
  information

Article

Precipitation Data Assimilation System Based on a
Neural Network and Case-Based Reasoning System

Jing Lu 1,2, Wei Hu 1 and Xiakun Zhang 3,*
1 Shanxi Meteorological Administration, Taiyuan 030006, China; lujing19810629@163.com (J.L.);

huwei19880806@163.com (W.H.)
2 Department of Computer Science, Oklahoma State University, Stillwater, OK 74075, USA
3 National Meteorological Center, Nanjing 210044, China
* Correspondence: zxk668@126.com or zhangxk@cma.gov.cn; Tel./Fax: +86-25-5873-1184

Received: 28 March 2018; Accepted: 17 April 2018; Published: 2 May 2018
����������
�������

Abstract: There are several methods to forecast precipitation, but none of them is accurate enough
since predicting precipitation is very complicated and influenced by many factors. Data assimilation
systems (DAS) aim to increase the prediction result by processing data from different sources in
a general way, such as a weighted average, but have not been used for precipitation prediction
until now. A DAS that makes use of mathematical tools is complex and hard to carry out. In our
paper, machine learning techniques are introduced into a precipitation data assimilation system.
After summarizing the theoretical construction of this method, we take some practical weather
forecasting experiments and the results show that the new system is effective and promising.

Keywords: neural network; data assimilation; weather forecasting; back propagation; case-based
reasoning

1. Introduction

Data assimilation [1–8] is a process by which data from different sources are processed and
adjusted in a general or a comprehensive way. In weather forecasting, numerical prediction [9–11]
models are widely used for predicting future states of the atmosphere. However, these models
are dependent on exact initial conditions. The problem is that the real initial conditions of a
model are often different from the observation due to the technique or other reasons. Thus, in a
narrow way, data assimilation is initially considered to be a process of analyzing and processing
the observed data that are conformed to certain spatial and temporal distributions for providing as
close to exact initial fields as possible for numerical predictions. This is the narrow way. The main
data assimilation methods from the middle of the last century to the present include the function
fitting method [12,13] (objective analysis), the stepwise correction method (SCM) [14,15], the optimal
interpolation method (OI) [16,17], the variability method (3Dvar, 4Dvar) [18,19], and the ensemble
Kalman filtering (EnKF) method [20–22]. In these studies, most scientists optimize the initial conditions
by constructing a cost function and find the extreme of this cost function [23], finally obtaining
optimization by obtaining a, or a set of maximum possible state/s, and we call this the Data
Assimilation method. Although there are a lot of data assimilation methods mentioned above,
essentially all these methods to solve this problem use statistical and mathematical analysis to find
the final solution [24,25]. However, for an effective DAS algorithm, it would be hard to carry out
operationally because of the large amount of calculation and some technical problems. For example,
the Kalman filtering method does not realize localization in any countries and regions. Later, machine
learning methods were introduced into this area, but they are confined to a narrow data assimilation
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system, in other words, they do not include precipitation, and only basic neural networks were
used [26–30].

The main contribution of this paper is to propose a precipitation data assimilation method that
makes use of machine learning techniques. In our paper, we use a case-based reasoning system and the
precipitation prediction results of numerical models as the inputs for our assimilation system to infer
the relationship between the real precipitation value and the predictions. The reason why we introduce
case-based reasoning is that its prediction mechanism is different from that of numerical models and the
prediction accuracy of these two varies according to the time periods. That is, sometimes the numerical
models are better and the other times not. As we know, the main function of a data assimilation system
is to output a final prediction that is better than each single one. Thus, data assimilation can output
a final precipitation value that is better than both. This would increase the total prediction accuracy.
Here, accuracy means the degree to which the result of a measurement, calculation, or specification
conforms to a correct value or a standard. In our paper, the accuracy of prediction is valued as
MSE (mean squared error): the smaller the MSE, the higher the accuracy. There is another concept
called precision compared with accuracy, which means the refinement of a measurement, calculation,
or specification, especially as represented by the number of digits given.

