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Abstract: To boost the robustness of the traditional particle-filter-based tracking algorithm under
complex scenes and to tackle the drift problem that is caused by the fast moving target, an improved
particle-filter-based tracking algorithm is proposed. Firstly, all of the particles are divided into two
parts and put separately. The number of particles that are put for the first time is large enough to
ensure that the number of the particles that can cover the target is as many as possible, and then
the second part of the particles are put at the location of the particle with the highest similarity
to the template in the particles that are first put, to improve the tracking accuracy. Secondly,
in order to obtain a sparser solution, a novel minimization model for an Lp tracker is proposed.
Finally, an adaptive multi-feature fusion strategy is proposed, to deal with more complex scenes.
The experimental results demonstrate that the proposed algorithm can not only improve the tracking
robustness, but can also enhance the tracking accuracy in the case of complex scenes. In addition, our
tracker can get better accuracy and robustness than several state-of-the-art trackers.
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1. Introduction

Target tracking has always been a popular research direction in the field of computer vision as it
has important applications in scene monitoring, behavior analysis, autopilot, robot, and so forth [1–3].
Although the visual tracking technology has made considerable progress, and a large number of
excellent tracking algorithms have been proposed [4–11], there are still a series of unpredictable
challenges, such as occlusion, motion blur, pose and shape change, illumination change, scale variation,
and so on. Therefore, developing a robust tracking algorithm has always been a very tough task.

The particle-filter-based tracking algorithm has attracted a great number of scholars’ attention
because it has the advantages of simple implementation, parallel structure, and strong practicality,
etc. Inspired by Yang [11], certain relationships between the particles could be exploited through the
lower rank and the temporal consistency. However, the low rank and the temporal consistency cannot
exploit the relationship between the particles when the scene changes greatly between two adjacent
frames or the distribution of the particles of the current frame is relatively dispersed. Therefore,
a relatively simple and effective approach for exploiting the relationship between the particles is
proposed. Compared with all of the particles that are put at once in each frame in the traditional
particle-filter-based tracking algorithms, in our tracking algorithm, all of the particles are divided into
two parts and are put separately in each frame. Through the intelligent cooperation between the two
parts of the particles, the number of particles that cover the target increases, which can improve the
tracking accuracy.
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Chartrand [12] first proposed the Lp norm, and it has proved to be more excellent than the L1

norm [13,14]. Many problems, based on sparse coding for image restoration and image classification,
are solved with the non-convex Lp norm (0 < p < 1) minimization model. Compared with solving
the L1 norm minimization model, solving the Lp minimization model can usually gain sparser and
more accurate solutions. Considering this advantage, the Lp norm is applied so as to solve the sparse
representation coefficients, and a novel minimization model for an Lp tracker is proposed to improve
the tracking accuracy in this paper.

Combining multiple observation views has proven to be beneficial for tracking. The tracking
algorithm is difficult to adapt to some complex scenes when using only a single feature to represent
the target. Considering that a feature generally only adapts to a certain type of scene, the advantage of
the complementary features can be used, that is, by combining multiple features to represent the target,
in order to improve the robustness of the tracking algorithm to complex scenes. Hong et al. [15]
proposed a multi-task multi-view tracking algorithm (MTMVT). Four complementary features,
including color histograms, intensity, histogram of oriented gradient (HOG), and local binary pattern
(LBP), were used to represent the target, which could overcome the influence of complex scenes, to
some extent. Inspired by MTMVT, we propose a novel multi-feature fusion strategy with adaptive
weights, which can adaptively adjust the weights of different features according to the current scene,
to determine the state of the target.

This paper is organized as follows. In Section 2, the materials and methods are summarized.
In Section 3, we introduced the particle filter framework and sparse representation. Section 4 presents
the details of the proposed algorithm, including the intelligent particle filter, the minimization model
for Lp tracker, and the adaptive multi-feature fusion strategy. The experiments are conducted to
compare with several state-of-the-art trackers in Section 5. Finally, we summarized this paper in
Section 6.

2. Materials and Methods

According to the different expression strategies that have been adopted by the appearance models,
the tracking algorithms could be generally divided into two categories, generative and discriminative
approaches. Among them, the generative approach was used to establish a descriptive model in order
to represent the target, and to then use it to search for the most similar region as the target in the
image [16]. Because the proposed tracking algorithm belonged to the generative approach, we have
focused on some related works of the generative approach.

The theory of sparse representation has been widely used in the target tracking algorithms [4–8].
Mei et al. [6] combined sparse representation with a L1 norm minimization model to improve the
particle-filter-based tracking algorithm, which obtained good tracking results. However, the L1

norm minimization model needed to be solved for each particle at each frame, which led to a high
computational complexity of the algorithm. To enhance the tracking speed, Mei et al. [7] proposed a
minimum boundary error rule to remove some insignificant particles, which could reduce the number
of calculating L1 norm minimization model. To improve the tracking speed and accuracy at the same
time, Bao et al. [8] improved the algorithms that were proposed by the authors of [6,7], through adding
the L2 regularization term on the coefficients that were associated with the trivial templates in the L1

norm minimization model, and used the accelerated proximal gradient (APG) method to accelerate
the speed of solving sparse coefficients. Zhang et al. [17] imposed a weighted least squares technique,
which could release the sparsity constraint on the traditional sparse representation methods to achieve
strong robustness against appearance variations, and that utilized structurally random projection to
reduce the dimensionality of the feature, while improving computational efficiency. Meshgi et al. [18]
proposed an occlusion-aware particle filter framework by utilizing a binary flag to attach to each
particle, in order to estimate the occlusion state according to the state and to treat occlusions in a
probabilistic manner.
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In recent years, the Lp norm was widely used. Zhang et al. [19] proposed an Lp norm relaxation
to improve the sparsity exploitation of the total generalized variation. Xie et al. [20] generalized the
nuclear norm minimization to the Schatten Lp norm minimization, which achievedd good results both
in background subtraction and image denoising. Wang et al. [21] proposed to impose a L2,p norm
regularization on self-representation coefficients for an unsupervised feature selection. Chartrand [22]
developed a new non-convex approach for matrix optimization problems, involving sparsity to the
decomposition of video into low rank and sparse components, which could separate moving objects
from the stationary background better than in the convex case.

