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Abstract: The main objective of Linked Data is linking and integration, and a major step for evaluating
whether this target has been reached, is to find all the connections among the Linked Open Data (LOD)
Cloud datasets. Connectivity among two or more datasets can be achieved through common Entities,
Triples, Literals, and Schema Elements, while more connections can occur due to equivalence relationships
between URIs, such as owl:sameAs, owl:equivalentProperty and owl:equivalentClass, since many
publishers use such equivalence relationships, for declaring that their URIs are equivalent with URIs
of other datasets. However, there are not available connectivity measurements (and indexes) involving
more than two datasets, that cover the whole content (e.g., entities, schema, triples) or “slices” (e.g., triples
for a specific entity) of datasets, although they can be of primary importance for several real world tasks,
such as Information Enrichment, Dataset Discovery and others. Generally, it is not an easy task to find the
connections among the datasets, since there exists a big number of LOD datasets and the transitive and
symmetric closure of equivalence relationships should be computed for not missing connections. For this
reason, we introduce scalable methods and algorithms, (a) for performing the computation of transitive
and symmetric closure for equivalence relationships (since they can produce more connections between
the datasets); (b) for constructing dedicated global semantics-aware indexes that cover the whole content
of datasets; and (c) for measuring the connectivity among two or more datasets. Finally, we evaluate the
speedup of the proposed approach, while we report comparative results for over two billion triples.

Keywords: content-based connectivity measurements; semantic web; linked data; dataset discovery;
information enrichment; LOD scale analytics; lattice of measurements; MapReduce; big data

1. Introduction

The main objective of Linked Data is linking and integration, and a major step for evaluating
whether this target has been reached, is to find all the connections among the Linked Open Data (LOD)
Cloud datasets. Connectivity among two or more datasets can be achieved through common Entities,
Triples, Literals, and Schema Elements, while more connections can occur due to equivalence relationships
between URIs, such as owl:sameAs, owl:equivalentProperty and owl:equivalentClass, since many
publishers use such equivalence relationships, for declaring that their URIs are equivalent with
URIs of other datasets. However, there are not available connectivity measurements (and indexes)
involving more than two datasets, that cover the whole content (e.g., entities, schema, triples) or “slices”
(e.g., triples for a specific entity) of datasets, although it is important to obtain information from many
datasets for several real world tasks, i.e., (a) for enabling Object Coreference and Information Enrichment,
i.e., finding all the available URIs, triples, properties for an entity, e.g., “Aristotle”, w.r.t the provenance
of data; (b) for assessing and improving the Veracity of data or/and for Fact Checking [1]; (c) for
creating features for a set of entities for being used in a Machine Learning problem [2] (e.g., in word2vec
algorithms [3]); (d) for offering advanced Dataset Discovery and Selection services; [4,5] and (e) for
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improving Schema and Instance Matching techniques [6,7]. However, it is not an easy task to find the
connections among the datasets, since there exists a big number of LOD datasets [8], the transitive
and symmetric closure of equivalence relationships should be computed for not missing connections,
and the possible combinations of datasets is exponential in number.

For tackling this challenge, in this paper we focus on answering the following questions:
(a) “why plain SPARQL [9] is not enough for performing such measurements?”; (b) “how to compute
the transitive and symmetric closure for producing the classes of equivalence for URIs, in instance
and schema level?”; (c) “how to use the produced catalogs containing the classes of equivalence for
constructing semantics-aware indexes?”; and (d) “how to use any inverted index containing a posting
list of dataset identifiers, for performing connectivity metrics for any subset of datasets, by focusing
also on specific dataset “slices” (e.g., connectivity of triples, literals, triples referring to “Aristotle”,
etc.)?”. Regarding (d), it is possible that different users desire to measure the connectivity of different
“slices” of datasets. For instance, a publisher would like to find the common entities of their dataset with
other datasets, in order to enrich the information of their entities, a user would desire to find datasets
containing common triples, but only for a specific entity, e.g., “Aristotle”, for building a more accurate
dataset for this entity. Concerning our contribution, we extend the set of indexes and algorithms
that we have proposed in the past [4,5]. In particular, we introduced indexes and their construction
algorithms (for a single machine and for a cluster of machines by using MapReduce [10] techniques),
for the URIs (but not for schema elements) and literals, and we measured the commonalities of them
for 1.8 billion triples, by using “lattice”-based algorithms that can compute efficiently the intersection
(e.g., of URIs and literals) among any set of datasets. With respect to that work, in this paper:

• we show why plain SPARQL is not enough for performing such measurements,
• we show how to produce catalogs that contain the computation of transitive and symmetric closure

for owl:sameAs, owl:equivalentProperty and owl:equivalentClass relationships (in [4,5]
we covered only owl:sameAs),

• we exploit the aforementioned catalogs, for constructing in parallel (by using MapReduce [10]
techniques) semantically enriched indexes for entities, classes, properties and literals,
and an entity-based triples index, for enabling the assessment of connectivity of a specific entity,
and immediate access to the available information for that entity,

• we show how the measurements, proposed in [4,5], can be used for performing fast connectivity
measurements, by using any inverted index containing a posting list of dataset identifiers,

• we measure the speedup and scalability obtained by the proposed indexes and algorithms, and we
introduce indicative statistics and measurements, by using 400 datasets containing over 2 billion
triples (200 million more triples comparing to [4,5]) and a cluster of machines.

A research prototype, called LODsyndesis (http://www.ics.forth.gr/isl/LODsyndesis/), exploits
the indexes and measurements, that are introduced in this paper, for offering services for several
real world tasks, such as Object Coreference, Finding all the available Information about an Entity, Dataset
Discovery and others. Moreover, as a product, to the best of our knowledge, the indexes of LODsyndesis
constitute the biggest knowledge graph of LOD that is complete with respect to the inferable
equivalence relations.

The rest of this paper is organized as follows: Section 2 introduces the background and discusses
related work, Section 3 shows the requirements and states the problem. Section 4 introduces the
limitations of SPARQL for the proposed problem, Section 5 describes ways for computing the
transitive and symmetric closure of equivalence relationships, and introduces the semantically enriched
indexes (and their construction algorithms). Section 6 shows how to measure the connectivity of any
measurement type and any subset of datasets, while Section 7 reports the results of the evaluation and
discusses the efficiency of the proposed approach. Finally, Section 8 concludes the paper and outlines
directions for future work.

http://www.ics.forth.gr/isl/LODsyndesis/
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2. Background and Related Work

2.1. Background

First, we introduce RDF and Linked Data, and secondly we describe the MapReduce Framework,
since we shall use MapReduce [10] techniques to parallelize (and thus speedup) the construction of
our indexes.

2.1.1. RDF and Linked Data

Resource Description Framework (RDF) [11] is a graph-based data model. It uses Internationalized
Resource Identifiers (IRIs), or anonymous resources (blank nodes) for denoting resources, and constants
(Literals), while triples are used for relating a resource with other resources or constants.
Hereafter, we shall use the term URIs (Uniform Resource Identifiers) to refer to IRIs (since the term
URI is more commonly used). A triple is a statement of the form subject-predicate-object 〈s,p,o〉,
and it is any element of T = (U ∪ Bn) × (U) × (U ∪ Bn ∪ L), where U, Bn and L denote the sets
of URIs, blank nodes and literals, respectively, whereas an RDF graph (or dataset) is any finite
subset of T. For instance, the triple 〈d1:Aristotle, d1:birthPlace, d1:Stagira〉, contains three URIs,
where the first one (i.e., d1:Aristotle) is the subject, the second one (i.e., d1:birthPlace) is the predicate
(or property) and the last one (i.e., d1:Stagira) is the object. Moreover, we can divide the URIs in
three categories, i.e., U = E ∪ P ∪ C, where E refers to the entities, P to the properties and C to the
classes, where these sets of URIs are pairwise disjoint. In particular, a property describes a relation
between a subject and an object and the set of properties P is defined as P = {p | 〈s, p, o〉 ∈ T}.
Concerning the classes, they are used for grouping entities into classes, e.g., Humans, Philosophers,
Actors, and so forth. They can be found through triples of the form 〈s,rdf:type,c〉, where s is an entity
and c is a class, i.e., C = {c | 〈s, rd f :type, c〉 ∈ T}. Finally, the remaining URIs are defined as entities,
i.e., E = U \ (P ∪ C). By using Linked Data, the linking of datasets can be achieved by the existence of
common URIs or Literals, or by defining equivalence relationships, e.g., owl:sameAs, among different
URIs (entities, properties and classes).

2.2. MapReduce Framework

MapReduce [10] is a distributed computation framework, that can be used for processing big
data in parallel and it is widely applied to large scale data-intensive computing. The MapReduce
program (or job) is carried out in two different tasks (or phases), called Map and Reduce, which are
two different functions that are user-defined, and they can become tasks, which can be executed in
parallel. The Map function receives as input a set of data, it performs a user-defined task over an
arbitrary part of the input, it partitions the data and converts them into intermediate key-value pairs.
Afterwards, the key-value pairs of the map phase are grouped by their key and are passed to the
reducers. Concerning the reduce phase, a reduce function (a user defined function) is called for each
unique key. The reducer processes the list of values for a specific key and produces a new set of output
key-value pairs.

2.3. Related Work

Here, we first describe approaches that perform measurements at LOD scale (in Section 2.3.1),
secondly we introduce services for hundreds (or even thousands) of LOD datasets (in Section 2.3.2),
and finally, (in Section 2.3.3) we discuss approaches for indexing RDF datasets in parallel.

2.3.1. Measurements at LOD Scale

Recently, there have been proposed approaches for offering measurements for hundreds or
thousands of datasets. The authors of [12] have collected and cleaned over 650,000 documents
and they focus on providing measurements about the validity of documents, their triples number,
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their format and so forth, through the LODLaundromat service. LOD-a-Lot [13] has integrated
the previous set of documents into a single file, and the authors introduced some measurements,
such as the degree distribution of specific elements (subjects, properties, etc.). In [14] one can find
the cardinality of mappings between pairs of 476 datasets, while in [15] the authors introduced
measurements such as the degree distribution of datasets, the datasets with the most in-coming and
out-coming links, and others. LODStats [16] offers several metadata and statistics for a big number
of datasets, such as links between pairs of datasets, the number of triples of each dataset and so
forth. In another approach [17], the authors computed the PageRank for 319 datasets for showing
the popularity of specific datasets and the degree up to which other datasets trust a specific dataset.
In [18], the authors selected 27 quality metrics for assessing the quality of 130 datasets, by using Luzzu
framework [19]. Regarding connectivity, the authors introduced a metric called “Links to External
Linked Data Providers”, which is used for identifying the number of external links which can be found
in a specific dataset. Comparing to our work, the aforementioned approaches do not take into account
the closure of equivalence relationships for producing measurements. On the contrary, we compute
the closure of such relationships and we offer connectivity measurements for any set of datasets (not
only for pairs of datasets) and for the whole content of datasets (e.g., entities, triples, literals, etc.).

2.3.2. Global RDF Cross-Dataset Services

Here, we introduce 16 RDF services/tools for large number of datasets, and we categorize them
according to the services that they offer (see Table 1), while we compare all these services with
LODsyndesis, which is the web page that exploits the measurements which are introduced in this
paper. Table 1 is an extended version of a Table introduced in [5], i.e., here, we cover 6 more RDF
cross-dataset services.

Table 1. Global RDF cross-dataset services (last accessed date: 3 May 2018).

