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Abstract: As a generalization of the intuitionistic fuzzy set (IFS), a Pythagorean fuzzy set has more
flexibility than IFS in expressing uncertainty and fuzziness in the process of multiple criteria group
decision-making (MCGDM). Meanwhile, the prominent advantage of the Muirhead mean (MM)
operator is that it can reflect the relationships among the various input arguments through changing
a parameter vector. Motivated by these primary characters, in this study, we introduced the MM
operator into the Pythagorean fuzzy context to expand its applied fields. To do so, we presented the
Pythagorean fuzzy MM (PFMM) operators and Pythagorean fuzzy dual MM (PFDMM) operator
to fuse the Pythagorean fuzzy information. Then, we investigated their some properties and gave
some special cases related to the parameter vector. In addition, based on the developed operators,
two MCGDM methods under the Pythagorean fuzzy environment are proposed. An example is
given to verify the validity and feasibility of our proposed methods, and a comparative analysis is
provided to show their advantages.

Keywords: Pythagorean fuzzy set; Muirhead mean; multiple criteria group decision-making

1. Introduction

Multi-criteria group decision-making (MCGDM), a sub-field of decision-making, is a common
and important activity in the real world, and is especially useful in the fields of engineering, economic,
management, and the military. In practical applications, a critical problem is how to express the
valuation information provided by decision makers. Due to the complexity and fuzziness of MCGDM
problems, it is difficult for decision makers to give precise valuation information through employing
crisp numbers. Fuzzy set (FS) theory, originally developed by Zadeh [1], is a particularly effective tool
to capture uncertain and fuzzy information. However, due to the FS having only one membership
degree, it cannot deal effectively with some complicated fuzzy information. Therefore, Atanassov
and Rangasamy [2] developed intuitionistic fuzzy set (IFS) through introducing the non-membership
degree into the FS. In IFS, the sum of the membership degree and non-membership degree needs to be
equal to or less than 1. However, in some practical applications, IFS cannot solve the problem that
the sum of the membership and non-membership is bigger than 1, but the square sum is equal to or
less than 1. To overcome this drawback of IFS, Pythagorean fuzzy set (PFS), as a generalization of IFS,
was introduced by Yager [3,4], of which the square sum of the membership degree and non-membership
degree is less than or equal to 1. In other words, when we treat uncertainty and fuzziness in practical
MCGDM problems, PFS is a more effective and flexible tool compared with IFS.

Based on some existing aggregation operators, various aggregation operators of Pythagorean
fuzzy set have been developed by a number of researchers to solve multi-criteria decision-making
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(MCDM) problems with Pythagorean fuzzy information. Depending on whether the input argument is
independent, these operators can be divided into two categories: (1) the input argument is independent;
(2) any two input arguments are correlated. Many operators fall into the former category. For example,
Yager [3,4] developed the Pythagorean fuzzy weighted averaging (PFWA) and Pythagorean fuzzy
weighted geometric (PFWG) operators, and used these to solve Pythagorean fuzzy MCDM problems.
Based on the operational laws proposed by Zhang and Xu [5], Ma and Xu [6] presented two
new PFWA and PFWG operators, symmetric Pythagorean fuzzy weighted geometric/averaging
operators, and examined the relationships between these operators and the operators proposed by
Yager. Rahman et al. [7] proposed the Pythagorean fuzzy Einstein weighted geometric operator and
discussed its desirable properties and special cases. Garg [8] introduced the Einstein operational laws
into the Pythagorean fuzzy environment to develop two generalized averaging aggregation operators,
and utilized these operators to solve MCDM problems. Through incorporating the confidence level
into each Pythagorean fuzzy number, Garg [9] presented a series of novel averaging and geometric
operators. Zeng et al. [10] proposed the Pythagorean fuzzy ordered weighted averaging weighted
averaging distance operator. On the other hand, Peng and Yang [11] extended the Choquet integral
into the Pythagorean fuzzy environment to propose a Pythagorean fuzzy Choquet integral operator.
Wei and Lu [12] presented some Pythagorean fuzzy power aggregation operators based on the power
aggregation operator, and investigated the main characteristics of these operators. Liang et al. [13]
developed the Pythagorean fuzzy Bonferroni mean operator and their weighted form. Moreover, some
properties and cases of the proposed operators are explored and an accelerative calculating algorithm is
designed to simplify the computation process of the presented operators. Liang et al. [14] proposed the
Pythagorean fuzzy weighted geometric Bonferroni mean operator and applied it to handle MCGDM
problems with Pythagorean fuzzy information. In real decision-making, however, a relationship may
exist among more than two input arguments due to the complexity of decision-making problems.
Thus it can be seen that it is difficult for the above operators to capture the relationships between three
or more Pythagorean fuzzy input arguments.