Generally speaking, neural networks form the core of a precipitation data assimilation system,
setting up the mapping between the inputs and the output without knowing the exact relationship
between them. Experiments illustrate that machine learning techniques can better approximate the
real precipitation value as much as possible.

The organization of this paper is as follows. In Section 2, we briefly introduce the preliminaries
of the paper: data assimilation and neural networks and the case-based reasoning system. Section 3
describes the modeling of a neural network-based data assimilation system. Section 4 describes the
experiment to test the system that we propose. Finally, conclusions are given.

2. Preliminaries

2.1. Data Assimilation

In a broad way, data assimilation is a process in which data from different sources are processed
and adjusted in a general way and can be used in a comprehensive way. Data assimilation is
simply understood with two basic meanings: the first is to combine all kinds of data with different
accuracies into an organic one to offer better numerical prediction; the second is to comprehensively
use the observation data from different time periods and then to transfer them into corresponding
space information.

In a narrow way, data assimilation is considered a process of analyzing and processing the
observed data that are conformed to certain spatial and temporal distributions for providing close
to exact initial fields of numerical models. The initial states of the numerical model (called analysis)
are not determined from the available observations alone. Instead, it is a combination of observation
and forecast: observation is the current observation data of the real system and forecast is the
prediction that is generated by numerical models propagating information from past observations to
the current time. The analysis combines the information in the background (forecast) with that
of the current observations, essentially by taking a weighted mean of the two; using estimates
of the uncertainty of each to decide their weighting factors. This process is called narrow data
assimilation processing. The narrow data assimilation procedure is invariably multivariate and
includes approximate relationships between the variables. The observations are of the real system and
not of the model’s incomplete representation of that system, and so may have different relationships
between the variables from those in the model. To reduce the impact of these problems, incremental
analyses are often performed. That is, the analysis procedure determines increments when added to
the background to yield the analysis.
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The process of creating the analysis in data assimilation often involves minimization of a cost
function. A typical cost function would be the sum of the squared deviations of the analysis values
from the observations weighted by the accuracy of the observations, plus the sum of the squared
deviations of the forecast fields and the analyzed fields weighted by the accuracy of the forecast.
This has the effect of making sure that the analysis does not drift too far away from observations and
forecasts that are known to usually be reliable. For example,

3D-Var
J(x) = (x− xb)

T B−1(x− xb) + (y− H|x|)T R−1(y− H|x|) (1)

J(x) = (x− xb)
T B−1(x− xb) +

n

∑
i=0

(yi − Hi|xi|)T R−1
i (yi − Hi|xi|) (2)

where B denotes the background error covariance, H is the observational error covariance, x is the initial
value, xb is the initial value being added with a perturbation, y is the analysis, R is the observational
error covariance and i is the index of time period.

2.2. BP (Back Propagation) Neural Network

The Back Propagation (BP) neural network (shown in Figure 1) includes input layer, hidden layer
and output layer and a three-layer structure [11–15] (see Figure 1). The hidden layer can be one or
more layers. The basic working principle of a BP network is to input signal Xi through the intermediate
node (hidden layer), acting on the output node, after nonlinear transformation to produce the output
signal yk. Network training includes input vector X and expected output Y. The error between the
value X and the expected output value t is decreased along the gradient direction by adjusting the
value of the joint strength wik, between the input node and the hidden layer node and the joint strength
vjk between the hidden layer node and the output nodes and the threshold. After several iterations,
the weights and threshold are determined corresponding to the minimum error and then the training
stops. BP neural network training process consists of two parts: forward propagation and reverse error
propagation. Forward transmission occurs, the information from the input layer is processed through
the hidden layer and into the output layer, the neurons’ states are only influenced by their previous
state. If the desired output is not obtained at the output layer, back propagation is performed and
the error signal is returned along the original neuronal connection path. In the process of backwards,
the weights of neurons in all layers are modified one by one. This process continues and continues,
finally reaching an error signal within the allowable range. In a nutshell, the learning process of the BP
network is carried out by multi-layer error correction gradient descent method, which is called the
error backward propagation learning algorithm. Error Back Propagation learns the mapping of inputs
to outputs, which is done through a process that minimizes the square sum of errors.
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When given an input mode X = (x1, x2, . . . , xm) and a desired mode Y = (y1, y2, . . . , yn), the actual
network output is:

y′k = f

(
∑
j=1

vjkzj − ϕk

)
(k = 1, 2, · · · , h) (3)