Tool Number of
RDF Datasets

URI
Lookup

Keyword
Search Connectivity Dataset

Discovery
Dataset

Visualization
Dataset

Querying
Dataset
Evolution

LODsyndesis [4,5,20] 400 X X X X

LODLaundromat [12] >650,000
(documents) X X X

LOD-a-Lot [13] >650,000
(documents) X

LODStats [8,16] 9960 X(Schema) X X

LODCache 346 X X(via
SPARQL) X

LOV [21] 637
(vocabularies) X(Schema) X X

WIMU [22] >650,000
(documents) X

Loupe [23] 35 X
sameAs.org [24] >100 X

Datahub.io 1270 X X
LinkLion [14] 476 X X

DyLDO [25,26] 86,696
(documents) X

LODCloud [15] 1184 X X X
Linghub [27] 272 X X X

SPARQLES [28] 557 X X
SpEnD [29] 1487 X X

LODsyndesis [4,5,20] (http://www.ics.forth.gr/isl/LODsyndesis) is a web page that provides
query services and measurements for 400 real RDF datasets. It offers connectivity measurements that
can be exploited for several tasks. In particular, LODsyndesis offers several services, such as an Object
Coreference and Finding all the available Information about an Entity service, where one can find all the
datasets, URIs, and triples of a specific entity, a Dataset Discovery service, where one can discover all
the connected datasets for a given dataset, a Fact Checking service (i.e., for checking which datasets
agree that a fact holds for a specific entity) and others. Moreover, the proposed measurements are
exploited for producing informative 3D visualizations (http://www.ics.forth.gr/isl/3DLod) [30].

http://www.ics.forth.gr/isl/LODsyndesis
http://www.ics.forth.gr/isl/3DLod
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LODLaundromat [12] (http://lodlaundromat.org) is a service that fetches several datasets and
transforms them to a common format. By using this service, one can search for specific URIs, while it
provides a keyword search engine (called Lotus [31]), where one can find all the triples and URIs where
a specific keyword occurs. Comparing to our approach, we take into consideration the equivalence
relationships between the datasets, therefore, one can find all the equivalent URIs for a given one,
while we offer connectivity measurements for any set of datasets.

LOD-a-Lot [13] (http://lod-a-lot.lod.labs.vu.nl/) has integrated the set of LODLaundromat
documents in a single self-indexed file in HDT format [32]. This integrated dataset can be used for query
resolution at Web scale. The key difference with our approach is that we index the datasets mainly
for performing connectivity measurements, while we take into account equivalence relationships
(and their closure) among the different datasets.

LODStats [8,16] (http://stats.lod2.eu/) is a service including some basic metadata for a large
number of datasets. For example, one can find the number of datasets’ triples, or the languages that
each dataset uses, while one can find all the datasets for specific schema elements (i.e., properties and
classes). Comparing to LODsyndesis, we take into consideration the closure for finding equivalent URIs
for entities and schema elements, while we provide measurements concerning the connectivity among
two or more datasets.

LODCache (http://lod.openlinksw.com) is a SPARQL endpoint service, based on Virtuoso
database engine [33], that includes several datasets and billions of triples. By using this service, one can
send queries that can be answered from two or more datasets, while one can type queries for measuring
the connectivity among several datasets. However, in that case the closure of equivalence relations
is performed on query time which can be time-consuming (http://docs.openlinksw.com/virtuoso/
rdfsameas/), while plain SPARQL is not efficient enough for such measurements (more details are
given in Section 4). On the contrary, LODsyndesis computes the transitive and symmetric closure once,
while we use “lattice”-based algorithms for measuring fast the connectivity among several datasets.

WIMU [22] (http://w3id.org/where-is-my-uri/) is a service that uses the datasets of
LODLaundromat and LODstats, and one can search for a specific URI. This service returns a ranked list of
documents, where a particular URI occurs. Moreover, one can download the documents containing that
URI, or/and the triples for a URI from a specific document. Comparing to our approach, WIMU does
not take into account the equivalence relationships, therefore, it is not easy to find all the information
for a specific real world entity.

LOV (Linked Open Vocabularies) [21] (http://lov.okfn.org) is a service containing over
600 vocabularies from different datasets. It offers a keyword search and a SPARQL endpoint,
which contains schema triples and it can be used in order to search for schema elements. On the
contrary, we provide services for the whole content of datasets (not only for schema elements).

Loupe [23] (http://loupe.linkeddata.es) is a service containing data summaries, and it can be used
for understanding which vocabularies each dataset uses. Moreover, one can search for datasets where
a specific property or class occurs. Comparing to LODsyndesis, it focus on schema elements and it does
not take into account equivalence relationships.

SameAs.org [24] (http://sameas.org) is a URI lookup service containing over 203 million URIs,
where one can find all the equivalent URIs for a given URI. Comparing to us, except for URIs, we find
also the equivalent schema elements and triples, while we provide connectivity measurements and
services (based on that measurements).

Datahub.io (http://datahub.io) is a portal that provides several datasets in different formats,
and one can find some major statistics for each dataset (e.g., number of triples, number of links to
other datasets). Moreover, one can fetch datasets provided in dumps and get updates from datasets.
We have fetched hundreds of datasets from this portal, while we exploit datahub.io for uploading the
results of the connectivity measurements.

http://lodlaundromat.org
http://lod-a-lot.lod.labs.vu.nl/
http://stats.lod2.eu/
http://lod.openlinksw.com
http://docs.openlinksw.com/virtuoso/rdfsameas/
http://docs.openlinksw.com/virtuoso/rdfsameas/
http://w3id.org/where-is-my-uri/
http://lov.okfn.org
http://loupe.linkeddata.es
http://sameas.org
http://datahub.io
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LinkLion [14] (http://linklion.org/portal) contains dumps of mappings between pairs of datasets
and statistics about them. One can find all the mappings between pairs of datasets, however, it is not
possible to find mappings between three or more datasets.

DyLDO [25] (http://km.aifb.kit.edu/projects/dyldo/) is a Dynamic Linked Data Observatory
whose target is to monitor the evolution of Linked Datasets over time. On the contrary, we mainly
provide connectivity measurements about hundreds of LOD Datasets.

LOD Cloud [15] provides statistics about the datasets and the domains where they belong,
while one can see all the connections between pairs of datasets through the popular LOD Cloud
Diagram (http://lod-cloud.net). However, one cannot find connections among three or more datasets
(which are provided through LODsyndesis).

Linghub [27] (http://linghub.lider-project.eu) is a portal that collects thousands of datasets from
linguistic domain (272 of them in RDF format), and uses the Linked Data Principles for displaying
the metadata of datasets. This portal offers a faceted browsing service, a keyword search service
and a SPARQL endpoint, for easing the process of discovering datasets according to different users’
requirements. Comparing to LODsyndesis, it mainly focus on providing services for linguistics domain,
while we offer services for datasets from nine different domains.

SPARQLES [28] (http://sparqles.ai.wu.ac.at) and SpEnD [29] (http://wis.etu.edu.tr/spend/)
are services containing metadata and statistics for hundreds of SPARQL endpoints. Comparing to
LODsyndesis, we mainly focus on providing measurements and services about hundreds of LOD
datasets (and not for SPARQL endpoints).

2.3.3. Indexes for RDF Datasets by using Parallel Frameworks

There have been proposed approaches for indexing RDF datasets by using parallel frameworks
(such as MapReduce). For instance, tools such as AMADA [34], H2RDF [35], Rya [36] and MAPSIN [37]
use three indexes, i.e., for finding fast all the triples for a subject, a predicate, and an object respectively.
However, the main focus of such systems (a large list of such systems can be found in [38]), is to create
indexes for performing fast parallel SPARQL query answering, while most of them do not take into
account the closure of equivalence relationships. On the contrary, we mainly focus on creating parallel
indexes, that include the computation of closure of equivalence relationships, for performing fast
connectivity measurements among any set of datasets.

3. Requirements and Problem Statement

In this section, we introduce the main requirements, which are essential for constructing
semantically enriched indexes (such as the computation of transitive and symmetric closure of
equivalence relationships), while we define the problem statement (i.e., we define formally the
measurements that we want to perform efficiently). In particular, at first, we show some basic
notations (in Section 3.1), secondly, we introduce the major requirements (in Section 3.2), and finally,
we state the problem (in Section 3.3).

3.1. Notations

Let D = {D1, D2, ..., Dn} be a set of datasets. For a subset of datasets B ⊆ D, we define as
triples(B) ⊆ T, all its triples, as LB all its literals, and as UB all its URIs. Moreover, for a single dataset
Di, UDi is the set of its URIs (where EDi , PDi and CDi are the sets of entities, properties and classes,
respectively), triples(Di) is the set of its triples and LDi is the set of its literals. It is worth mentioning
that we ignore triples containing blank nodes, since we do not apply blank node matching techniques
for finding common blank nodes, like those proposed in [39].

3.2. Requirements

Since we do not want to miss connections between the datasets, our major requirement is to take
into consideration the equivalence relationships between the datasets. We consider the following

http://linklion.org/portal
http://km.aifb.kit.edu/projects/dyldo/
http://lod-cloud.net
http://linghub.lider-project.eu
http://sparqles.ai.wu.ac.at
http://wis.etu.edu.tr/spend/
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equivalences in schema and instance level in a subset of datasets B. Let Equiv(B, r) be all the triples that
contain a property r ∈ Eqv, Eqv = {owl:sameAs,owl:equivalentProperty,owl:equivalentClass},
that defines a specific equivalence between two URIs: Equiv(B, r) = {(u, u′)|(u, r, u′) ∈
triples(Di), Di ∈ B, r ∈ Eqv}. The owl:sameAs property denotes that two URIs refer to the same
entity, while the remaining ones denote equivalences among schema elements (i.e., properties and
classes). These types of equivalences are transitive, symmetric and reflexive, and our target is to
compute their closure, in order not to miss equivalence relationships, while it is worth mentioning
that one could take also into account additional equivalence relationships between URIs, such as
skos:exactMatch. If R denotes a binary relation, consequently, we use C(R) to denote the transitive,
symmetric and reflexive closure of R, while C(Equiv(B, r)) stands for this type of closure of a relation r
in all datasets in B. We can now define the equivalent URIs (considering all datasets in B) of an entity
u ∈ EB, a property p ∈ PB and a class c ∈ CB as:

EqEnt(u, B) = { u′ | (u, u′) ∈ C(Equiv(B, owl:sameAs)), u, u′ ∈ EB}
EqProp(p, B) = { p′ | (p, p′) ∈ C(Equiv(B, owl:equivalentProperty)), p, p′ ∈ PB}
EqClass(c, B) = { c′ | (c, c′) ∈ C(Equiv(B, owl:equivalentClass)), c, c′ ∈ CB}

From URIs to Real World Objects. For taking into account the equivalences, our target is to
replace any URI with its corresponding class of equivalence, where the URIs that are “semantically”
the same belong to the same class of equivalence, e.g., all the URIs referring to “Aristotle” belong
to the same equivalence class. We denote as [u]e, [u]pr and [u]cl the class of equivalence of a
URI u, if it belongs to entities, properties or classes, respectively. In particular, for a dataset B,
we define as rwo(B) = ∪u∈EB [u]e, its real world entities, where ∀u′ ∈ EqEnt(u, B), [u]e = [u′]e,
as rwp(B) = ∪u∈PB [u]pr, its real world properties (where ∀u′ ∈ EqProp(u, B), [u]pr = [u′]pr), and as
rwc(B) = ∪u∈CB [u], its real world classes (where ∀u′ ∈ EqClass(c, B), [u]cl = [u′]cl).

Literals Conversion. For the literals, we define as L′ = ∪l∈Llconv, the set of transformed literals,
where we convert each literal l to lower case, we remove its language tag (e.g., “Aristotle”@en
→ “aristotle”), while we remove its datatype (e.g., 1∧∧xsd:integer → “1”). We perform these
conversions for not missing connections, e.g., for the same literal, one dataset can use capital letters,
another one lowercase letters, a third one both capital and lowercase letters (e.g., “ARISTOTLE”
vs. “aristotle” vs. “Aristotle”), a literal can be the same in different languages (e.g., “Aristotle”@en,
“Aristotle”@ca), while the same literal can be represented from different datasets with different types
(e.g., 1∧∧xsd:integer, 1∧∧xsd:double).