Using the advantages of multiple features to improve the tracking robustness was a popular
approach. Hong et al. [15] represented the target by using four complementary features to overcome
the problem of complex scenes, yet they did not highlight which feature was more important in some
scenes. Dash et al. [23] utilized texture feature and Ohta color features in the feature vector of the
covariance tracking algorithm, which was capable of handling occlusion, camera motion, appearance
change, and illumination change, nevertheless the algorithm had a poor tracking performance for
targets with insignificant color features. Yoon et al. [24] proposed a novel visual tracking framework
that fused multiple trackers with different feature descriptors in order to cope with motion blur,
illumination changes, pose variations, and occlusions, but every tracker used a single feature and
ignored other features. Morenonoguer et al. [25] developed a robust tracking system by applying the
appearance and geometric features to segment a target from its background, and showed impressive
result on the challenges, but the tracking system had a poor real-time performance. Yin et al. [26]
combined color information, motion information, and edge information in the framework of particle
filtering to solve the problem of illumination variation and similarly colored background clutters, but
the tracking performance of the algorithm was not stable when the background was complicated, and
the contrast between the target and the background was low. Zhao et al. [27] fused the color feature
and the Haar feature to overcome the challenges of illumination and pose change, but the algorithm
could not handle partial occlusion. Tian [28] represented the target by the multiple feature descriptions,
based on the selected color subspace, to improve the robustness of the target tracking to some extent.
However, the algorithm was not able to handle the occlusion trouble.

Based on the ideas of the above literature, we employed a particle filter as a tracking framework
and made use of the properties of the Lp norm, and then a tracking algorithm based on the Lp

norm and the intelligent particle filter (Lp-IPFT) was proposed. In addition, on the basis of the
Lp-IPFT, combined with the advantages of the multiple features, an adaptive multi-feature Lp-IPFT
(AMFLp-IPFT) was proposed.

3. Introduction to the Related Theory

3.1. Particle Filter Framework

The particle filter transforms target tracking into a problem of estimating the target state through
the known target measurement information. It calculates the posterior probability p(xt|z1:t) by two
steps of prediction and update, supposing that xt represents the target state (the location and the shape
of the target) in the t-th frame, and z1:t = {z1, z2, · · · , zt} represents the target observations from the
first frame to the t-th frame. According to the maximal approximate posterior probability, the optimal
state x∗t of the target can be obtained in the t-th frame, as follows:

x∗t = arg max
xi

t

p(xi
t|z1:t) (1)

where xi
t represents the state of the i-th particle in the t-th frame. In the particle-filter-based tracking

algorithm, the expression of the prediction and the update equation are as follows:

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|zt−1)dxt−1 (2)
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p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(3)

where p(zt|xt) represents the observation likelihood between the target state xt and the observed
state zt, which is inversely proportional to the reconstruction error of the particle, see Equation (8).
p(xt|xt−1) denotes the state transition model, which uses six independent parameters of the affine
transformation to represent the target state xt = {r, c, θ, s, α, ϕ}, where {r, c, θ, s, α, ϕ} represent the x
translation, y translation, rotation angle, scale, aspect ratio, and skew direction, respectively. In general,
the state transition model p(xt|xt−1) can be described by a zero-mean Gaussian distribution with
diagonal covariance, as follows:

p(xt|xt−1) = N(xt; xt−1, Ω) (4)

where Ω = diag
{

σ2
r , σ2

c , σ2
θ , σ2

s , σ2
α , σ2

ϕ

}
and

{
σ2

r , σ2
c , σ2

θ , σ2
s , σ2

α , σ2
ϕ

}
denote the variance of the above six

independent parameters, respectively.
Applying the method mentioned above, according to the particle state xi

t−1, the candidate particles
Y can be obtained in the t-th frame, as follows:

Y = [y1, y2, . . . , yn] ∈ <d×n (5)

where < denotes real number, d represents the number of rows of the candidate particle yi, and n
represents the number of the candidate particles.

3.2. Sparse Representation

The sparse representation model is mainly utilized to calculate the observation likelihood
p(zt|xt) of the sample state xt, which reflects the similarity between the candidate particle and the
target template. Assuming that the target template set of the t-th frame is Tt = [t1

t , t2
t , . . . , tn

t ], and
the corresponding candidate particle set is Yt = [y1

t , y2
t , . . . , yn

t ] in the t-th frame, then the sparse
representation model is as follows:

yi
t = Ttai

T + Iai
I , ∀yi

t ∈ Yt (6)

where I is a trivial template set, ai
T and ai

I are the sparse coefficients of the target templates and the
trivial templates, respectively, so ai

t = [ai
T ; ai

I ] is sparse. In addition, to ensure that the L1 tracking
algorithm has a better robustness, it needs to impose nonnegative constrains on ai

T . Then, the sparse
representation of yi

t can be obtained by solving Equation (7), as follows:

min
a

1
2
||yi

t −Aa||22 + λ||a||1, a ≥ 0 (7)

where A = [Tt, I,−I]. Finally, the observation likelihood of xt
i can be given by the following expression:

p(zt|xi
t) =

1
Γ

exp{−α||yi
t − Ttci

T ||22} (8)

where α is a constant for controlling the shape of the Gaussian kernel, Γ is a standard factor, and ci
T is

the minimizer of Equation (7), restricted to Tt.