The hidden layer output is:

zj = f

(
m

∑
i=1

wikxj − θj

)
(k = 1, 2, · · · , h) (4)

Network output error square sum:

E = ∑n
k=1

(
yk − y′k

)2/2. (5)

Among them, wik, vjk respectively denotes weights between the input layer and the hidden layer
and the hidden layer to the output layer connection weights; θj, ϕk respectively represents layer node
and the output layer node threshold; m, h, n refers to the input layer, hidden layer, the output layer
nodes number. After inputting an input and output and updating the weights and thresholds, it needs
to be propagated forward again. When processing one tuple, a method for updating weights and
thresholds is called an instance update. Scanning and training all tuples in all training sets is called a
cycle. The process of neural network training needs to go through several cycles until the errors fall
within a threshold.

2.3. Case-Based Reasoning System

Case-based reasoning (shown in Table 1 and Figure 2) infers new information based on previous
experiences. A case is composed of input part X and output part Y.

Table 1. Values of feature Xi for the example e1 and e2.

X1 X2 X4 X5 Xi Xn Y

e1 e1(X1) e1(X2) e1(X4) e1(X5) e1(Xi) e1(Xn) e1(Y)
e2 e2(X1) e2(X2) e2(X4) e2(X5) e2(Xi) e2(Xn) e2(Y)

Case-based reasoning is a method that combines learning with reasoning. A case-based reasoner
solves new problems by recording old cases and adapting the most similar one. It interprets new
situations by remembering old similar situations and contrasting the new one to the old ones to see
which one fits best. After the old cases being properly stored, a new case will enter into the system to
get a prediction. The most similar case or cases are chosen, and the prediction of the case is the output
of the most similar case. To trigger this method, a distance is required to measure the closeness of
two examples. The Euclidean metric can be used as the distance between two objects. Suppose e(Xi)
(shown in Table 1) is the value of feature Xi for the example e; (e1(Xi) − e2(Xi)) is the feature difference
between example e1 and example e2. One issue is the importance of different features; increasing the
weight of one feature increases the importance of this feature. Let wi be the weight of feature Xi. The
distance between examples e1 and e2 is then d (e1, e2) = sqrt(∑i wi × (e1(Xi) − e2(Xi))2). In general,
the second time solving the problem is easier than the first because we are more competent since we
remember our mistakes and therefore can avoid them.
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Retrieve: Remembering is the process of retrieving a case or set of cases from memory. In general,
it consists of two sub-steps: Recall old cases and Select the best case. The goal of the first step is to
retrieve suitable cases that can support the reasoning that occurs in the following step. Good cases
are those that have the potential ability to make correct prediction on the new case. Given a new case,
we retrieve similar case/cases from the case base, and then select the best subset. This step selects
the most promising case/cases to reason with from those generated in the step of Recalling old cases.
The purpose of this step is to narrow the set of relevant cases to a few candidates that are worthy
of intensive consideration. Sometimes it is proper to choose a best case, and sometimes a small set
is needed.

Reuse: Adapt the retrieved case or cases to match with the new case, and propose a solution.
Revise: Evaluate and revise the solution based on how well it works. The revision can involve

other reasoning techniques, such as using the proposed solution as a basic point to come up with a
more suitable solution, which can be done by a human interactive system.

Retain: Decide whether to keep this new case and its solution in the case base.

3. Description of the Proposed System

The following is the comparison between the previous study and our study towards research
objectives. From Figures 3–5 we see: (1) A broad assimilation system maps different data from
different resources to the real value through mathematical estimation and calculation; (2) A narrow
data assimilation system is the same as the broad one, except it only provides as far as exact initial
fields for numerical models. The inputs are often composed of observation and forecast. Since the
data being assimilated happens before the model processing, it can be understood as “prior”; (3) Our
assimilation system aims at precipitation, which has not been covered by previous data assimilation.
Since precipitation is a kind of data type that occurs after the numerical processing, it can be understood
as “posterior”.
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independent data assimilation method itself, not combined with other operational data assimilation
methods. However, it could be used as a part of narrow operational data assimilation system. In other
words, the data assimilation method can be a mathematical model or a machine learning one (shown
in Figures 3–5).