From Triples to Real World Triples. We define the real world triples for a dataset Di, by replacing
each URI with its corresponding class of equivalence and by converting each literal (in the way that
we showed before). A triple t = 〈s, p, o〉 is replaced with a new triple µ(t) = 〈s′, p′, o′〉, where,

s′ =
{
[s]e, s ∈ EDi

p′ =
{
[p]pr, p ∈ PDi

o′ =


oconv, o ∈ LDi

[o]e, o ∈ EDi

[o]cl , o ∈ CDi

As a consequence, the real world triples, for a dataset Di and for a subset of datasets B, are defined
as rwt(Di) = ∪t∈triples(Di)

µ(t) and rwt(B) = ∪Di∈Brwt(Di), respectively. Moreover, for a specific URI
u, rwt(u, B) = {〈s, p, o〉 ∈ rwt(B) | s = [u]e or o = [u]e, u ∈ EB} is the set of real world triples where
u (or an equivalent URI of u) occurs. Finally, we define as rwt(u, Di) = {〈s, p, o〉 ∈ rwt(Di) | s =

[u]e or o = [u]e} the corresponding set of real world triples of a dataset Di, which contains entity u,
(or an equivalent URI of u).
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3.3. Problem Statement

Concerning the proposed measurements, let P(D) denote the power set of D, comprising elements
each being a subset of D, i.e., a set of datasets, and B ⊆ D be any subset of datasets. Moreover, let F
be the measurement types that we focus, i.e., F = {RWO, RWP, RWC, RWT, LIT}, and let S ∈ F be a
specific measurement type (e.g., RWO). Furthermore, as fS(Di) we denote the “corresponding” feature
of a dataset Di (e.g., fRWO(Di) = rwo(Di)). Our objective is to be able to perform measurements fast
for any subset of datasets B ∈ P(D), for any measurement type S ∈ F. In particular, our target, is for
any measurement type S ∈ F to compute the cardinality of intersection (i.e., commonalities) among
any subset of datasets B, i.e., |cmn(B, S)|, where

cmn(B, S) = ∩Di∈B fS(Di) (1)

More specifically, for any subset B ∈ P(D), we focus on measuring the following ones:

# of Common Real World Entities: |cmn(B, RWO)| = | ∩Di∈B rwo(Di)| (2)

# of Common Real World Properties: |cmn(B, RWP)| = | ∩Di∈B rwp(Di)| (3)

# of Common Real World Classes: |cmn(B, RWC)| = | ∩Di∈B rwc(Di)| (4)

# of Common Real World Triples: |cmn(B, RWT)| = | ∩Di∈B rwt(Di)| (5)

# of Common Literals: |cmn(B, LIT)| = | ∩Di∈B L′(Di)| (6)

Finally, since we would like to be able to compute the cardinality of common real world triples
for an entity u (e.g., for “Aristotle”), for any subset of datasets B, we measure also the following one:

# of Common Real World Triples of Entity u: |cmnTriples(B, u)| = | ∩Di∈B rwt(u, Di)| (7)

4. Why Plain SPARQL Is Not Enough

Here, we show how one can exploit SPARQL query language [9] for computing the cardinality
of intersection among any subset of datasets for real world entities, properties, classes, triples and
literals. Suppose that there exists |D| datasets. At first, one should upload and store in a SPARQL
endpoint all the triples of each dataset (a separate graph is needed for each dataset), and upload also
all the equivalence relationships. By using a SPARQL query, it is possible for one to write a query
for finding the intersection of several subsets of datasets; however, each such a subset can contain
exactly k datasets, e.g., k = 2 corresponds to pairs of datasets, k = 3 to triads of datasets, and so forth.
For instance, for computing the measurements for all the pairs and triads of datasets, two different
queries are needed. Generally, for |D| datasets, there exists |D| − 1 such levels of subsets, where a level
k (2 ≤ k ≤ |D|) consists of subsets having exactly k datasets. Alternatively, one can use one SPARQL
query for each different subset of datasets, i.e., 2|D| queries. Below, we show five SPARQL queries,
for computing the cardinality of commonalities among entities, properties, classes, literals, and triples,
respectively, which can be executed by using Openlink Virtuoso database engine [33].

Common Real World Entities. For computing the number of common real world entities between
combinations containing exactly k datasets, one should use the complex query which is introduced in
Listing 1, where for D datasets, we need |D| − 1 queries, for computing the cardinality of intersection
of any possible combination of datasets.
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Listing 1: SPARQL query for computing the number of common entities among several datasets.

DEFINE input : same−As ‘ ‘ yes ’ ’

s e l e c t ?Di ? Dj . . . ?Dn count ( d i s t i n c t ?u ) as ? commonEntities
where {
{ graph ?Di { { ? u ?p ?o } union { ? o ?p ?u . f i l t e r ( ? p!= rdf : type ) } }
. f i l t e r ( isURI ( ? u ) ) } .
{ graph ? Dj { { ? u ?p2 ? o2 } union { ? o2 ?p2 ?u . f i l t e r ( ? p2 != rdf : type ) } } } .
. . .
{ graph ?Dn { { ? u ?pn ?on } union { ? on ?pn ?u . f i l t e r ( ? pn!= rdf : type ) } } } .
f i l t e r ( ? Di>?Dj && . . . && ?Dn−1>?Dn)
}
group by ?Di ? Dj . . . ?Dn

As we can observe, one should put the command “define input:same-As “yes”” for enabling the
computation of closure on query time for owl:sameAs relationships. For this query, we need a unique
line for each dataset, for finding the union of all its subjects and objects that are URIs (but not classes).
Moreover, one should include in the query a filter statement for denoting that each dataset is different
with the other ones, otherwise, it will find also the intersection of real world entities for the same
dataset Di, i.e., rwo(Di) ∩ rwo(Di). We use the > operator instead of the in-equivalence one (i.e., ! =),
for not computing many times the intersection of a specific combination of datasets. For instance, for
pairs of datasets, if we put Di! = Dj, the query will compute the intersection of all the pairs of datasets
twice, i.e., it will compute the intersection for all the possible permutations. For instance, for two
datasets D1 and D2, it will compute the measurements twice (i.e., in the aforementioned example,
there are two possible permutations, D1, D2 and D2, D1). Finally, a group by clause should be used,
where each such group corresponds to a subset of datasets.

Common Real World Properties. For computing the cardinality of common properties,
one should use the query which is shown in Listing 2, where it is required to compute
the closure of owl:equivalentProperty relationships on query time. By using Virtuoso,
one should follow some steps for enabling the computation of closure for schema elements on
query time (http://vos.openlinksw.com/owiki/wiki/VOS/VirtSPARQLReasoningTutorial#Step4.:
SettingUpInferenceRules). By following the aforementioned steps, for the query of Listing 2, we have
defined an inference rule with name “SchemaEquivalence”.

Listing 2: SPARQL query for computing the number of common properties among several datasets.

DEFINE input : i n f e r e n c e ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ?Di ? Dj . . . ?Dn count ( d i s t i n c t ? property ) as ? commonProperties
where {
{ graph ?Di { ? s ? property ?o } } .
{ graph ? Dj { ? s1 ? property ? o1 } } .
. . .
{ graph ?Dn { ? sn ? property ?on } } .
f i l t e r ( ? Di>?Dj && . . . && ?Dn−1>?Dn)
}
group by ?Di ? Dj . . . ?Dn

As we can observe, one should put the command “define input:same-As “yes”” for enabling the
computation of closure on query time for owl:sameAs relationships. For this query, we need a unique
line for each dataset, for finding the union of all its subjects and objects that are URIs (but not classes).
Moreover, one should include in the query a filter statement for denoting that each dataset is different
with the other ones, otherwise, it will find also the intersection of real world entities for the same
dataset Di, i.e., rwo(Di) ∩ rwo(Di). We use the > operator instead of the in-equivalence one (i.e., ! =),
for not computing many times the intersection of a specific combination of datasets. For instance,
for pairs of datasets, if we put Di! = Dj, the query will compute the intersection of all the pairs of
datasets twice, i.e., it will compute the intersection for all the possible permutations. For instance,
for two datasets D1 and D2, it will compute the measurements twice (i.e., in the aforementioned
example, there are two possible permutations, D1, D2 and D2, D1). Finally, a group by clause should be
used, where each such group corresponds to a subset of datasets.

Common Real World Properties. For computing the cardinality of common properties,
one should use the query which is shown in Listing 2, where it is required to compute
the closure of owl:equivalentProperty relationships on query time. By using Virtuoso,
one should follow some steps for enabling the computation of closure for schema elements on
query time (http://vos.openlinksw.com/owiki/wiki/VOS/VirtSPARQLReasoningTutorial#Step4.:
SettingUpInferenceRules). By following the aforementioned steps, for the query of Listing 2, we have
defined an inference rule with name “SchemaEquivalence”.
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for not computing many times the intersection of a specific combination of datasets. For instance, for
pairs of datasets, if we put Di! = Dj, the query will compute the intersection of all the pairs of datasets
twice, i.e., it will compute the intersection for all the possible permutations. For instance, for two
datasets D1 and D2, it will compute the measurements twice (i.e., in the aforementioned example,
there are two possible permutations, D1, D2 and D2, D1). Finally, a group by clause should be used,
where each such group corresponds to a subset of datasets.

Common Real World Properties. For computing the cardinality of common properties,
one should use the query which is shown in Listing 2, where it is required to compute
the closure of owl:equivalentProperty relationships on query time. By using Virtuoso,
one should follow some steps for enabling the computation of closure for schema elements on
query time (http://vos.openlinksw.com/owiki/wiki/VOS/VirtSPARQLReasoningTutorial#Step4.:
SettingUpInferenceRules). By following the aforementioned steps, for the query of Listing 2, we have
defined an inference rule with name “SchemaEquivalence”.

Listing 2: SPARQL query for computing the number of common properties among several datasets.

DEFINE input : i n f e r e n c e ‘ ‘ SchemaEquivalence ’ ’

s e l e c t ?Di ? Dj . . . ?Dn count ( d i s t i n c t ? property ) as ? commonProperties
where {
{ graph ?Di { ? s ? property ?o } } .
{ graph ? Dj { ? s1 ? property ? o1 } } .
. . .
{ graph ?Dn { ? sn ? property ?on } } .
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group by ?Di ? Dj . . . ?Dn
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Common Real World Classes. For computing the cardinality of common classes, one should
use the query which is introduced in Listing 3, where it is required to compute the closure of
owl:equivalentClass relationships on query time.
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Common Literals. For computing the cardinality of common Literals between combinations
containing exactly k datasets, one should use the query which is shown in Listing 4.

Listing 4: SPARQL query for computing the number of common literals among several datasets.

s e l e c t ?Di ? Dj . . . ?Dn count ( d i s t i n c t ? l ) as ? commonLiterals where {
{ graph ?Di { ? s ?p ? l } . f i l t e r ( i s L i t e r a l ( ? l ) ) } .
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. . .
{ graph ?Dn { ? sn ?pn ? l } } .
f i l t e r ( ? Di>?Dj && . . . && ?Dn−1>?Dn)
}
group by ?Di ? Dj . . . ?Dn

Common Real World Triples. For the computation of the number of common real world triples,
we need to compute the closure for finding the equivalences for both instance and schema relationships
(which is computed on query time). Listing 5 shows the corresponding query for measuring the number
of common triples among several datasets.

Listing 5: SPARQL query for computing the number of common triples among several datasets.

DEFINE input : i n f e r e n c e ‘ ‘ SchemaEquivalence ’ ’
DEFINE input : same−As ‘ ‘ yes ’ ’

s e l e c t ?Di ? Dj . . . ?Dn count ( ∗ ) as ? commonTriples where {
{ graph ?Di { ? s ?p ?o } } .
{ graph ? Dj { ? s ?p ?o } } .
. . .
{ graph ?Dn { ? s ?p ?o } } .
f i l t e r ( ? Di>?Dj && . . . && ?Dn−1>?Dn)
}
group by ?Di ? Dj . . . ?Dn

Comparison of SPARQL approach with the proposed one. The queries above can be exploited for
performing such measurements, however, this approach has many limitations, which follow. At first,
the computation of closure is performed on query time, which can be time consuming. Therefore, for n
queries, the closure will be computed n times. On the contrary, we compute the closure of equivalence
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Comparison of SPARQL approach with the proposed one. The queries above can be exploited for
performing such measurements, however, this approach has many limitations, which follow. At first,
the computation of closure is performed on query time, which can be time consuming. Therefore, for n
queries, the closure will be computed n times. On the contrary, we compute the closure of equivalence
relationships once. Second, one (complex) query is needed for each different size of datasets
combinations, i.e., in total |D| − 1 queries are needed for all the possible combinations of datasets,
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while as the number of datasets grow, such a query can be huge. On the other hand, we compute
the intersection between any set of datasets by using an incremental algorithm, which requires
a single input for computing the intersection of any combination of datasets. Third, several joins
(and comparisons) should be performed for finding the intersection for a specific subset of datasets,
while the computation of closure (which is computed on query time) increases the number of joins.
On the contrary, we compute the closure once, and we exploit the posting lists of indexes (instead
of comparing URIs, triples and literals) for reducing the number of comparisons. Finally, since each
query computes the intersection for a fixed number of combinations of datasets, i.e., pairs, triads, etc.,
it is not an easy task to exploit set theory properties, which hold between two or more subsets of
datasets, B and B′, where B ⊆ B′ (more details are given in Section 6). On the contrary, we take into
consideration set theory properties for making the measurements in an incremental way. In Section 7,
we introduce some indicative experiments containing the execution time for measuring the number of
commonalities among datasets by using SPARQL queries and a “lattice”-based approach.