4. The Proposed Tracker

To improve the tracking accuracy and robustness, we propose three improvements on the
basis of the L1-APG proposed by Bao et al. [8] as follows: (1) intelligent particle filter; (2) the
minimization model for Lp tracker; and (3) an adaptive multi-feature fusion strategy. With these
improvements, the proposed algorithm can not only take advantage of the robustness to occlusion
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from sparse representation, but it can also introduce complementary features’ representation for
appearance modeling.

4.1. Intelligent Particle Filter

The traditional particle-filter-based tracking algorithms directly put all of the particles in
accordance with the Gaussian distribution, according to the state of the particles in the previous
frame, and do not take into account the relationship between these particles. When tracking a fast
moving target, the tracking accuracy is affected because of the small or even zero number of particles
covering the target. To tackle this problem, in our tracking algorithm, all of the particles are divided
into two parts. In the first part, the particles are put in the same way as the traditional particle filter,
while the other particles are put at the location where the particle that is put in the first part is most
similar to the target template. Figure 1 illustrates the details of the particles put in the third frame of
the Deer sequence.
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are still in accordance with the Gaussian distribution. Finally, the similarity of each green particle is 
calculated, and the most similar particle (including red and green particles) is selected as the 
candidate target. When the particles are put in the fourth frame, the same method as the third frame 
is utilized. It can be seen that the most similar red particle has been close to the target, and then using 
the green particles to cover the target, which can make the number of the particles that are 
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Figure 1. The details of particles put in the third frame of the Deer sequence. All of the particles are
divided into two parts and put separately, the red particles indicate the particles put for the first time,
and the green particles indicate the particles put for the second time, and the location of the particle
is assumed to correspond to the upper left corner of the tracked bounding box. Firstly, the first part
particles (red particles) are put according to the target state of the second frame, and the locations
of these particles are in accordance with the Gaussian distribution. Then, the similarity of each red
particle to the template is calculated, and the second part particles (green particles) are put at the
location of the red particle with the highest similarity, and the locations of the green particles are still in
accordance with the Gaussian distribution. Finally, the similarity of each green particle is calculated,
and the most similar particle (including red and green particles) is selected as the candidate target.
When the particles are put in the fourth frame, the same method as the third frame is utilized. It can be
seen that the most similar red particle has been close to the target, and then using the green particles to
cover the target, which can make the number of the particles that are distributed around the target as
many as possible.

As we know, the more that particles cover the target, the more accurate the tracking result
are. Assuming that the total number of particles is n0, the number of particles in the first part is
n1, the number of particles in the other part is n2, and n1 >> n2. If n1 ≤ n2, taking into account the
computational complexity of the algorithm, the total number n0 of particles is usually not too large,
then the number of particles in the first part will be too small to cover the target, which is difficult for
ensuring that the first part of the particles can provide effective information for the second part of
particles, and then the function of the second part of the particles will be completely lost. Aiming at
the problem, namely that it is difficult for the particles to cover the target, one common solution is to
increase the number of particles, and the other common solution is to modify the affine parameters
so as to make the particles more dispersed to enlarge the covering area. For the latter solution, since
the distribution of the particles is too scattered, and the interval between the particles becomes larger
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and the reliability of the particles becomes smaller, it is easy to provide the wrong information for
the second part of particles. Therefore, for the first part of the particles, we have employed the first
solution, that is, increasing the number of particles in the first part to ensure that as many particles as
possible can cover the target, so we choose n1 >> n2.

In this paper, the particles are divided into two parts. The second part of the particles are put at
the location where the particle is most similar to the target template in the first part, which is equivalent
to putting the second part of the particles at or around the candidate target. This can improve the
tracking accuracy. It can be said that the second part of the particles play a supporting role in the
tracking process, its effect is equivalent to slightly adjusting the state (including the location, rotation,
scale, and so on) of the optimal particles (candidate target) in the first part, to improve the tracking
accuracy and robustness. At the same time, taking the relationship between the two parts of the
particles into consideration, the affine parameters of the particles in the second part are smaller than
that of the particles in the first part. Therefore, compared with the traditional particle filter, we have
taken full account of the relationship between the particles. Our particles are intelligent, and they (the
first part of the particles and the second part of the particles) can effectively assist, thus improving the
tracking accuracy and robustness.

4.2. The Minimization Model for Lp Tracker

According to the different values of p, the classic Lp norm changes as shown in Figure 2. It can be
seen from Figure 2 that the intersection of Figure 2a,b is not on the coordinate axis, and the intersection
of Figure 2c is on the coordinate axis. Thus, the L1 norm can obtain a sparser solution than the L2 norm,
and the Lp norm can get a sparser solution than the L1 norm. In addition, although it is a problem that
the Lp norm has a non-convex minimization, it is still possible to obtain excellent solutions efficiently.
Thus, compared with the L1 norm, the Lp norm (0 < p < 1) has two advantages, (1) sparser solution;
(2) higher flexibility, because p is no longer a fixed value.