What should be noted is that machine learning data assimilation methods and statistical
data assimilation methods are very different, although these two are designed to uncover
hidden information.

1. Machine learning is a data learning algorithm that does not rely on rule design. It can get
much information which cannot be described in detail, and the statistical model expresses the
relationship between variables in mathematical form.

2. The statistical model is based on a series of assumptions but the “nature” does not give any
assumptions before it happens. The less the hypothesis of a prediction model, the higher the
prediction efficiency can be achieved. Because machine learning does not rely on assumptions
about real data, the prediction effect is very good. Statistical models are mathematical
reinforcement, dependent on parameter estimation, so need the model builder to know or
understand the relationship between variables in advance. For example, the statistical model
obtains a simple boundary line in the classification problem, but for complex problems, a statistical
model seems to have no way to compare with machine learning algorithms since the machine
learning method obtains the information that any boundary cannot be described in detail.

3. Machine learning can learn hundreds of or millions of observational samples, prediction and
learning synchronization. Some algorithms, such as random forest and gradient boosting, are
very fast when dealing with big data. Machine learning deals with data more broadly and deeply.
However, statistical models are generally applied to small amounts of data and narrow data
attributes. Most commonly this leads to the numerical modeling system alternately performing a
numerical forecast and a data analysis. This is known as analysis/forecast cycling. The forecast
from the earlier analysis to the current one is often called the background.

The case-based reasoning method is introduced in a broad data assimilation system as a prediction
member since the machine learning methods and numerical models have different mechanisms and
thus can supplement each other. For example, sometimes the machine learning prediction models
are better than numerical prediction models and at other times, the prediction models are better
than the machine learning. In whichever situations, the final model will surpass both of them after
training properly.

The new system (shown in Figure 6) is composed of several components: Input layer, Prediction
layer, Output layer and Final layer.
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Input layer: the inputs are often a set of samples that could be one dimensional or
multidimensional. For a machine learning model, the inputs are usually one dimensional and for
numerical models, the inputs are usually multidimensional. In this sense, the inputs of each model do
not need to be the same.

Prediction layer: for numerical models, they do not learn before predicting, while for some
machine learning models, they have to learn before predicting. But, not all the machine learning
methods need to learn before predicting. The models are parallel-arranged and each of them does not
rely on the others. In this paper, the models are designed to predict the same variable values. Output
layer: this layer outputs the prediction results based on different model types.

Output layer: this layer is the traditional neural network.
Final layer: this layer outputs the final prediction values.

4. Experiments

4.1. Data Formatting

The data in this example is from the Global Ensemble Forecast System (GEFS) of the NCEP
(National Centers for Environmental Prediction) data center. GEFS is a global-coverage weather
forecast model made up of 21 separate forecasts—or ensemble members—used to quantify the amount
of uncertainty in a forecast. GEFS produces output four times a day with weather forecasts for up to
16 days out. The National Centers for Environmental Prediction (NCEP) started the GEFS to address
the nature of uncertainty in weather observations, which is used to initialize weather forecast models.
The model type is GEFS-MEAN-SPRD but we did not use the SPRD part.

Datasets include real precipitation values and precipitation prediction values from 1 June 2010
to 31 August 2017. This example illustrated how neural networks can be used to approximate the
relationship between the real value and the prediction.

4.2. Ranking Key Features

For the case-based reasoning system, we need to appropriately learn how to choose features to
predict precipitation. A simple method for searching for a significant feature is to assume that each
feature is independent. After testing, we keep temperature, wind, atmosphere pressure and relative
humidity as the prediction factors for forecasting precipitation.

For the neural network-based data assimilation system, we set the GEFS (global ensemble
forecasting system) precipitation average and the case-based reasoning system precipitation prediction
as the inputs, and the real precipitation as the output. The training samples are composed of inputs
and output.