The Muirhead mean (MM) operator, originally presented by Muirhead [15], is a well-known
information fusion operator and provides us with a new fusion method for the correlation information.
The primary characteristic of the MM operator is that it can reflect the relationship among any
number of input arguments. In addition, some existing operators including the arithmetic and
geometric averaging, Bonferroni mean [16] and Maclaurin symmetric mean [17] are special cases of it.
Consequently, some researchers have extended the MM operator into various fuzzy environments.
For instance, Qin and Liu [18] presented some 2-tuple linguistic MM operators by introducing the
MM operator into the 2-tuple linguistic context, and utilized them to solve the supplier selection
problems. Liu and You [19] developed some interval neutrosophic MM operators based on the MM
operator, and presented two novel approaches to handle multiple attribute group decision-making
problems in light of the proposed operators. Liu and Li [20] explored the MM operator under the
intuitionistic fuzzy environment, and proposed some intuitionistic fuzzy MM operators. Liu et al. [21]
introduced the MM operator into a hesitant fuzzy linguistic environment, and developed a hesitant
fuzzy linguistic MM operator and its weighted form. Wang et al. [22] extended the MM operator to
a hesitant fuzzy linguistic set, and proposed the hesitant fuzzy linguistic MM operator and hesitant
fuzzy linguistic dual MM operator and their weighted forms. Based on the Archimedean t-norm and
t-conorm, Liu and Teng [23] put forward some probabilistic linguistic Archimedean MM operators
and further explored some special cases. Liu et al. [24] proposed an interval 2-tuple weighted MM
operator by enlarging the scope of MM operator to the interval 2-tuple linguistic environment, and
applied the proposed operator to present a large group dependence evaluation model for human
reliability analysis. When we consider the relationship among any number of input arguments,
however, the above operators fail to deal with the Pythagorean fuzzy information.

According to the above analysis, we know that the existing aggregation operators of Pythagorean
fuzzy cannot capture the relationships between any number of input arguments in the information
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fusion process. At the same time, the MM operator can reflect the relationships between input
arguments, so it is necessary to extend it to handle Pythagorean fuzzy information. Hence, inspired
by the ideal characteristics of the MM operator, the present paper aims at developing some new
aggregation operators of Pythagorean fuzzy to solve MCGDM problems in which we consider the
interrelationship among any number of input arguments.

In order to accomplish this goal, the remainder of this paper is arranged as follows. In Section 2,
we describe some basic concepts and operational laws of PFS. Based on the MM operator, we develop
the Pythagorean fuzzy MM operator and Pythagorean fuzzy weighted MM operator, and the
Pythagorean fuzzy dual MM operator and Pythagorean fuzzy dual weighted MM operator in Sections 3
and 4, respectively. In Section 5, we utilize these operators to present two MCGDM methods for the
MCGDM problem with Pythagorean fuzzy information. In Section 6, an example is provided to
demonstrate the effectiveness and feasibility of the developed approaches, and the advantages of the
proposed operators are illustrated by comparing them with the existing operators. Finally, a brief
conclusion and future work directions are given in Section 7.

2. Preliminaries

In this section, some fundamental concepts related to the Pythagorean fuzzy number (PFN) are
briefly introduced below, which will be used in the following sections.

Definition 1 [3,4]. Let X = {x1, x2, · · ·, xn} be a finite nonempty set, and a PFS P in X is defined as follows

X = {< x, µP(x), νP(x) >|x ∈ X} (1)

where µP(x) ∈ [0, 1] and νP(x) ∈ [0, 1] are defined as the degree of membership and non-membership of the
element x ∈ X to P, respectively, and satisfy µ2

P(x) + ν2
P(x) ≤ 1. For every x ∈ X, we designate πP(x) as the

degree of indeterminacy of the PFS, where πP(x) =
√

1− µ2
P(x)− ν2

P(x). For convenience, α = (µP, νP) is

called as a PFN, and µ2
P + ν2

P ≤ 1 and πP =
√

1− µ2
P − ν2

P.

Definition 2 [5]. Let α1 = (µP1 , νP1), α2 = (µP2 , νP2) and α = (µP, νP) be three PFNs, and λ > 0. Then the
basic operational laws of PFN can be defined as follows:

(1) α1 ⊕ α2 =
(√

µ2
P1
+ µ2

P2
− µ2

P1
µ2

P2
, νP1 νP2

)
;

(2) α1 ⊗ α2 =
(

µP1 µP2 ,
√

ν2
P1
+ ν2

P2
− ν2

P1
ν2

P2

)
;

(3) λα =

(√
1− (1− µ2

P)
λ, (νP)

λ
)

;

(4) αλ =

(
(µP)

λ,
√

1− (1− µ2
P)

λ
)

.

