.

16. Rajapakse, M.; Tan, J.; Rajapakse, J. Color channel encoding with NMF for face recognition. In Proceedings of
the 2004 IEEE International Conference on Image Processing, Singapore, 24–27 October 2004; pp. 2007–2010.

17. Buciu, I.; Pitas, I. Application of non-negative and local non negative matrix factorization to facial
expression recognition. In Proceedings of the IEEE 17th International Conference on Pattern Recognition,
Cambridge, UK, 26 August 2004; pp. 288–291.

18. Zhang, T.; Fang, B.; Tang, Y.Y.; He, G.; Wen, J. Topology preserving non-negative matrix factorization for
face recognition. IEEE Trans. Image Process. 2008, 17, 574–584.

19. Yuan, Y.; Fu, M.; Lu, X. Substance dependence constrained sparse NMF for hyperspectral unmixing.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 2975–2986.

20. Tsinos, C.G.; Rontogiannis, A.A.; Berberidis, K. Distributed blind hyperspectral unmixing via joint sparsity
and low-rank constrained non-negative matrix factorization. IEEE Trans. Comput. Imaging 2017, 3, 160–174.

21. Yang, J.; Leskovec, J. Overlapping community detection at scale: A nonnegative matrix factorization
approach. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining,
Rome, Italy, 4–8 February 2013; ACM: New York, NY, USA, 2013; pp. 587–596.

22. Psorakis, I.; Roberts, S.; Ebden, M.; Sheldon, B. Overlapping community detection using bayesian
non-negative matrix factorization. Phys. Rev. E 2011, 83, 066114.

23. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42,
doi:10.1109/MC.2009.263.

Information 2018, 9, 66 18 of 18

24. Ma, H.; Yang, H.; Lyu, M.R.; King, I. Sorec: Social recommendation using probabilistic matrix
factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management,
Napa Valley, CA, USA, 26–30 October 2008; ACM: New York, NY, USA, 2008; pp. 931–940.

25. Papalexakis, E.E.; Faloutsos, C.; Sidiropoulos, N.D. Tensors for data mining and data fusion: Models,
applications, and scalable algorithms. ACM Trans. Intell. Syst. Technol. (TIST) 2017, 8, 16.

26. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500.
27. Gauvin, L.; Panisson, A.; Cattuto, C. Detecting the community structure and activity patterns of temporal

networks: A Non-negative Tensor Factorization approach. PLoS ONE 2014, 9, e86028.
28. Sapienza, A.; Panisson, A.; Wu, J.; Gauvin, L.; Cattuto, C. Detecting Anomalies in Time-varying Networks

using Tensor Decomposition. In Proceedings of the 2015 IEEE International Conference on Data Mining
Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 516–523.

29. Panisson, A.; Gauvin, L.; Quaggiotto, M.; Cattuto, C. Mining concurrent topical activity in microblog streams.
arXiv 2014, arXiv:1403.1403.

30. Royer, J.P.; Thirion-Moreau, N.; Comon, P. Computing the polyadic decomposition of nonnegative third
order tensors. Signal Process. 2011, 91, 2159–2171.

31. Kolda, T.G. Multilinear Operators for Higher-Order Decompositions; Technical Report; Sandia National
Laboratories: Albuquerque, NM, USA, 2006.

32. Kim, H.; Park, H.; Eldén, L. Non-negative Tensor Factorization based on alternating large-scale
non-negativity-constrained least squares. In Proceedings of the 2007 IEEE 7th International Symposium on
BioInformatics and BioEngineering, Boston, MA, USA, 14–17 October 2007; pp. 1147–1151. NTF algorithm
based on ANLS + regularization.

33. Kim, J.; Park, H. Fast nonnegative tensor factorization with an active-set-like method. In High-Performance
Scientific Computing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 311–326.

34. Bro, R.; Kiers, H.A. A new efficient method for determining the number of components in PARAFAC models.
J. Chemom. 2003, 17, 274–286.

35. Mørup, M.; Hansen, L.K. Automatic relevance determination for multi-way models. J. Chemom. 2009,
23, 352–363.

36. Kou, Y.; Nardi, B.A. Governance in League of Legends: A hybrid system. In Proceedings of the Foundation
of Digital Games, Fort Lauderdale, FL, USA, 3–7 April 2014.

37. Donaldson, S. Mechanics and metagame: Exploring binary expertise in League of Legends. Games Cult.
2017, 12, 426–444.

38. Ong, H.Y.; Deolalikar, S.; Peng, M. Player Behavior and Optimal Team Composition for Online Multiplayer
Games. arXiv 2015, arXiv:1503.02230.

39. Lee, C.S.; Ramler, I. Investigating the impact of game features and content on champion usage in league of
legends. In Proceedings of the Foundation of Digital Games, Pacific Grove, CA, USA, 22–25 June 2015.

40. Kim, J.; Keegan, B.C.; Park, S.; Oh, A. The Proficiency-Congruency Dilemma: Virtual Team Design and
Performance in Multiplayer Online Games. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems, San Jose, CA, USA, 7–12 May 2016; ACM: New York, NY, USA, 2016; pp. 4351–4365.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Feature Selection
	Non-Negative Tensor Factorization
	Rank Selection

	Data and Feature Selection
	League of Legends
	The League of Legends Dataset
	Feature Selection

	Results and Discussion
	Validation
	Related Work

	Conclusions
	
	IDs
	Temporal Information
	Minions
	Wards
	Damages
	Heals
	Gold
	Kills
	Other Actions
	Scores
	Outcome

	References