Information 2018, 9, x 6 of 15 

 

then the number of particles in the first part will be too small to cover the target, which is difficult for 
ensuring that the first part of the particles can provide effective information for the second part of 
particles, and then the function of the second part of the particles will be completely lost. Aiming at 
the problem, namely that it is difficult for the particles to cover the target, one common solution is to 
increase the number of particles, and the other common solution is to modify the affine parameters 
so as to make the particles more dispersed to enlarge the covering area. For the latter solution, since 
the distribution of the particles is too scattered, and the interval between the particles becomes larger 
and the reliability of the particles becomes smaller, it is easy to provide the wrong information for 
the second part of particles. Therefore, for the first part of the particles, we have employed the first 
solution, that is, increasing the number of particles in the first part to ensure that as many particles as 
possible can cover the target, so we choose 1 2n n>> . 

In this paper, the particles are divided into two parts. The second part of the particles are put at 
the location where the particle is most similar to the target template in the first part, which is 
equivalent to putting the second part of the particles at or around the candidate target. This can 
improve the tracking accuracy. It can be said that the second part of the particles play a supporting 
role in the tracking process, its effect is equivalent to slightly adjusting the state (including the 
location, rotation, scale, and so on) of the optimal particles (candidate target) in the first part, to 
improve the tracking accuracy and robustness. At the same time, taking the relationship between the 
two parts of the particles into consideration, the affine parameters of the particles in the second part 
are smaller than that of the particles in the first part. Therefore, compared with the traditional 
particle filter, we have taken full account of the relationship between the particles. Our particles are 
intelligent, and they (the first part of the particles and the second part of the particles) can effectively 
assist, thus improving the tracking accuracy and robustness. 

4.2. The Minimization Model for Lp Tracker 

According to the different values of p , the classic Lp norm changes as shown in Figure 2. It can 
be seen from Figure 2 that the intersection of Figure 2a,b is not on the coordinate axis, and the 
intersection of Figure 2c is on the coordinate axis. Thus, the L1 norm can obtain a sparser solution 
than the L2

 
norm, and the Lp norm can get a sparser solution than the L1 norm. In addition, although 

it is a problem that the Lp norm has a non-convex minimization, it is still possible to obtain excellent 
solutions efficiently. Thus, compared with the L1 norm, the Lp norm ( )0 1< <p  has two advantages, 

(1) sparser solution; (2) higher flexibility, because p  is no longer a fixed value. 

G(a)
G(a)F(a)

G(a)

F(a)

F(a)

a a a

 
(a) (b) (c) 

Figure 2. Lp norm. (a) 2p = ; (b) 1p = ; and (c) 0 1p< < . 

' 2 2
2 2

1( ) || || || ||
2 2

t
IG

μ= − +a y Aa a , ( ) = || ||p
pF λa a . 

The minimization model for L1 tracker proposed by Bao et al. [8], as follows: 

Figure 2. Lp norm. (a) p = 2; (b) p = 1; and (c) 0 < p < 1. G(a) = 1
2 ||y − A′a||22 +

µt
2 ||aI ||22,

F(a) = λ||a||pp.

The minimization model for L1 tracker proposed by Bao et al. [8], as follows:

min
a

1
2
||y−A′a||22 + λ||a||1 +

µt

2
||aI ||22, a ≥ 0 (9)

where A′ = [Tt, I], Tt is the target template, I is the trivial template, a = [aT ; aI ], λ is regularization
factor, and is used to control the energy in trivial templates. When the occlusion is detected, µt is
set to 0; otherwise µt is set to a preset constant. In order to obtain a sparser solution to improve the
tracking accuracy, we solved the minimization problem of the Lp norm (0 < p < 1) instead of the
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minimization problem of the L1 norm presented by Bao et al. [8], and constructed a novel minimization
model for Lp tracker, as follows:

min
a

1
2
||y−A′a||22 + λ||a||pp +

µt

2
||aI ||22, 0 ≤ a, 0 ≤ p < 1 (10)

Similarly, for A′ = [Tt, I], Tt is the target template and I is the trivial template, a = [aT ; aI ],

||a||p = (
N
∑

i=1
|ai|p)

1
p

. To solve the problem of non-convex minimization of the Lp norm more effectively,

the generalized shrinkage operator =λ(x) = sign(x)max(|x| − ( 1
λ )

p−2|x|p−1, 0) that was proposed
by Chartrand [14] was employed, instead of the soft threshold =λ(x) = sign(x)max(|x| − λ, 0) that
was used in the L1 norm. In addition, the generalized shrinkage operator could also be applied to
the framework of the APG algorithm. Therefore, the approach that was utilized to solve the sparse
coefficients a could be called Lp-APG in this paper, and its detailed process is shown in Algorithm 1.

Algorithm 1. Lp-accelerated proximal gradient (APG)

Input: template A′, regularization factor λ, µt, Lipchitz constant L [8,29]
1. α0 = α−1 ← 0 ∈ <N , t0 = t−1 ← 1
2. For k = 0, 1, . . . , iterate until convergence
3. βk+1 := αk +

tk−1−1
tk

(αk −αk−1);
4. gk+1|T ← βk+1|T − (A′T(A′βk+1 − y))|T/L− λ1T ;
5. gk+1|I ← βk+1|I − (A′T(A′βk+1 − y))|I/L− µtβk+1|I/L ;
6. αk+1|T ← max(0, gk+1|T) ;
7. αk+1|I ← =λ/L(gk+1|I) ;

8. tk+1 ← (1 +
√

1 + 4t2
k)/2 ;

9. End.
Output: convergent α

Actually, when p = 1, =λ(x) = sign(x)max(|x| − λ, 0), that is, the generalized shrinkage operator
becomes a soft threshold, and then the Lp-APG is transformed into L1-APG [8], that is, the L1-APG is a
special case of Lp-APG.