5. Global Semantics-Aware Indexing for the LOD Cloud Datasets

The process of global indexing comprises of four different steps, which can be seen in the running
example of Figure 1. The first step is the collection of input datasets (which is performed manually
at the time-being), which is a set of datasets’ triples and a set of RDF relationships (e.g., owl:sameAs
relationships). In our running example, the input contains 4 datasets, each one having six triples,
and several instance and schema relationships. The next step includes the computation of closure in
schema and instance level, where catalogs containing for each URI an identifier are produced. In the
third step, we use the initial datasets and the aforementioned catalogs for creating “semantically”
enriched triples (i.e., real world triples). In the fourth step, we create semantically enriched inverted
indexes for different sets of elements (e.g., triples, entities), where we collect all the information of each
different entity, and we store the dataset IDs (i.e., a posting list) where real world entities, properties,
classes, triples and literals occur. In this section, in Section 5.1 we show how to partition the different
sets of elements, in order to construct the indexes in parallel, in Section 5.2 we describe ways to
compute the transitive and symmetric closure of equivalence relationships and we introduce the
produced catalogs. Afterwards, in Section 5.3 we show how to use them for creating semantics-aware
triples, which are finally exploited for creating semantics-aware indexes, i.e., in Section 5.4, we show
how to construct these indexes.
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Figure 1. Running example containing four datasets.
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5.1. Partitioning the Different Sets of Elements

Here, we define how one can split each set of the described elements (e.g., URIs, triples,
equivalence relationships), for running the algorithms in parallel. Let m be the set of available machines.
Since the size of each dataset varies [5], we did not select each machine to read all the URIs, triples and
literals of a specific dataset. On the contrary, each of the partitions described below can contain URIs,
triples or equivalence relationships from one or more datasets. For the computation of closure of
equivalence relationships, let EQ = {EQ1, ..., EQm} be a partition of the equivalence relationships,
i.e., owl:sameAs, owl:equivalentClass and owl:equivalentProperty, while we need also partitions
of URIs, where U = {URi, URj, .., URm} and (URi ∪ URj ∪ ... ∪ URm = U). For the construction
of indexes, we will use a partition of triples TR = {tr1, ..., trm}, where tr1 ∪ ... ∪ trm = triples(D),
and a partition of real world triples RWTR = {rwt1, ..., rwtm}, where the set of real world triples can
be derived as rwt(D) = rwt1 ∪ ...∪ rwtm.

5.2. Equivalence Relationships

Here, we define the equivalence catalogs for each URIs’ category, where all the URIs referring
to the same thing are getting the same unique identifier (or ID). We create one such catalog for each
different URI’s category, i.e., properties, classes and entities.

• Entity Equivalence Catalog (EntEqCat): For each of the entities u ∈ EB we assign a unique ID,
where EID denotes this set of identifiers (i.e., a binary relation ⊆ EID). This catalog will be
exploited for replacing each URI that occur in a triple with an identifier. For constructing this
catalog, we read the URIs of each dataset (marked in bold in Figure 1) and the owl:sameAs
relationships (see the upper right side of Figure 1), and we compute the transitive, symmetric and
reflexive closure of owl:sameAs relationships, for finding the classes of equivalence. Finally, all the
entities belonging to the same class of equivalence will be assigned the same identifier, e.g., see the
EntEqCat in the running example of Figure 1.

• Property Equivalence Catalog (PropEqCat): For each of the properties p ∈ PB, we store a unique ID,
where PID denotes this set of identifiers (i.e., a binary relation⊆ PID). As we shall see, this catalog
is used for replacing the property of each triple with an identifier. For constructing it, one should
read the properties of each dataset (underlined in Figure 1), the owl:equivalentProperty
relationships (see the upper right side of Figure 1), and compute the closure of that relationships
for producing the classes of equivalence for properties. Afterwards, all the properties belonging
to the same class of equivalence are assigned the same identifier, e.g., in Figure 1, we can observe
the PropEqCat of our running example.

• Class Equivalence Catalog (ClEqCat): For any class c ∈ CB, we store a unique ID, where CID
denotes this set of identifiers (i.e., a binary relation ⊆ CID). We will exploit this catalog for
replacing each class occurring in triples with an identifier. For constructing it, one should read
the classes (marked in italics in Figure 1), the owl:equivalentClass relationships, and compute
their closure for finding the classes of equivalence. Finally, all the classes that refer to the same
thing will take the same identifier. The resulted ClEqCat for our running example can be seen in
Figure 1.

Parallelization Overview. Each machine mi is assigned the responsibility to read a subset of
equivalence pairs EQi, and a subset of URIs URi, and to compute a partial function eqi: U → ID.
In the reducer, any equivalence catalog (EqCat) can be derived as EqCat = eq1 ∪ ...∪ eqm. Since the sets
of entities, properties and classes are pairwise disjoint, a single algorithm can be used for computing
the closure of all the equivalence relationships.

Construction method. We exploit a variation of the parallel connected components algorithm,
called Hash-to-Min [40], for computing the equivalences between entities, classes and properties,
which was proposed in [5]. The first step is to find the direct equivalences (or neighbors) of
each URI. For this reason, in each case we first find nbrs(u, r) = {u′|u, r, u′}, r ∈ Eqv} ∪ {u}.
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Consequently, we need a single job that reads each URI and all the relationships in the mapper
and produces the set nbrs(u, r) for each u. It is worth mentioning that when |nbrs(u, r)| = 1, u is
equivalent only to itself, e.g., in the running example of Figure 1, d4:Greece does not belong to
an owl:sameAs relationship. Therefore, we can immediately assign to this URI a unique identifier.
For all the URIs having at least one neighbor (apart from themselves), we use the variation of
Hash-to-Min algorithm, which takes as input all the URIs having |nbrs(u, r)| > 1 and creates an
undirected graph G = (V, E), where V is a set of vertices, i.e., V = {u|〈s, r, o〉 ∈ triples(D)| u = s
or u = o, r ∈ Eqv}, and E a set of edges, which connects nodes (or URIs) that are neighbors
(they are connected through an equivalence relationship), i.e., E = {s, o|〈s, r, o〉 ∈ triples(D),
r ∈ Eqv}. The algorithm computes in parallel (in logarithmic rounds of MapReduce jobs) all the
connected components (or clusters) of graph G, and the result of this algorithm is a set of such
clusters, where each cluster Cu contains all the URIs of the same entity. For instance, in the
running example of Figure 1, the cluster of “Aristotle” entity is the following one: CAristotle =

{ex:Aristotle,d2:Aristotle,d3:Aristotle}, while the cluster for “birthPlace” property contains four URIs,
i.e., CbirthPlace = {d1:birthPlace,d2:birthPlace,d3:birthPlace,d4:wasBornIn}. For all the URIs of the
same class of equivalence, it assigns to each of them the same unique identifier, e.g., the identifier of
all URIs referring to Aristotle is E1, while P1 is the identifier of all the URIs referring to the property
“birthPlace”. In [5], one can find all the details about Hash-to-Min algorithm and the variation of the
algorithm that we have proposed.

5.3. Creation of Semantics-Aware RDF Triples

The objective of this step is to create semantics-aware triples, which will be exploited for
constructing semantically enriched indexes. This step includes the replacement of each URI with
its corresponding identifier by exploiting the equivalence catalogs, i.e., EntEqCat, PropEqCat and
ClEqCat, and the conversion of each literal (each literal is converted to lowercase, while we remove its
language tag and its datatype). The resulted real world triples of each dataset, for our running example,
is shown in the left side of Figure 1. There exists three different types of triples according to the type of
their object, i.e., (a) triples with a literal as object; (b) triples with a class as object; and (c) triples with
an entity as object. As we will see, for the third type of objects, we need an additional MapReduce job.

Parallelization Overview. Each machine mi reads a subset of triples tri, and a subset of EntEqCat,
and in the reducer each triple is replaced with its corresponding semantically-enriched triple.
Since some triples need two steps to be transformed (i.e., it depends on object type), two MapReduce
jobs are needed. After the execution of the aforementioned jobs, each machine will have a specific part
of real world triples (rwti), i.e., the real world triples can be derived as rwt(D) = rwt1 ∪ ...∪ rwtm.

Construction Method. Algorithm 1 shows the steps for producing the set of real world triples.
First, we read in parallel a set of triples and the EntEqCat, since their size is huge. On the contrary,
since the number of properties and classes is low, we keep in memory the other catalogs, i.e., PropEqCat
and ClEqCat, which contain the identifiers of each property and class, respectively. We check whether
the input is a triple or an entry of the EntEqCat (see line 3), and then we check the object type. In the
first case (see lines 4–5), i.e., the object is a literal, we replace the property with its identifier (by using
PropEqCat), we convert each literal to lower case, and we remove its language type and its datatype
(when such information is included). Afterwards, we put as a key the subject of the triple and as value
the rest part of the triple along with the dataset ID (for preserving the provenance). For example, for the
triple 〈ex:Aristotle,d1:birthYear,384 BC∧∧xsd:Year〉 of dataset D1 (see Figure 1), we replace d1:birthYear
with P1, we convert the literal into lower case, we remove its datatype (e.g., “384 BC”∧∧xsd:Year→
“384 bc”), and finally we emit a tuple (ex:Aristotle, {P2,384 bc,D1}). In the second case (see lines 6–7),
i.e., the object is an RDF class, we use PropEqCat and ClEqCat for replacing the property and the object
with their corresponding identifiers, while in the third case (see lines 8–9), we replace only the property,
and we emit a key-value pair, having as a key the subject of the triple, and as a value the rest part of the
triple. For instance, for the triple 〈d2:Aristotle,rdf:type,d2:Gre_Philosopher〉we will emit the following
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key-value pair: (d2:Aristotle, {P5,C2,D2}), while for the triple 〈ex:Aristotle,d1:influences,ex:Marx〉,
the following key-value pair will be sent to the reducers: (ex:Aristotle, {P3,ex:Marx,D1}). On the
contrary, when the input is an entry of EntEqCat, we put as a key the URI, and as a value its
corresponding class of equivalence, e.g., we create a tuple (ex:Aristotle, E1).