Besides, we need to guarantee that the produced mapping is not over-fitted. In our example,
inputs are the predictive precipitation values from different resources and the target outputs are the
corresponding real values of the precipitation.

5. Discussion

Once some significant features have been identified, we can use this information to approximate
the real atmospheric conditions. Because the neural network is started with random weights, the results
of the neural network after training vary slightly each time although the examples or the training set is
the same. To avoid this randomness, the random seed is set to reproduce the same results every time.

A one-hidden layer feed forward neural network with 5 hidden layer neurons is created and
trained and is shown in Figure 7. The samples are automatically divided into training, validation and
test sets. The training set is used to train the neural network. Training continues and continues until it
achieves the desired performance on the validation set. The test set provides a completely independent
measure of network accuracy. Both the input and output at the stage of creating the neural network
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have sizes of 0 because the network has not yet been configured to match our input and target data.
This will change when the network begins its training process.
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Figure 7. Neural network created.

Now the network is ready to be trained. The samples are automatically separated into a training
set, a validation set and a test set. The training set is used to teach the network. The training process
continues and continues until the neural network achieves improvement on the validation set. The test
set provides a completely independent measure of network accuracy. The neural network Training
Tool displays the NN being trained and the algorithms being used during training. It also shows that
the changing training state in the training process and the stopped training criteria that are highlighted
in green. All these processes use the command line shown in below:

Figures 8–10 shows the neural network’s performances improved during training. Performance is
measured in terms of mean squared error, and shown in log scale. It rapidly decreased as the network
was trained. Performance is shown for each of the training, validation and test sets. The version of the
network that did best on the validation set after training.
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Figure 8. Neural network-based data assimilation result for station 1.
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Figure 9. Neural network-based data assimilation result for station 2.
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Figure 10. Neural network-based data assimilation result for station 3.

We see from the Figures and the tables below (Table 2): the neural network-based data assimilation
results for stations 1 to 3 share the same characteristics. That is: the errors of our neural network-based
data assimilation system are smaller than the ensemble average and the case-based reasoning.
Comparing to the previously tried method, the neural network is progress.
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Table 2. Neural network-based data assimilation results.

Station Number Ensemble Forecasting
(MSE)

Case-Based Reasoning
System (MSE)

Final Data Assimilation
System (MSE)

1 0.4111 0.5370 0.2095
2 0.3963 0.2441 0.13007
3 0.2889 0.0741 0.05252

The trained neural network can now be tested with the testing samples we partitioned from
the main dataset. The testing data was not used in training in any way and hence provides an
“out-of-sample” dataset to test the network on. This will give us a sense of how well the network will
do when tested with data from the real world. The figures below show that the testing result is not
over-fitted. Here, “Epoch” means iterative training of a neural network. An Epoch is a single pass
through the entire training set, followed by testing of the verification set.

Generally speaking, the experiments show that the accuracy of our system is pretty good, which is
very promising.

6. Conclusions

A broad assimilation system approximates the relationship between the real value and the analysis.
A narrow data assimilation system is a sort of broad assimilation system but only provides as far
as exact initial fields for numerical models. Since the data being assimilated in a narrow system
comes before the model processing, it can be understood as “prior”. In our paper, we propose a
precipitation data assimilation system, which has not been covered by previous data assimilation
systems. Since precipitation is a kind of data type that occurs after the numerical processing, it can be
understood as “posterior”.

In our system, the case-based reasoning system and the numerical models’ precipitation prediction
results are set as the inputs to our assimilation system in order to infer the relationship between the real
precipitation value and the predictions. The case-based reasoning method and the numerical models
have different prediction mechanisms and thus can supplement each other. For example, sometimes
the machine learning prediction models are better than the numerical prediction models and at other
times, the numerical prediction models are better than the machine learning. In whatever situations,
the final model will surpass both of them after training properly. The neural networks form the core of
the precipitation data assimilation system, setting up the mapping between the inputs and the output
without knowing the exact relationship between them. The experiments illustrate that our system can
increase precipitation prediction accuracy.
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