Through a large number of simulation experiments, it can be concluded that if p is set to 0.5,
the performance of the Lp-APG will be better. In addition, we compared L0.5-APG with L1-APG.
The tracking results that were obtained are shown in Table 1. It can be seen from Table 1 that
L0.5-APG is superior to L1-APG. Therefore, the tracking accuracy can be improved by solving the Lp

minimization model.

Table 1. The center location error (CLE) average of the L0.5-accelerated proximal gradient (APG) and
L1-APG on 8 video sequences.

Tracker Car4 David2 Dog Dudek Deer Girl Surfer Trellis

L1-APG 4.870 2.857 11.50 22.55 25.69 4.14 44.42 62.20
L0.5-APG 2.019 3.913 8.951 25.42 11.22 3.913 8.024 28.841

Note: The description of CLE is in the Section 5.

4.3. Adaptive Multi-Feature Fusion Strategy

In complex scenes, it is difficult to accurately represent the target with a single feature, which
may lead to tracking drift or even failure. On the basis of the multi-feature fusion approach that has
been proposed in the MTMVT algorithm, we utilized four complementary features (histogram of color
(HOC), intensity, HOG, and LBP) to represent the target, and to propose an adaptive multi-feature
fusion strategy, as shown in Figure 3a.
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Figure 3. In (a), the red bounding box represents the final target state, the blue one represents the
most similar particle to the target template for the histogram of color (HOC) feature, the yellow one
represents the most similar particle to the target template for the intensity feature, the white one
represents the most similar particle to the target template for the histogram of oriented gradient (HOG)
feature, and the purple one represents the most similar particle to the target template for the LBP
feature; (b) Is the variation curve of the weights of different features during the tracking of the Panda
sequence (in this paper, we set the upper and lower limits of the weight, with a maximum of 0.5 and a
minimum of 0.1).

In multi-feature tracking algorithms, the simple addition of the tracking result of each feature does
not make full use of the advantages of the multiple features. Meanwhile, the robustness of each feature
to the different scenes is different. When the robustness of a feature to a scene is high, the weight of
the feature should be increased; otherwise, the weight of the feature should be reduced. As shown in
Figure 3b, it can be seen that the weights of the four features change during the tracking of the Panda
sequence. The weight of the feature is calculated by the following method.

In the first frame, set the weight wj
t of each feature to be the same, as follows:

wj
1 =

1
4
(j = 1, 2, 3, 4) (11)

where t denotes the number of the frame. From the second frame, the new weight is updated by the
similarity between the particle with the highest similarity, which is calculated according to the j-th
feature and the particle with the highest similarity, which is calculated according to all of the features.
The expression of this similarity between the particles is as follows:

Pj
f eature = e−α f eatrue∗anglej

(j = 1, 2, 3, 4) (12)

where αfeature is a constant for controlling the shape of the Gaussian kernel, and angelj is defined
as follows:

angel j = calAngle(a f f inei, a f f inejbest)(j = 1, 2, 3, 4) (13)

where a f f inejbest represents the state (affine parameter) of the jbest-th particle, which has
the highest similarity and is calculated according to the j-th feature, and a f f inejbest ={

rjbest , cjbest , θjbest , sjbest , αjbest , ϕjbest

}
; a f f inei represents the state (affine parameter) of the i-th particle,

which has the highest similarity to the target template and is calculated according to all of the features,
and a f f inei = {ri, ci, θi, si, αi, ϕi}. Then, the expression of calAngle(•, •), which calculates the angle
between two vectors is as follows:
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calAngle(a f f inei, a f f inejbest)

= arccos

(
ri∗rjbest

+ci∗cjbest
+θi∗θjbest

+si∗sjbest
+αi∗αjbest

+ϕi∗ϕjbest√
r2

i +c2
i +θ2

i +s2
i +α2

i +ϕ2
i ∗
√

r2
jbest

+c2
jbest

+θ2
jbest

+sjbest
2+αjbest

2+ϕjbest
2
)

(14)

The larger the angle, the greater the difference between the state of the particle with the highest
similarity corresponding to the j-th feature, and the state of the particle calculated according to all of
the features, or, the farther the two particles are apart from each other, or the greater the difference
in their scale or post. Conversely, the smaller the angle, the closer the state of the particle with
the highest similarity corresponding to the j-th feature to the state of the particle that is calculated
according to all of the features, and the more reliable the j-th feature is been considered. The jbest-th
particle corresponding to a f f inejbest can be obtained by minimizing the sparse representation error
corresponding to Equation (15), and the i-th particle corresponding to a f f inei can be obtained by
minimizing the sparse error corresponding to Equation (16).

ej
jbest

= ||y−A′cj
jbest
||22(j = 1, 2, 3, 4) (15)

ei =
4

∑
j=1

wj
t ∗ ej

jbest
(16)

where ej
jbest

denotes the sparse representation error of the jbest-th particle determined by the j-th feature,

ei denotes the sparse error of the i-th particle determined by all of the features, and cj
jbest

is the sparse
coefficient of the jbest-th particle corresponding to the j-th feature according to Equation (10). Finally,
the feature weight is updated as follows:

wj
t = Pj

f eature ∗ wj
t−1(j = 1, 2, 3, 4) (17)