Algorithm 1: Creation of Real World Triples.
Input: All triples and equivalence catalogs, EntEqCat, PropEqCat, and ClEqCat
Output: Real World Triples

1 function Mapper (input = tri ∪ EntEqCat )
2 forall inp ∈ input do
3 if inp = 〈s, p, o〉, Di ∈ tri then
4 if o ∈ L then
5 emit (s, {[p]pr, oconv, Di}) ; // PropEqCat used and literal converted

6 else if o ∈ C then
7 emit (s, {[p]pr, [o]cl , Di}) ; // PropEqCat and ClEqCat used

8 else if o ∈ E then
9 emit (s, {[p]pr, o, Di}) ; // PropEqCat used

10 else if inp = (u, [u]e) ∈ EntEqCat then
11 emit (u, [u]e)
12

13 function SubjectReducer (URI key, values = list({[p]pr, o, Di}), [key]e)
14 forall v ∈ values do
15 if (o /∈ E) then
16 t′ ← 〈[key]e, [p]pr, o〉
17 store (t′, Di) ; // All conversions finished. t′ ∈ rwt(Di)

18 else
19 emit (o, {[key]e, [p]pr, Di}) ; // Object Replacement Needed

20 emit(key, [key]e)
21

22 function ObjectReducer (URI key, values = list({s′, p′, Di}), [key]e)
23 forall v ∈ values do
24 t′ ← 〈s′, p′, [key]e〉
25 store (t′, Di) ; // All conversions finished. t′ ∈ rwt(Di)

In a reduce function (see SubjectReducer in Algorithm 1), we just replace each URI occurring
as a subject with its identifier. For instance, the tuple (ex:Aristotle, E1) and all the tuples
having as subject ex:Aristotle, e.g., (ex:Aristotle, {P2,384 bc,D1}), will be sent to the same reducer,
therefore we can replace ex:Aristotle with E1, e.g., (E1,P2,384 bc,D1). After replacing the URIs of the
subjects with their corresponding identifier, for the triples containing literals or classes as objects,
we can store their corresponding real world triple (and its provenance), i.e., 〈E1, P1, 384 bc〉, D1,
since we have finished with all the conversions (see lines 15–17). On the contrary, for the triples
containing objects that belong to entities, we should also replace these URIs with their class of
equivalence (see lines 18–19). For instance, after the execution of the first MapReduce job, the triple
〈ex:Aristotle,d1:influences,ex:Marx〉 has been transformed into 〈E1, P3,ex:Marx〉; however, we should
also replace the URI ex:Marx with its corresponding identifier. In particular, we put as a key the object
and as a value the rest part of the triple and the dataset ID, e.g., (ex:Marx, {E1,P3, D1}), while we create
again a tuple containing each URI and its corresponding identifier, e.g., (ex:Marx, E7) (see lines 19–20
of Algorithm 1). By using an other reduce function (see ObjectReducer in Algorithm 1), we replace the
URIs occurring as objects with their identifier, and we store the real world triple (and its provenance),
i.e., 〈E1, P3, E7〉, D1.

In general, two MapReduce jobs are needed, where in the first job we transfer all the triples and all
the entries of EntEqCat from the mappers to the reducers, i.e., communication cost is O(|triples(B)|+
|EntEqCat|), while in the second job, we transfer only the triples containing an entity as an object
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(and the EntEqCat), i.e., communication cost is O(|triples′(B)| + |EntEqCat|), where triples′(B) =

{〈s, p, o〉 | 〈s, p, o〉 ∈ triples(B), o ∈ E} (all triples having an entity as an object).

5.4. Constructing Semantics-Aware Indexes

Here, we define the five semantically enriched indexes that we construct. For each index we
store the IDs of datasets, where a specific element (i.e., an entity, a class, a property, a literal or a
triple) occurs. In Table 2, we define the set of datasets where a specific element (or an equivalent
one) occurs, since we will use these notations later in this section. For instance, for the URI
d1:Aristotle, dsetsEnt∼(d1:Aristotle, B) returns all the datasets where d1:Aristotle (or any equivalent
URI of d1:Aristotle) occurs. For creating all these indexes, we use the desired information from the
semantically enriched triples (i.e., real world triples). At first, we introduce the Entity-Triples Index,
and afterwards we show how to construct indexes for specific sets, i.e., literals, entities, classes and
properties. In general, with Le f t(r) we will denote the set of elements that occur in the left side of
a binary relation. Finally, the sets of EID, PID and CID denote the identifiers of real world entities,
properties and classes, respectively.

Table 2. Notations for finding the provenance of different elements.

Element Datasets Where an Element Occurs

Entity u dsetsEnt∼(u, B) = {Di ∈ B | EqEnt(u, B) ∩ EDi 6= ∅}
Property p dsetsProp∼(p, B) = {Di ∈ B | EqProp(p, B) ∩ PDi 6= ∅}

Class c dsetsClass∼(c, B) = {Di ∈ B | EqClass(c, B) ∩ CDi 6= ∅}
Literal l dsetsLit(lconv, B) = {Di ∈ B | lconv ∈ L′Di

}
Triple t dsetsTr∼(t, B) = {Di ∈ B | µ(t) ∈ rwt(Di)}

5.4.1. Entity-Triples Index

For each real world entity we create a multi-level index. This index stores in the first level an entity
identifier (i.e., belonging in EID) and a pointer to a list of its (real world) properties (a set of PIDs),
whereas in the second level each property points to a list of values. Finally, in the third level, it stores
for a specific entity-property pair, all its values and the dataset IDs (i.e., a posting list) where each
different triple (entity-property-value) occurs. In the left side of Figure 1, we can see the Entity-Triples
index of our running example. We selected to store together all the values of a property for a given
entity, for enabling the comparison of the values of each property, e.g., in Figure 1, we can see that two
datasets support that the birth date of “Socrates” is “470 bc” and one that is “471 bc”. Such a design
can be useful for data fusion algorithms, since most of them compare the conflicting values of a given
subject and predicate (e.g., the birth date of a person) for deciding which value is the correct one [1].

It is worth noting that for finding fast all the available information for a specific entity, this index
stores together all the triples for a specific entity, either if that entity occurs in a triple as a subject, or as
an object, which means that some triples will be stored twice in the index, i.e., those having entities
as objects. Moreover, we also store the position of an entity in the triple, Specifically, when an entity
occurs in a triple as an object (see the entry for “Stagira” in Entity-Triples index of Figure 1), we add
an ∗ in the property ID of such a real world triple. Consequently, we define this set of property IDs
as PID∗. It is essential to store such triples twice, for being able to answer queries like “Give me the
number of common triples for Aristotle” (i.e., for taking also into consideration triples where the entity
“Aristotle” occurs as an object). On the contrary, if our target is only to find all the common triples
among any set of datasets, there is no need to store such triples twice.

Therefore, it is a function eti : EID → list((PID ∪ PID∗) → list((EID ∪ CID ∪ L) → P(D))),
i.e., for a specific t = 〈s, p, o〉 ∈ triples(B), eti([s].[p].[o]) = dsetsTr∼(t, B). We use eti(e) for denoting
the entry of a specific entity e, e.g., in Figure 1, eti(E1) is the entry for “Aristotle”, we use eti(e.p) for
denoting the sub-entry containing all the values for a specific entity-property pair, e.g., eti(E1.P3),
is the sub-entry for the combination “Aristotle”, “influences”, while eti(e.p.o) denotes the sub-entry
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that contain all the dataset IDs for a specific combination of an entity-property-value, e.g., eti(E1.P3.E3)
is the sub-entry for the combination“Aristotle”, “influences”, “Kant”.

Parallelization Overview. Each machine mi reads a subset of real world triples rwti and each reducer
collects all the real world triples for a subset of entities E′. After the execution of the aforementioned
jobs, each machine will have a specific part of this index (etii), i.e., the entity-triples index can be
derived as eti = eti1 ∪ ...∪ etim.

Construction Method. Algorithm 2 describes the steps for producing this index. In the map phase,
we read a set of real world triples and we emit a key-value pair consisting of the entity occurring as
subject and the rest part of the triple (with its provenance) as value (see lines 3–4). For example, for the
real world triple 〈E1,P2,384 bc〉, D1 (which corresponds to “Aristotle”, “birth year”, “384 bc”), it will
emit a key-value pair having as key E1 and as value {P2,384 bc, D1}. On the contrary, for the triples
having entities as objects (and not literals or classes), we create two key-value pairs, one having as
key the subject and one having as key the object (see lines 3–6). Moreover, for the second key-value
pair (lines 5–6), we add also a “*” character in the right side of the property ID, for denoting that the
entity occurs in the triple as an object. For instance, for the real world triple 〈E1,P3,E7〉, D1 (which
corresponds to “Aristotle”, “influences”, “Marx”) two key-value pairs will be created, i.e., one having
as key the subject, which refers to “Aristotle” (E1,{P3,E7,D1}), and one having as key the object,
that refers to “Marx” (E7,{P3*,E1,D1}).

Algorithm 2: Construction of Entity-Triples Index.
Input: Real World Triples
Output: Entity-Triples Index

1 function Entity-Triples Index-Mapper (input = rwti)
2 forall 〈s, p, o〉, Di ∈ rwti do
3 if s ∈ EID then
4 emit (s, {p, o, Di})
5 if o ∈ EID then
6 emit (o, {p∗, s, Di})
7

8 function Entity-Triples Index-Reducer (Entity e, values = list({p, k, Di})
9 eti(e)→ ∅

10 forall v = p, k, Di ∈ values do
11 if (p /∈ Le f t(eti(e))) then
12 eti(e)→ eti(e) ∪ {p, {{k, {i}}}}
13 else
14 if (k ∈ Le f t(eti(e.p))) then
15 eti(e.p.k)→ eti(e.p.k) ∪ {i}
16 else
17 eti(e.p)→ eti(e.p) ∪ {k, {i}}
18 store eti(e)

In the reduce phase (of Algorithm 2), we collect all the real world triples for a specific entity
e, i.e., we construct the whole entry of e in the Entity-Triples index. We iterate over all the values,
where each value contains a property p, the corresponding value k for that property and a dataset
ID where the aforementioned information occurs. We first check (see line 11) whether p exists in the
sub-entries of entity e. When it is false (see line 12), we create a sub-entry, i.e., eti(e.p.k), and we add
the dataset ID where this combination, i.e., e.p.k, occurs. For instance, suppose that we first read the
{P3, E3, D1} for entity E1. In such a case, we just create an entry where eti(E1.P3.E3) = {1}. When the
property p exists in the sub-entry of e (see lines 13–17), we check whether the value k also exists in
the sub-entry of eti(e.p). In such a case (see lines 14–15), we just update the posting list of eti(e.p.k).
Suppose that for the entity E1, we read the following value: {P3, E3, D2}. Since the entry E1.P3.E3
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already exists, we just update its posting list, i.e., eti(E1.P3.E3) = {1, 2}. Otherwise, we create a new
sub-entry for eti(e.p), where we add the value k and its provenance (see lines 16–17). For instance, if we
read the value {P3, E7, D2}, we have already created an entry for E1.P3; however it does not contain
E7. For this reason, we create a new entry for storing also this information, i.e., eti(E1.P3)={{E3,{1,2}},
{E7,{2}}}. Finally, we can store the entry of a specific entity on disk (see line 18). It is worth noting that
for finding the common triples among different datasets, there is no need to store triples that occur
only in one dataset. On the contrary, for reusing the index for other real world tasks, e.g., for finding
all the triples for an entity, for checking conflicting values, etc., all the triples should be stored.

Generally, one MapReduce job is needed, while all the real world triples are passed from the
mappers to the reducers at least once, whereas the set of triples rwt′(B) = {〈s, p, o〉|〈s, p, o〉 ∈ rwt(B)
and o ∈ EID}, which contains an entity in the object position, is transferred twice. Consequently,
the communication cost is O(|rwt(B)|+ |rwt′(B)|).

5.4.2. Semantically Enriched Indexes for Specific Sets of Elements

Here, we introduce the indexes for entities, properties, classes and literals.

• Entity Index: it is a function ei : EID → P(D), where for a [u] ∈ EID, ei([u]) = dsetsEnt∼(u, D),
i.e., for each different real world entity, this index stores all the datasets where it occurs (see the
Entity Index in Figure 1).

• Property Index: it is a function pi : PID → P(D), where for a [p] ∈ PID, pi([p]) = dsetsProp∼(p, D),
i.e., it stores all the datasets where each different real world property occurs (see the Property Index
in Figure 1).

• Class Index: it is a function ci : CID → P(D), where for a [c] ∈ CID, ci([c]) = dsetsClass∼(c, D),
i.e., it stores the datasets where a real world class occurs (see the Class Index in Figure 1).

• Literals Index: it is a function li : L′ → P(D), where for a lconv ∈ L′, li(lconv) = dsetsLit(lconv, D),
i.e., it stores all the datasets where a converted literal occurs (see the Literals Index in Figure 1).

Parallelization Overview. Each machine mi reads a subset of real world triples rwti and each reducer
creates the index of a subset of elements. In the end, each machine will have a specific part of an
inverted index (indi), i.e., any inverted index ind can be derived as ind = ind1 ∪ ...∪ indm.