In the proposed intelligent particle filter framework, in order to obtain a more reasonable target
state in the first parts of the particles, we simultaneously considered the state of the particle with
the highest similarity corresponding to each feature, and the state of the particle with the highest
similarity corresponding to all of the features. Then, the expression of the state of the candidate target
is as follows:

state1 =
a f f inei + a f f ine

4
∑

j=1
mjbest + 1

(18)

where a f f ine is defined as the following:

a f f ine =
4

∑
j=1

a f f inejbest ∗mjbest(0 ≤ mjbest ≤ 3) (19)

where mjbest represents the number of features in the top n1 ∗ β of the sparse representation errors
corresponding to the jbest-th particle, in addition to the j-th feature, in ascending order. The larger mjbest

is, the more reliable the j-th feature is, and the more reliable the jbest-th particle is.
The second part of the particles are put according to the affine parameters that have been obtained

by Equation (18), and the state of the final candidate target is determined by the following steps. Firstly,
find out the top two features of the weights using Equation (17). Then, directly add the sparse errors
corresponding to these two features. Finally, the particle with the smallest error is determined as the
state of the target.
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5. Experiment and Analysis

In order to verify the effectiveness of the proposed tracker, 10 typical trackers, including SCM [30],
L1-APG [8], STC [31], CSK [32], MTT [33], CT [34], DFT [35], LOT [36], LRT [10], and MTMVT [15] were
compared with our tracker, and 50 different challenging benchmark video sequences [37] were selected
for testing. The experiments were carried out in MATLAB R2016b software installed on a 64-bit
Windows OS, which ran on an Intel(R) Xeon(R) E3-1505M v5 CPU @2.80GHz, with 8G of memory.

5.1. Setting Parameters

The parameters that were involved in the experiments were set as follows: the template size was
12 × 15 for Lp-IPFT and the template size was 15 × 15 for AMFLp-IPFT, the affine transformation
parameters of the particles put for the first time were 0.03, 0.0005, 0.0005, 0.03, 3.5, and 3.5, and the
affine transformation parameters of the particles put for the second time were 0.005, 0.0005, 0.0005,
0.005, 0.8, and 0.8. In Equation (10), p = 0.5, λ = 0.01, µt = 10. In the intelligent particle filter
algorithm, the total number of particles were n0 = 500, the number of the particles that were put for
the first time were n1 = 450, the number of the particles that were put for the second time were n2 = 50.
In Algorithm 1, the number of the trivial template was I = 180, the number of the positive template
was T = 10, and the Lipchitz constant was L = 8. In the multi-feature fusion strategy, β = 10% and
α f eature = 20. The proposed AMFLp-IPFT algorithm ran at 0.45 frames per second, and the Lp-IPFT
algorithm ran at 25 frames per second.

5.2. Quantitative Analysis

The performance of our approach was quantitatively validate by two metrics, including distance
precision (DP) and overlap success (OS) in a one-pass evaluation (OPE). The DP was defined as the
percentage of frames where the distance precision (DP) and overlap success (OS)center location error
(CLE) was within a threshold of 20 pixels. The OS was defined as the percentage of frames where the

bounding box overlap surpassed a threshold of 0.5. The CLE was
√
(xp − xg)

2 + (yp − yg)
2, where(

xp, yp
)

is the central location of the target tracked by the algorithm, and
(
xg, yg

)
is the real center

location of the target. The region area overlap ratio is defined as area(Sgt∩Str)

area(Sgt∪Str)
, where Sgt and Str are the

tracked bounding box and the ground truth bounding box, respectively.

5.2.1. Overall Performance Analysis

We plotted the precision and success plots, including the area-under-the curve (ACU) score
over all of the 50 sequences, as shown in Figure 4. It could be seen from Figure 4 that the proposed
AMFLp-IPFT was superior to the other trackers. Table 2 illustrates that our algorithm performed
favorably against the competitive trackers. The AMFLp-IPFT performed well against the Lp-IPFT (by
17.9% and 13.9%), MTMVT (by 21.0% and 28.0%), and L1-APG (by 53.7% and 40.4%), in terms of DP
and OS, respectively. Compared with L1-APG, Lp-IPFT registered a performance improvement of
35.8% in terms of OS and 26.5% in terms of DP.



Information 2018, 9, 140 11 of 15

Information 2018, 9, x 11 of 15 

 

5.2.1. Overall Performance Analysis 

We plotted the precision and success plots, including the area-under-the curve (ACU) score 
over all of the 50 sequences, as shown in Figure 4. It could be seen from Figure 4 that the proposed 
AMFLp-IPFT was superior to the other trackers. Table 2 illustrates that our algorithm performed 
favorably against the competitive trackers. The AMFLp-IPFT performed well against the Lp-IPFT (by 
17.9% and 13.9%), MTMVT (by 21.0% and 28.0%), and L1-APG (by 53.7% and 40.4%), in terms of DP 
and OS, respectively. Compared with L1-APG, Lp-IPFT registered a performance improvement of 
35.8% in terms of OS and 26.5% in terms of DP. 

  
Figure 4. Comparisons of different trackers by using precision and success plots over all 50 
sequences. The legend contains the ACU score for each tracker. 

Table 2. Quantitative comparison of 12 trackers on 50 sequences. 

 SCM L1-APG STC CSK MTT CT DFT LOT MTMVT LRT Lp-IPFT AMFLp-IPFT 
DP 0.341 0.237 0.379 0.449 0.251 0.308 0.346 0.376 0.564 0.426 0.595 0.774 
OS 0.319 0.220 0.251 0.348 0.238 0.214 0.284 0.297 0.471 0.344 0.485 0.624 

Note: The maximum distance precision (DP) and overlap success (OS) values are highlighted in red 
type, and the second ones are highlighted in light blue type. MTMVT—multi-task multi-view 
tracking algorithm. 

5.2.2. Attribute-Based Performance Analysis 

In order to fully evaluate the effectiveness of the proposed algorithms, we further evaluated the 
performance of the algorithm using 11 attributes on the OTB-50 video dataset. All of the ACU 
results for each tracker were given in Tables 3 and 4. The best result was highlighted in the red and 
the second was highlighted in blue. 

We noted that the proposed AMFLp-IPFT performed well in handling challenging factors, 
including fast motion (precision plots: 62.9% and success plots: 49.7%), illumination variation 
(precision plots: 71.4% and success plots: 52.8%), and out-of-plane rotation (precision plots: 70.6% 
and success plots: 52.3%). The Lp-IPFT performed well in dealing with fast motion (precision plots: 
54.2% and success plots: 44.1%) and low resolution (precision plots: 66.3% and success plots: 47.5%) 
challenging factors. 

Table 3. ACU results of each tracker on sequences with different challenge for OPE about precision. 

Challenge SCM L1-APG STC CSK MTT CT DFT LOT MTMVT LRT Lp-IPFT AMFLp-IPFT 
BC 0.310 0.223 0.331 0.419 0.226 0.245 0.357 0.325 0.512 0.416 0.420 0.695 
FM 0.167 0.158 0.175 0.339 0.173 0.240 0.231 0.352 0.442 0.310 0.542 0.629 
MB 0.166 0.134 0.210 0.382 0.131 0.230 0.224 0.328 0.438 0.321 0.572 0.651 
DEF 0.246 0.170 0.313 0.373 0.172 0.247 0.338 0.353 0.474 0.315 0.427 0.680 
IV 0.441 0.217 0.424 0.459 0.241 0.259 0.367 0.297 0.489 0.399 0.442 0.714 

IPR 0.320 0.235 0.337 0.411 0.249 0.340 0.322 0.337 0.527 0.490 0.565 0.707 

Figure 4. Comparisons of different trackers by using precision and success plots over all 50 sequences.
The legend contains the ACU score for each tracker.

Table 2. Quantitative comparison of 12 trackers on 50 sequences.

SCM L1-APG STC CSK MTT CT DFT LOT MTMVT LRT Lp-IPFT AMFLp-IPFT

DP 0.341 0.237 0.379 0.449 0.251 0.308 0.346 0.376 0.564 0.426 0.595 0.774
OS 0.319 0.220 0.251 0.348 0.238 0.214 0.284 0.297 0.471 0.344 0.485 0.624

Note: The maximum distance precision (DP) and overlap success (OS) values are highlighted in red type, and the
second ones are highlighted in light blue type. MTMVT—multi-task multi-view tracking algorithm.

5.2.2. Attribute-Based Performance Analysis

In order to fully evaluate the effectiveness of the proposed algorithms, we further evaluated the
performance of the algorithm using 11 attributes on the OTB-50 video dataset. All of the ACU results
for each tracker were given in Tables 3 and 4. The best result was highlighted in the red and the second
was highlighted in blue.

We noted that the proposed AMFLp-IPFT performed well in handling challenging factors,
including fast motion (precision plots: 62.9% and success plots: 49.7%), illumination variation
(precision plots: 71.4% and success plots: 52.8%), and out-of-plane rotation (precision plots: 70.6%
and success plots: 52.3%). The Lp-IPFT performed well in dealing with fast motion (precision plots:
54.2% and success plots: 44.1%) and low resolution (precision plots: 66.3% and success plots: 47.5%)
challenging factors.

Table 3. ACU results of each tracker on sequences with different challenge for OPE about precision.

Challenge SCM L1-APG STC CSK MTT CT DFT LOT MTMVT LRT Lp-IPFT AMFLp-IPFT

BC 0.310 0.223 0.331 0.419 0.226 0.245 0.357 0.325 0.512 0.416 0.420 0.695
FM 0.167 0.158 0.175 0.339 0.173 0.240 0.231 0.352 0.442 0.310 0.542 0.629
MB 0.166 0.134 0.210 0.382 0.131 0.230 0.224 0.328 0.438 0.321 0.572 0.651
DEF 0.246 0.170 0.313 0.373 0.172 0.247 0.338 0.353 0.474 0.315 0.427 0.680
IV 0.441 0.217 0.424 0.459 0.241 0.259 0.367 0.297 0.489 0.399 0.442 0.714

IPR 0.320 0.235 0.337 0.411 0.249 0.340 0.322 0.337 0.527 0.490 0.565 0.707
LR 0.128 0.177 0.362 0.369 0.183 0.364 0.278 0.233 0.421 0.488 0.663 0.659

OCC 0.390 0.270 0.353 0.424 0.272 0.379 0.372 0.403 0.441 0.446 0.505 0.686
OPR 0.384 0.237 0.356 0.388 0.248 0.357 0.363 0.392 0.490 0.447 0.482 0.706
OV 0.231 0.233 0.285 0.368 0.265 0.391 0.295 0.347 0.439 0.426 0.542 0.638
SV 0.321 0.204 0.336 0.388 0.205 0.317 0.313 0.333 0.461 0.403 0.561 0.665

Note: The best result was highlighted in the red and the second was highlighted in blue.
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Table 4. ACU results of each tracker on sequences with different challenge for OPE about success.