Construction Method. For constructing the index of each different set of elements
(entities, properties, etc.), one can use the algorithm described in Algorithm 3. In particular, we read
all the real world triples and we select the part(s) of the triple that we are interested in (see lines 3–16),
e.g., for constructing the class index, we need only the objects referring to a real world class. In any
case, we emit a key-value pair, having as key an element (e.g., a literal, a real world entity) and as
value the dataset where the triple, containing this element, occurs. In the reducer, for any (inverted)
index, we just create a posting list with dataset IDs for a specific element. In particular, we read a set of
dataset IDs, and we just update the posting list of each element (see line 21). Finally, we store in the
corresponding index the element and its posting list (see line 22). For finding the common elements
(e.g., entities, literals, etc.), we can just store only elements occurring in at least two datasets. On the
other hand, by storing all the elements, one can use each index for different tasks, e.g., for building
a global URI lookup service. For each index, one MapReduce job is needed; however, it is worth
mentioning that all the five indexes (or any subset of them) can be constructed simultaneously by using
one MapReduce job, since the input in any case is the real world triples. Regarding the communication
cost, it depends on the inverted index that we construct each time.
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Algorithm 3: Creation of a Semantically-Enriched Inverted Index for any set of elements.
Input: Real World Triples
Output: An inverted index for a set of specific elements

1 function Inverted Index-Mapper (input = rwti)
2 forall 〈s, p, o〉, Di ∈ rwti do
3 /*For constructing the Entity Index, include lines 4-7 */
4 if s ∈ EID then
5 emit (s, Di)

6 if o ∈ EID then
7 emit (o, Di)

8 /*For constructing the Property Index, include lines 9-10*/
9 if p ∈ PID then

10 emit (p, Di)

11 /*For constructing the Class Index, include lines 12-13*/
12 if o ∈ CID then
13 emit (o, Di)

14 /*For constructing the Literals Index, include lines 15-16*/
15 if o ∈ L′ then
16 emit (o, Di)

17

18 function Inverted Index-Reducer (Element t, values = {Di, Dj, ..., Dn})
19 invIndex(t)← ∅
20 forall Di ∈ values do
21 invIndex(t)← invIndex(t) ∪ {i}
22 store invIndex(t)

6. Lattice-Based Connectivity Measurements for any Measurement Type

The “lattice”-based measurements were first introduced in [4,5]; however, we covered only
measurements about the entities and the literals. A lattice (examples are shown in Figure 1) is a
partially ordered set, (P(D),⊆) and is represented as a Directed Acyclic Graph G = (V, E). It contains
2|D| nodes, where each node corresponds to a subset of datasets, and |D|+1 levels, where each level
k (0 ≤ k ≤ |D|) consists of subsets having exactly k datasets, e.g., level 3 contains only triads of
dataset. Each edge connects two subsets of datasets B and B′, where B ⊂ B′ and B′ = B ∪ Dk, Dk /∈ B,
i.e., B′ contains the same datasets as B plus a new dataset Dk. Below, we describe the different steps that
should be followed for performing such measurements. As we can see in Figure 2, the first step is to
select any measurement type S (e.g., real world triples), that one is interested in. Afterwards, we should
scan the desired part of the corresponding index (or the whole index) and compute how many times a
subset B (containing at least two datasets) occurs in all the posting lists (containing dataset IDs), and we
define it as directCount(B, S), i.e., it denotes its frequency. As we will see in Section 7, the number of
entries of such a list (for any measurement type S) is very small comparing to the number of the entries
of each index. In Table 3, we can observe how to find directCount(B, S) for any measurement type S,
by scanning one or more indexes, which are essential for measuring the connectivity of the desired
measurement types (which were introduced in Section 3).
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Table 3. DirectCounts of different measurement types.

Formula Which directCount(B, S) to Use.

|cmn(B, RWO)| directCount(B, RWO) = | { [u] ∈ Le f t(ei) | ei([u]) = B, |B| ≥ 2} |
|cmn(B, RWC)| directCount(B, RWC) = | { [u] ∈ Le f t(ci) | ci([u]) = B, |B| ≥ 2} |
|cmn(B, RWP)| directCount(B, RWP) = | { [u] ∈ Le f t(pi) | pi([u]) = B, |B| ≥ 2} |
|cmn(B, LIT)| directCount(B, LIT)) = | { l ∈ Le f t(li) | li(l) = B, |B| ≥ 2} |
|cmn(B, RWT)| directCount(B, RWT) = | { s.p.o ∈ Le f t(eti) | eti(s.p.o) = B, p ∈ PID, |B| ≥ 2} |
|cmnTriples(B, u)| directCount(B, u)) = | { p.o ∈ Le f t(eti([u])) | eti([u].p.o) = B, p ∈ (PID ∪ PID∗), |B| ≥ 2} |

Figure 2. The steps for performing “lattice”-based connectivity measurements.

Figure 1 shows the directCount list for different queries (for reasons of simplicity, we put in the
directCount list only the IDs of the datasets, e.g., 1,2, instead of D1, D2). For finding the directCount list
for the first query, one should scan the Entity Index, while for the second query, one should scan the
Entity-Triples index, by ignoring the entries containing a “*” character after a specific real world property
(these entries are shown in blue), since these triples occur twice in that index (the whole process for
the second query is shown in Figure 2). On the contrary, for the third query, one should scan only the
entry of Aristotle in the Entity-Triples index, by taking also into account triples where this entity occurs
as object (i.e., containing a “*” character after the property). Finally, for the last query, one should
take into account entries that contain only D4 dataset. Now, let Up(B, S) = {B′ ∈ P(D)|B ⊆ B′,
directCount(B′, S) > 0}, i.e., all the supersets of a specific subset B, that occur in directCount list for a
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specific measurement type S. The key point is that the sum of the directCount of Up(B, S) gives the
intersection value of each subset B for a measurement type S.

|cmn(B, S)| = ∑
B′∈Up(B,S)

directCount(B′, S) (8)

The aforementioned equation relies on the following proposition:

Proposition 1. Let F and F′ be two families of sets. If F ⊆ F′ then ∩S
S∈F′
⊆ ∩S

S∈F
(The proof can be found in [41]).

Commonalities among any set of Datasets. In [4,5], we proposed two different lattice traversals,
a top-down Breadth First Search (BFS) and a bottom-up Depth First Search (DFS) traversal. In [5],
we showed that the bottom-up Depth-First Search traversal is faster for large number of datasets,
it needs less memory comparing to the BFS approach while it can be easily parallelized. As a
consequence, we introduced an algorithm for splitting the lattice in smaller parts for performing
such measurements in parallel [5]. Here, we describe how one can exploit the bottom-up Depth-First
Search Traversal for computing the measurements for any measurement type S.

Preprocessing steps. The algorithm takes as input the corresponding directCount list for a measurement
type S. In particular, we scan the corresponding index for the desired measurement type S,
for producing its directCount list. For instance, in Figure 2, for finding the directCount list for real
world triples, we scan a part of Entity-Triples index, i.e., we do not scan triples having a “*” character
after the property ID, since these triples occur twice in that index (see Figure 1). Moreover, by traversing
this list, we find the Up(B, S) of each subset B of level two, i.e., the level that contains pairs of datasets.
In Figure 2, one can see the Up(B, RWO) for all the pairs of datasets for the corresponding directCount
list (which was created by scanning the Entity-Triples index of that example).

Lattice Traversal and Computation of Commonalities. The algorithm starts from a pair of datasets,
e.g., B = 〈D1, D2〉, and it computes |cmn(B, S)| by adding the directCount score of Up(B, S). In the
example of Figure 2, the Up(B,RWO) of D1, D2 contains the subsets 1, 2 and 1, 2, 3, 4 (which correspond
to 〈D1, D2〉 and 〈D1, D2, D3, D4〉). If we take the sum of their score in the directCount list, (i.e., the score
of 1, 2 is 3 and the score of 1, 2, 3, 4 is 1), we will find that these two datasets have four triples in
common. Afterwards, it continues upwards, by exploring the supersets of a specific node that have
not been explored yet. The exact order that we use for visiting the nodes can be observed in Figure 2.
Specifically, it first visits a triad of datasets B′, where B′ = B ∪ Dk, Dk /∈ B, i.e., it contains all the
datasets of B, plus a new dataset Dk. Each time that it visits a superset, it should check which of the
Up(B, S) of B can be transferred to B′, since Up(B, S) ⊇ Up(B′, S). For example, 〈D1, D2〉 ⊇ 〈D1, D2〉,
however, 〈D1, D2〉 + 〈D1, D2, D3〉, therefore, we cannot “transfer” 1, 2 to 〈D1, D2, D3〉 in the example
of Figure 2. Afterwards, it computes |cmn(B′, S)| and continues with a quad of datasets by following
the same process (i.e., checking Up(B′, S)). It continues upwards, until there is not another superset
to visit (e.g., 〈D1, D2, D3, D4〉 in the example of Figure 2). In such a case, it returns to the previous
node and checks if there are other supersets to explore, e.g., in Figure 2, when it returns to 〈D1, D2〉,
it should also visit the node 〈D1, D2, D4〉. It is worth mentioning, that for not visiting a superset B′

many times, we follow a numerical ascending order, i.e., we visit a superset B′ of a subset B containing
a new dataset Dk only if ∀ Di ∈ B, k > i. For example, when we visit B = 〈D1, D2〉 we continue with
B′ = 〈D1, D2, D3〉, since the ID of the new dataset, i.e., D3, is bigger than the IDs of D1 and D2. On the
contrary, when we visit B = D1, D3, we do not continue with B′ = 〈D1, D2, D3〉, since the ID of the
new dataset, i.e., D2, is smaller than the ID of D3.

Moreover, by using this algorithm, we can exploit Proposition 1 for avoiding creating nodes for
subsets which do not have commonalities (nodes with zero score). In particular, from Proposition 1 we
know that for two subsets of datasets B ⊂ B′, |cmn(B′, S)| ≤ |cmn(B, S)|, thereby, if the cardinality of
intersection of B is zero, it implies that the cardinality of intersection of all the supersets of B will be also
zero. For this reason, there is no need to visit the supersets of a subset B in such cases. Moreover, it is
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worth mentioning that one can exploit Proposition 1, for computing also nodes for a given threshold
(e.g., all the subsets having at least 10 common elements). The time complexity of this algorithm is
O(|V|), where |V| is the number of vertices (for the whole lattice, V = 2|D|), since it passes once from
each node and it creates one edge per node (|V|+ |V|). The space complexity is O(d), where d is the
maximum depth of the lattice (in our case d is the maximum level having at least one subset of datasets
B where |cmn(B, S)| > 0). In [5] one can find more details about this algorithm, i.e., how to split the
lattice in smaller parts for performing the measurements in parallel. Below, we show how to compute
the measurements for a specific part of a lattice, i.e., for a specific subset B and for a dataset Di.

Commonalities of a specific subset B. For a specific subset B and a measurement type S, we scan
the corresponding directCount list once, i.e., all Bi having directCount(Bi, S) > 0, and we sum all the
directCount(Bi,S) if Bi ∈ Up(B, S).

Commonalities of a specific Dataset Di. For a specific dataset Di and a measurement type
S, we take into account the directCount of a subset Bi ∈ D in the corresponding directCount list,
when directCount(Bi, S) > 0, Di ∈ Bi (see the fourth query in Figure 1), and we use the aforementioned
algorithm, where we visit only the nodes containing Di. For example, in the fourth query of Figure 1,
there is no need to visit the nodes in red color.

7. Experimental Evaluation

Here, we report the results concerning measurements that quantify the speedup obtained by
the introduced MapReduce techniques and interesting connectivity measurements for over 2 billion
triples and 400 LOD Cloud datasets. We used a cluster in okeanos cloud computing service [42],
containing 96 cores, 96 GB main memory and 720 GB disk space. We created 96 different virtual
machines, each one having 1 core and 1 GB memory. In Table 4, we can see some basic metadata
for 400 real datasets which are used in our experiments (belonging in 9 domains), i.e., it shows
the number of datasets, triples, URIs, literals, unique subjects and unique objects for each domain
(in descending order with respect to their size in triples), which were manually derived through the
datahub.io online portal data (i.e., for this set of 400 datasets, an RDF dump was provided). In particular,
we have indexed over 2 billion triples, 412 million URIs and 429 million literals, while we used
45 million equivalence relationships. Moreover, the number of unique subjects (by taking into account
all the triples) is 308 million, while the corresponding number for the unique objects is 691 million.
Most datasets belong to the social network domain; however, most triples occur in cross-domain
datasets (i.e., 48% of triples), while a large percentage of triples belong to datasets from publication
domain (i.e., 33% of triples). Concerning entities and literals, again most of them occur in datasets from
cross-domain and publications (i.e., 79.2% of entities and 86.5% of literals). Finally, the size of all the
triples on disk is 251 GB, while the size of equivalence relationships is 3.45 GB. In LODsyndesis website
(http://www.ics.forth.gr/isl/LODsyndesis) one can find the data which were used for performing the
experiments, the code and guidelines for reproducing the results, and metadata for each of the 400
datasets that were used in the experiments.

Table 4. Metadata of datasets which are used in the experiments.

Domain |D| |Triples| |Entities| |Literals| |Unique Sub.| |Unique Obj.|
Cross-Domain (CD) 24 971,725,722 199,359,729 216,057,389 125,753,736 308,124,541
Publications (PUB) 94 666,580,552 127,624,700 155,052,015 120,234,530 271,847,700

Geographical (GEO) 15 134,972,105 40,185,923 25,572,791 20,087,371 47,182,434
Media (MED) 8 74,382,633 16,480,681 9,447,048 14,635,734 20,268,515

Life Sciences (LF) 18 74,304,529 10,050,139 10,844,398 9,464,532 18,059,307
Government (GOV) 45 59,659,817 6,657,014 7,467,560 10,978,458 14,848,668

Linguistics (LIN) 85 20,211,506 3,825,012 2,808,717 2,946,076 6,381,618
User Content (UC) 14 16,617,837 7,829,599 901,847 3,904,463 8,708,650

Social Networks (SN) 97 3,317,666 762,323 853,416 506,525 1,512,842
All 400 2,021,772,367 412,775,120 429,005,181 308,419,818 691,140,591

http://www.ics.forth.gr/isl/LODsyndesis


Information 2018, 9, 134 23 of 33

7.1. Comparative Results

Here, we report measurements that quantify the speedup obtained by the proposed methods
and techniques.

Construction of Catalogs and Indexes. First, we report the execution time for computing the
closure and for constructing the real world (RW) triples and the semantics-aware indexes. In Table 5,
we can see the size of each index and the execution time for constructing the equivalence catalogs,
the real world triples and the indexes by using 96 machines. The most time-consuming job is the
creation of real world triples, where we replace all the URIs with an identifier, and we transform the
literals. In particular, 33.5 min are needed for this job by using 96 machines. For constructing the
equivalence catalogs, the real world triples and the Entity-Triples Index, one hour is needed by using
96 machines, while we need additionally 21 min for constructing the other indexes (for entities, literals,
classes and properties), i.e., the execution time for performing all the jobs (in total 10 MapReduce jobs)
is 81.55 min. For storing the real world triples and the equivalence catalogs, 106.4 GB are needed.
However, the size of PropEqCat and ClEqCat is only 13.6 MB and 40.9 MB, correspondingly. The size
of all the indexes on disk are 92.3 GB, where the size of Entity-Triples index, which contains all the
triples (occurring either as a subject or as an object) for each unique entity on disk is 70.3 GB. It is
worth mentioning that approximately 672 million triples contain an entity as object, therefore these
triples can be found twice in the Entity-Triples index. Moreover, we managed to achieve scalability
as it can be seen in Figure 3. Specifically, we created the catalogs and indexes by using 12, 24, 48 and
96 machines. As we can observe, each time that we double the number of machines, the execution
time is almost reduced in half in many cases, especially in the construction of real world triples.

Table 5. Construction time and size of catalogs and indexes.

Index/Catalog Execution Time (96 Machines) Size on Disk

Equivalence Catalogs 9.35 min 24 GB
Real World Triples 33.5 min 82.4 GB

Entity-Triples Index 17 min 70.3 GB
URI Indexes 13.2 min 6 GB

Literals Index 8.5 min 16 GB
All 81.55 min 198.7 GB

Figure 3. Creation time of indexes and catalogs for different number of machines.

Plain SPARQL versus a Lattice-Based Approach. Here, we compare the lattice-based approach
with a SPARQL approach by using a single machine, having an i7 core, 8 GB main memory and 1 TB
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disk space. For testing the SPARQL approach, we used a Virtuoso triplestore i.e., Openlink Virtuoso
Version 06.01.3127 (http://virtuoso.openlinksw.com/), and we selected and uploaded a small subset
of 10 datasets, having 58 million triples and 1 million equivalence relationships. Afterwards, we sent
queries for finding the number of common entities, triples and literals of these 10 datasets. In particular,
we report the execution time for computing the commonalities between pairs (45 different pairs) and
triads (120 different pairs) for this set of datasets. As we can see in Table 6, by using a SPARQL
approach, for finding the common real world entities between all the pairs of datasets, we needed
approximately 45 min, (on average 1 min per pair). The computation of closure is the main reason for
this delay, i.e., if we do not take into account the owl:sameAs relationships and their transitive and
symmetric closure, 15 min are needed for computing the common URIs between the pairs of datasets
(however most connections are missing in such a case). Concerning the triples, we need even more
minutes for finding the common triples, i.e., 50 min, since we should compute the closure for both
instance and schema elements. On the contrary, without considering the equivalence relationships,
the execution time is only 1.5 min (however, it finds very few common triples). Regarding the common
literals, the execution time is 7 min (approximately 10 s per pair on average). The difference in the
execution time of measuring common literals, comparing to entities and triples, is rational, since for
the literals there is no need to compute a closure. Concerning triads of sources, we can see that the
execution time increases for each measurement, from 1.84 to 4.82 times.

Table 6. Execution time for SPARQL queries for measuring the connectivity of 10 datasets.

Measurement Time for 45 Pairs Time for 120 Triads

Common Entities 44.9 min 87.55 min
Common URIs (without closure) 15 min 29.1 min

Common Triples 50 min 92 min
Common Triples (without closure) 1.45 min 7 min

Common Literals 6.8 min 15 min

On the contrary, by using even a single machine and the lattice-based algorithm, one can find
all the commonalities between millions of subsets in seconds [4,5]. In Table 7, we introduce the
execution time for reading the directCount list, assigning Up(B, S) to pairs of datasets and computing
(by using the lattice-based algorithm) the number of common entities, triples and literals for pairs,
triads, quads, and quintets i.e., 2 ≤ |B| ≤ 5, of 400 datasets, that share at least one common element
(we ignore subsets that do not share elements). At first, we can see that the directCount list size is
very small comparing to each index size. For measuring the cardinality of intersection of common
entities for 18 million subsets (belonging to pairs, triads and quads and quintets), we needed 51 s, i.e.,
approximately 363,000 subsets per second. Regarding the computation of common real world triples,
the execution time was 3 s for computing the commonalities between 1.7 million subsets, i.e., 592,000
subsets per second, since only a small number of subsets of datasets share common triples. On the
contrary, a lot of subsets of datasets share common literals, and for this reason we measured the
common literals of datasets only for pairs and triads of sources. The execution time for measuring the
common literals for 4.9 million subsets was 328 s, i.e., 15,000 subsets per second. Moreover, the size of
the directCount list affects the execution time. In particular, the size of the directCount list of common
literals is 14 times bigger than the directCount list of common entities, and 67 times bigger than the
corresponding list of triples. As a consequence, in one second we can measure 39 times more subsets
containing common triples, and 24 times more subsets having common entities, in comparison to the
number of subsets containing common literals. More experiments concerning the efficiency of the
aforementioned lattice-based approach can be found in [4,5].

http://virtuoso.openlinksw.com/
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Table 7. Execution time for finding the commonalities for subsets of 400 RDF Datasets by using a
“lattice”-based algorithm.

Connectivity
Measurement

Direct Counts List
Size (% of Index Size)

Number of Subsets
Measured Execution Time

Common RW Entities 21,781 (0.006%) 18,531,752 51 s
Common RW Triples 4700 (0.0002%) 1,776,136 3 s

Common Literals 318,978 (0.09%) 4,979,482 (pairs and triads) 328 s

Generally, the difference comparing to a plain SPARQL approach is obvious, e.g., by using a
SPARQL approach, for the common entities one minute is needed on average for computing the
commonalities of a specific pair of datasets, while the lattice-based approach can compute at the same
time the measurements of over 18 million subsets of datasets.

7.2. Connectivity Measurements for LOD Cloud Datasets.

Here, we show some indicative measurements for 400 LOD Cloud datasets. At first, we show
the impact of transitive and symmetric closure. Second, we introduce some general connectivity
measurements that indicate the power-law distribution for any category of elements, and afterwards
we show subsets of datasets that are highly connected. Finally, we describe some conclusions derived
by the experiments.

Inference Results. In Table 8, we report the results of the transitive and symmetric closure for
owl:sameAs, owl:equivalentProperty and owl:equivalentClass relationships. By computing the
closure, we inferred more than 73 million new owl:sameAs relationships, i.e., the increase percentage
of owl:sameAs triples was 163%. Moreover, for 26 million entities there exists at least two URIs that
refer to them (on average 2.6 URIs for the aforementioned entities). On the contrary, we inferred
only 935 owl:equivalentProperty relationships (i.e., increase percentage was 11.46%) and 1164
owl:equivalentClass triples (i.e., increase percentage was 29%), while there exists 4121 properties
and 2041 classes containing having at least two URIs that describe them (on average 2.05 for such
properties and 2.11 for such classes).

Table 8. Statistics for equivalence relationships.

Category Value

owl:sameAs Triples 44,853,520
owl:sameAs Triples Inferred 73,146,062

RW Entities having at least two URIs 26,124,701
owl:equivalentProperty Triples 8157

owl:equivalentProperty Triples Inferred 935
RW Properties having at least two URIs 4121

owl:equivalentClass Triples 4006
owl:equivalentClass Triples Inferred 1164
RW Classes having at least two URIs 2041

Power-Law Distribution of Elements. In Table 9, we can see that only a small percentage of
each set of elements exists in two or more datasets. In particular, only 0.8% of triples occur in ≥ 2
datasets and 0.24% in ≥ 3 datasets. The corresponding percentages of entities (i.e., 7.73%) and literals
(i.e., 11.88%) occurring in ≥ 2 datasets are far higher comparing to triples. However, again most
entities and literals occur in 1 dataset. Regarding classes and properties, only a small percentage of
them (i.e., less than 1%) occur in ≥ 2 datasets, which means that possibly there is a lack of equivalence
relationships between schema elements. For investigating such a case, we created also a different index
of triples, where we ignore the property of each triple i.e., we find the common subject-object pairs.
For constructing such an index, one can use Algorithm 2; however, one should replace in the mapper
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(in lines 4 and 6) all the property IDs with a fixed value. As we can see in Table 9, if we ignore the
property of each triple, 2.82% of subject-object pairs occur in two or more datasets, whereas, by taking
into account the properties, the corresponding percentage was 0.8%. However, we should mention
that it is possible that two or more common subject-object pairs use different properties for describing
different facts. For instance, suppose that two different datasets contain the following triples in two
datasets Di and Dj, 〈di:Aristotle, di:wasBornIn, di:Stagira〉 and 〈dj:Aristotle, dj:livedIn, dj:Stagira〉.
These two triples describe different things, however, their subject and objects refer to the same entities.

Table 9. Elements per number of datasets.

Category Exactly in 1 Dataset Exactly in 2 Datasets ≥ 3 Datasets

RW Entities 339,818,971 (92.27%) 21,497,165 (5.83%) 6,979,109 (1.9%)
Literals 336,915,057 (88.88%) 29,426,233 (7.77%) 12,701,841 (3.35%)

RW Triples 1,811,576,438 (99.2%) 10,300,047 (0.56%) 4,348,019 (0.24%)
RW Properties 246,147 (99.37%) 569 (0.23%) 997 (0.4%)

RW Classes 542,549 (99.68%) 1096 (0.2%) 605 (0.11%)
RW Subject-Object Pairs 1,622,784,858 (97.18%) 37,962,509 (2.27%) 9,241,676 (0.55%)

Moreover, in Figure 4, we can observe the distribution of different elements (e.g., triples, entities,
etc.), i.e., the number of elements that can be found in a specific number of datasets. We can clearly see
a power-law distribution for any category of elements, i.e., there exists a large number of elements
(e.g., literals, entities) that occur in a small numbers of datasets, while only a small number of elements
can be found in a lot of datasets. It is worth mentioning that there exists over 300,000 entities and over
500,000 of literals that occur in 10 or more datasets; however, less than 1600 real world triples can be
found in more than 10 datasets.