Challenge SCM L1-APG STC CSK MTT CT DFT LOT MTMVT LRT Lp-IPFT AMFLp-IPFT

BC 0.259 0.193 0.250 0.332 0.201 0.220 0.306 0.247 0.417 0.327 0.329 0.539
FM 0.143 0.133 0.150 0.272 0.148 0.186 0.196 0.283 0.360 0.248 0.441 0.497
MB 0.136 0.110 0.182 0.306 0.111 0.178 0.193 0.265 0.360 0.274 0.463 0.515
DEF 0.194 0.141 0.232 0.279 0.142 0.202 0.277 0.257 0.358 0.245 0.314 0.498
IV 0.364 0.179 0.305 0.339 0.202 0.200 0.300 0.235 0.385 0.306 0.347 0.528

IPR 0.260 0.189 0.247 0.318 0.203 0.253 0.258 0.257 0.409 0.347 0.413 0.546
LR 0.113 0.154 0.199 0.251 0.157 0.214 0.196 0.169 0.297 0.304 0.475 0.467

OCC 0.313 0.216 0.245 0.296 0.220 0.263 0.275 0.297 0.325 0.316 0.380 0.498
OPR 0.310 0.189 0.247 0.281 0.202 0.257 0.278 0.292 0.370 0.319 0.363 0.523
OV 0.205 0.207 0.197 0.294 0.232 0.296 0.233 0.281 0.339 0.312 0.419 0.474
SV 0.261 0.166 0.276 0.276 0.169 0.220 0.236 0.251 0.346 0.293 0.427 0.498

Note: The best result was highlighted in the red and the second was highlighted in blue.

5.3. Qualitative Analysis

In view of the different characteristics of these video sequences mentioned above, we discussed
four group experiments on eight video sequences with the 12 trackers that were described above.

Experiment 1: Robustness analysis of partial occlusion

There were partial occlusion challenges in the short time in the Figure 5a Girl and Figure 5b Soccer
video sequences. In the Girl sequence, there was an occlusion of a man’s head, as in frame 436. In the
Soccer sequence, there were occlusions of red papers, as in frame 110 and 183, and an occlusion of
the trophy at frame 96. For these videos, the Lp-IPFT, L1-APG, and SCM algorithms all only used the
intensity feature and utilized trivial templates to judge occlusion, but in the complex scenes, the trivial
templates were prone to misjudgment and the templates could not update in time. The proposed
AMFLp-IPFT algorithm had a better tracking performance.

Experiment 2: Robustness analysis of fast motion

There were fast motion challenges in the Figure 5c Deer and Figure 5d Jumping video sequences.
In the Deer sequence, the target moved significantly around the 32nd frame, and there was motion blur
around the 24th frame and the 57th frame. In the Jumping sequence, there also existed fast motion and
motion blur, as in frame 16, 35, and 207. For the fast motion challenge, the proposed intelligent particle
filter enabled more particles to cover the target, so the Lp-IPFT and AMFLp-IPFT algorithms could
solve the fast motion problem well, and further improved the robustness and accuracy of the tracking.

Experiment 3: Robustness analysis of illumination variation

There were illumination variation challenges in the Figure 5e Shaking and Figure 5f Singer2
video sequences. In the Shaking sequence, the targets were all affected by the background lighting,
such as the 60th frame in the Shaking sequence and the 156th and 349th in the Singer2 sequence.
Since the color feature was sensitive to illumination, it was not able to adapt to complex scenes with
illumination variation. However, the LBP feature could make up for this deficiency, and it could
overcome the influence of illumination variation. In addition, the HOG feature was also robust to the
illumination variation. Therefore, the proposed AMFLp-IPFT algorithm had good tracking results to
these sequences.

Experiment 4: robustness analysis of deformation

There were deformation challenges in the Figure 5g Bolt and Figure 5h Dudek video sequences.
The targets’ limbs changed during the tracking, as in frame 6, 95, and 269 of the Bolt sequence.
In addition, there was some change in facial expression, such as in the 572th frame of the Dudek
sequence. Since the HOG feature maintained a good invariance of the target’s deformation in geometry
and illumination, some movements of the subtle body could be ignored by the HOG feature without
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affecting the detection result. While the target had a large deformation, other features, such as color
histograms, guaranteed that the final tracking result did not greatly deviate from the actual target.
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6. Conclusions

In order to enhance the tracking performance, we improved the L1-APG tracker [8]. Firstly, we
divided the particles into two parts and put them separately. In this way, the intelligent particles
could cooperate with each other to achieve accurate tracking. Then, to get a sparser solution, a novel
minimization model for the Lp tracker was proposed. Finally, an adaptive multi-feature fusion strategy
was proposed to solve the problem that single feature could not deal with complex scenes ideally.
The experimental results on a benchmark with 50 challenging sequences validated that the proposed
AMFLp-IPFT algorithm had a better accuracy and robustness than several state-of-the-art trackers,
for challenges such as fast motion, occlusion, illumination, and deformation. However, since the
AMFLp-IPFT algorithm utilized four features to represent the target at the same time, the real-time
performance could not be satisfied. Therefore, how to improve the tracking efficiency was the work
that needed to be researched in the next step.
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