Figure 4. Number of datasets where different sets of elements occur.

Connectivity among subsets of datasets. In Table 10, we show the connectivity among pairs
and triads of datasets for different elements, while we also mention the number of datasets that are
disconnected, i.e., for a specific measurement type (e.g., number of common literals), these datasets
do not have commonalities with other ones. Generally, a big percentage of pairs of datasets share
literals, i.e., 78%. It is rational, since each literal can be used for describing several things. For example,
the literal “1980” can be the birth year of several people, the year when a movie released, and so
forth. Thereby, a lot of datasets can contain this literal, for describing different facts. On the contrary,
for the real world entities and triples, only 11.3% of datasets pairs have common entities and 5.59% of
pairs of datasets contain same triples. It means that only half of the dataset pairs containing common
entities, share also common triples. On the other hand, if we compute the number of common triples
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by ignoring the property of each triple (i.e., common subject-object pairs), 10.45% of datasets pairs
share common subject-object pairs. It means that almost every pair of datasets that contain at least one
common entity, share also common subject-object pairs. Concerning schema elements, almost all pairs
of datasets share one property (99%), since most datasets use properties from popular ontologies such
as rd f and rd f s, f oa f and xmlns. However, by excluding properties belonging to the aforementioned
popular ontologies, 24.5% of datasets pairs share properties. Finally, a lot of datasets pairs (i.e., 30.2%)
have at least one class in common; however, if we exclude again classes from popular ontologies,
the percentage decreases (i.e., 5.42%).

Table 10. Connected subsets of datasets.

Category Connected Pairs Connected Triads Disconnected Datasets (of 400)

Real World Entities 9075 (11.3%) 132,206 (1.24%) 87 (21.75%)
Literals 62,266 (78%) 4,917,216 (46.44%) 3 (0.75%)

Real World Triples 4468 (5.59%) 35,972 (0.33%) 134 (33.5%)
Real Subject-Object Pairs 7975 (10%) 107,083 (1%) 129 (32.2%)

Real World Properties 19,515 (24.45%) 569,708 (5.38%) 25 (6.25%)
Real World Classes 4326 (5.42%) 53,225 (0.5%) 107 (26.7%)

However, it is also important to check the “degree” of connectivity of the connected pairs of
datasets, i.e., how many common elements the aforementioned connected pairs of datasets share.
In Figure 5, we show the number of datasets’ pairs, whose cardinality of common elements belong to a
specific interval of integers, e.g., for the interval [1, 10) we show how many connected pairs have from
1 to 9 common elements (e.g., entities). In particular, most pairs of datasets share less than 10 elements
for each set of elements (literals, triples, and entities, properties and classes). In general, we observe a
power-law distribution, since many pairs of datasets share a few elements, while only a few pairs of
datasets share thousands or millions of elements. Furthermore, we can observe the difference in the
level of connectivity among literals and other elements, e.g., over 10,000 pairs of datasets share at least
100 literals, whereas 1525 pairs of datasets have at least 100 common entities. Concerning common
triples, the 84% of connected pairs share less than 100 triples, while as we can see in Figure 5, less than
10 pairs share more than one million triples. Regarding entities, most connected pairs (83.2%) have in
common 100 or less entities, and only a few pairs share thousands or millions of entities, while for
the literals, 77.5% of connected pairs share less than 100 literals. For the remaining categories, most
connected pairs sharing properties (96.9% of pairs) and classes (99.4% of pairs) have in common less
than 10 properties and classes, respectively.

Figure 5. Number of connected pairs of datasets per interval for each measurement type.

For the triads of datasets, the percentages are even smaller. In particular, approximately 1% of
triads share common elements, classes and triples. However, for the literals the percentage is quite
high, i.e., 46.44% of triads share common literals, while 5.38% of triads share a property. In Figure 6,
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we can observe the “degree” of connectivity of triads. Similarly to the case of pairs, we observe a
power-law distribution, i.e., most triads of datasets have in common from 1 to 10 elements for each
different set of elements. Moreover, it is worth noting that 140 triads of datasets share over 100,000
entities, only 5 triads of datasets contain over 100,000 common triples and 180 triads over 100,000
common literals.

Figure 6. Number of connected triads of datasets per interval for each measurement type.

Finally, the last column of Table 10 shows the number of datasets that do not have commonalities
with other ones for each specific elements. It is worth noting that 87 datasets do not have common
entities with other ones, while only 3 datasets do not share common literals. On the contrary,
the number of disconnected datasets increases in the cases of common triples and common classes.

The most connected subsets of datasets. In Table 11, we introduce measurements for the 10 subsets
(containing 3 or more datasets) having the most common triples. As we can see, the combinations of the
four popular cross-domain datasets (DBpedia [43], Yago [44], Freebase [45] and Wikidata [46]) share a lot
of triples. Concerning other subsets of datasets, some datasets from publications domain (i.e., bl.uk [47],
BNF [48] and VIAF [49]), and one dataset from government domain (i.e., JRC-names [50]) share many
triples with the aforementioned cross-domain ones. Regarding the connectivity for other sets of
elements, the combinations of the four aforementioned popular cross-domain datasets are again the
most connected ones for entities and literals (i.e., the quad of the four popular cross-domain datasets
share approximately 3 million entities and 3.5 million literals). The most connected triad of datasets,
concerning classes, contains the following set of datasets (DBpedia, Opencyc [51], ImageSnippets [52])
with 188 common classes, while for the properties, the most connected triad includes (VIVO Wustl [53],
FAO [54], VIVO scripps [55]) with 68 common properties. All the measurements for pairs, triads,
and quads of subsets of datasets (in total 11,689,103 million subsets) for each different measurement
type are accessible through LODsyndesis and datahub.io (http://datahub.io/dataset/connectivity-of-
lod-datasets), in CSV and RDF format, by using VoID-WH ontology [56], which is an extension of
VoID ontology [57] (in total we have created 99,221,766 million triples).

Table 11. Top-10 subsets with ≥ 3 datasets having the most common real world triples.

Datasets of subset B Common RW Triples

1: {DBpedia,Yago,Wikidata} 2,683,880
2: {Freebase,Yago,Wikidata} 2,653,641
3: {DBpedia,Freebase,Wikidata} 2,509,702
4: {DBpedia,Yago,Freebase} 2,191,471
5: {DBpedia,Yago,Freebase,Wikidata} 2,113,755
6: {DBpedia,Wikidata,VIAF} 396,979
7: {bl.uk,DBpedia,Wikidata} 92,462
8: {BNF,Yago,VIAF} 52,420
9: {bl.uk,DBpedia,VIAF} 24,590
10: {DBpedia,Wikidata,JRC-names} 18,140

http://datahub.io/dataset/connectivity-of-lod-datasets
http://datahub.io/dataset/connectivity-of-lod-datasets
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The most popular datasets. Table 12 shows the top ten datasets that contain the most entities,
literals and triples that can be found in three or more datasets. As we can see, Wikidata contains
the most entities and triples that can be found in three or more datasets, while Yago is the dataset
having the most literals that occur at least in three datasets. In all categories, the four datasets from the
cross-domain are the most popular, while we can observe that VIAF dataset (from publications domain)
occurs in the fifth position in all cases. Concerning the remaining positions, most datasets belong to
publications domain (e.g., id.loc.gov [58], DNB [59], Radatana [60], and others). Moreover, there exists
also a dataset from the geographical domain, i.e., GeoNames [61], which contains a lot of entities
and literals that occur in three or more datasets, and a dataset from media domain, i.e., LMDB [62],
which contains several triples that occur in more than two datasets.

Table 12. Top-10 datasets with the most entities, triples and literals existing at least in 3 datasets.

Position Dataset-RW Entities in
≥ 3 Datasets

Dataset-RW Triples in
≥ 3 Datasets

Dataset-Literals in
≥ 3 Datasets

1 Wikidata 4,580,412 Wikidata 4,131,042 Yago 9,797,331
2 DBpedia 4,238,209 DBpedia 3,693,754 Freebase 8,653,152
3 Yago 3,643,026 Yago 3,380,427 Wikidata 8,237,376
4 Freebase 3,634,980 Freebase 3,143,086 DBpedia 7,085,587
5 VIAF 3,163,689 VIAF 485,356 VIAF 3,907,251
6 id.loc.gov 2,722,156 bl.uk 125,484 bl.uk 1,819,223
7 d-nb 1,777,553 bnf 55,237 GeoNames 1,501,854
8 bnf 1,056,643 JRC-names 28,687 id.loc.gov 1,272,365
9 bl.uk 1,051,576 Opencyc 26,310 bnf 968,119

10 GeoNames 554,268 LMDB 20,465 radatana 957,734

7.2.1. Conclusions about the Connectivity at LOD Scale

The measurements revealed the sparsity of LOD Cloud. In general, we observed a power-law
distribution, i.e., a large percentage of elements (entities, classes, etc.) occur in one dataset,
while most connected datasets contain a small number of common elements, which means that
a lot of publishers do not connect their entities with other datasets. Most subsets of datasets share
literals, while only a few pairs and triads of datasets share triples. Moreover, most datasets share some
properties from popular ontologies (such as rdf, rdfs, etc.); however, it seems that there is a lack of
connections for schema elements. Consequently, it is hard to find common triples among the datasets,
even between datasets sharing a lot of common entities and common literals. Indeed, by ignoring
the property of each triple, we identified that there exists 3465 pairs of datasets having common
subject-object pairs, but not common triples. Concerning the most connected datasets, they are the
four datasets belonging to cross-domain (i.e., DBpedia, Yago, Freebase and Wikidata), while there are
also combinations containing datasets from cross-domain and publication domain that are highly
connected. Moreover, the most popular datasets (containing elements that can be found in three or
more datasets) are predominantly the cross-domain ones, while in this list one can find also datasets
from publications and geographical domains.

8. Discussion

The main objective of Linked Data is linking and integration, and a major step for evaluating
whether this target has been reached, is to find all the connections among the Linked Open Data (LOD)
Cloud datasets. In this paper, we proposed connectivity measurements among two or more datasets,
which are based on scalable algorithms and semantics-aware indexes. In particular, we introduced
algorithms for computing the transitive and symmetric closure of equivalence relationships, while we
showed how to create in parallel semantics-aware indexes for different sets of elements (entities, triples,
classes, etc.). Moreover, we described how to exploit such indexes for finding fast the commonalities
between any subset of datasets by using a “lattice”-based algorithm. Generally, this is the only work
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that measures the connectivity among two or more datasets, by taking also into consideration the
transitive and symmetric closure of equivalence relationships (e.g., owl:sameAs). Moreover, as a
product, to the best of our knowledge, the indexes of LODsyndesis (which is the suite of services that
exploits the aforementioned indexes and measurements) constitute the biggest knowledge graph of
LOD that is complete with respect to the inferable equivalence relations.

As regards the experiments, by using 96 machines, we were able to construct all the indexes
for 2 billions of RDF triples (from 400 datasets) in 81 min, while the experiments showed that
the construction algorithms are highly scalable. Furthermore, we compared the execution time
of computing the measurements by using plain SPARQL and by using a lattice-based algorithm.
In particular, by using a SPARQL approach, even one minute is needed for finding the commonalities
between a pair of datasets, while with a lattice-based algorithm we computed the commonalities
for thousands of datasets’ pairs in one second. Concerning the connectivity of LOD cloud datasets,
the measurements showed the “sparsity” of the current LOD cloud, since most elements (entities,
triples, etc.) occur in one dataset, while only a small percentage of them exists in two or more datasets.
Moreover, a high percentage of pairs (i.e., 78%) and triads (i.e., 46.44%) of datasets share literals,
while only a small percentage of pairs (i.e., 5.59%) and triads (i.e., 0.33%) have triples in common.
Concerning the most popular datasets, i.e., they are highly connected with other datasets, they belong
predominantly to cross-domain and publications domain.

For future work, we plan to exploit the semantics-aware indexes for performing lattice-based
measurements for any set operation (e.g., union, complement, etc.), while we desire to exploit the
indexes as input for machine learning-based tasks. Finally, we plan to exploit such measurements for
offering more advanced services that concern several real world tasks, such as Dataset Discovery and
Data Veracity.
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