Definition 3 [25]. Let α = (µP, νP) be a PFN, then the score and accuracy function of α is defined respectively
as follows

S(α) =
1
2
(1 + µ2

P − ν2
P), (2)

H(α) = µ2
P + ν2

P. (3)

Definition 4 [25]. Let α = (µP1 , νP1) and β = (µP2 , νP2) be any two PFNs, S(α) and H(α) be the score and
accuracy function of α, and S(β) and H(β) be the score and accuracy function of β, then

(1) If S(α) > S(β), then α is superior to β, α > β;
(2) If S(α) = S(β), then
(a) If H(α) > H(β), then α is superior to β, α > β;



Information 2018, 9, 142 4 of 22

(b) If H(α) = H(β), then α is equivalent to β α = β.

Definition 5 [4,5]. Let α1 = (µP1 , νP1) and α2 = (µP2 , νP2) be two PFNs, the ordering relationship on the
PFNs is defined as follows: α1 ≥ α2 if and only if µP1 ≥ µP2 and νP1 ≤ νP2 .

3. Some Pythagorean Fuzzy Muirhead Operators

The Pythagorean fuzzy MM (PFMM) operator and Pythagorean fuzzy weighted MM (PFWMM)
operator are defined in Sections 3.1 and 3.2, respectively.

3.1. The PFMM Operator

Definition 6 [15]. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi(i = 1, 2, · · ·, n) be a collection
of nonnegative real numbers. If

MMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj

, (4)

where MMQ is called the Muirhead mean (MM) operator and θ(j) (j = 1, 2, · · ·, n) is any a permutation of
(1, 2, · · ·, n), and Sn is the collection of all permutation of (1, 2, · · ·, n).

Definition 7. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs. If

PFMMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj

. (5)

where PFMMQ is called the PFMM operator and θ(j) (j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutation of (1, 2, · · ·, n).

Theorem 1. Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collection of PFNs, then the aggregated value by using
the PFMM operator is also a PFN, and

PFMMQ(α1, α2, · · ·, αn) =



√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

µ
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

 (6)

Proof. We need to prove that Equation (6) holds and is a PFN.

(1) Firstly, we prove that Equation (6) holds.
According to the operational laws (4) and (2) of Definition 2,

α
qj
θ(j) =

(
µ

qj
θ(j),

√
1− (1− ν2

θ(j))
qj
)

, and,
n

∏
j=1

α
qj
θ(j) =

 n

∏
j=1

µ
qj
θ(j),

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

,

then

∑
θ∈Sn

n

∏
j=1

α
qj
θ(j) =

√√√√1− ∏
θ∈Sn

(1−
n

∏
j=1

µ
2qj
θ(j)), ∏

θ∈Sn

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

,
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further, based on operational law (3), we can get

1
n! ∑

θ∈Sn

n

∏
j=1

α
qj
θ(j) =


√√√√√1−

(
∏

θ∈Sn

(1−
n

∏
j=1

µ
2qj
θ(j))

) 1
n!

,

∏
θ∈Sn

√√√√1−
n

∏
j=1

(1− ν2
θ(j))

qj

 1
n!

.

Consequently, we have

(
1
n! ∑

θ∈Sn

n
∏
j=1

α
qj
θ(j)

) 1
n
∑

j=1
qj
=



√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

µ
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

,

which illustrates that Equation (6) holds.
(2) In what follows, we will prove that Equation (6) is a PFN.

Let µP =


√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

µ
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

, νP =

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

.

Then we need to prove that Equation (6) satisfies the following two conditions.
(a) 0 ≤ µP ≤ 1, and 0 ≤ νP ≤ 1;
(b) µ2

P + ν2
P ≤ 1.

(a) According to Definition 1,

µ
2qj
θ(j) ∈ [0, 1] and

n

∏
j=1

µ
2qj
θ(j) ∈ [0, 1],

then we have

∏
θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)
∈ [0, 1],

(
∏

θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)) 1
n!

∈ [0, 1], and

√√√√1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)) 1
n!

∈ [0, 1],

further 
√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

µ
2qj
θ(j)

)) 1
n!


1

n
∑

j=1
qj

∈ [0, 1], i.e., 0 ≤ µP ≤ 1.

Similarly, we can get 0 ≤ νP ≤ 1. So condition (a) is satisfied.
(b) Based on µ2

θ(j) + ν2
θ(j) ≤ 1, then µ2

θ(j) ≤ 1− ν2
θ(j), we yield the inequality as follows:

µ2
P + ν2

P =

1−
(

∏
θ∈Sn

(1−
n
∏
j=1

µ
2qj
θ(j))

) 1
n!


1
n
∑

j=1
qj
+ 1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

≤

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
+ 1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
= 1,

i.e., µ2
P + ν2

P ≤ 1. Consequently, condition (b) is satisfied.
Based on the proof above, we know that theorem 1 holds. �
In what follows, we will explore some properties of the PFMM operator.
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Property 1 (Idempotency). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) are equal, i.e., αi = α = (µP, νP) for all
i, then

PFMMQ(α1, α2, · · ·, αn) = α = (µP, νP).

Proof. Since αi = α = (µP, νP), according to the Theorem 1 yields

PFMMQ(α1, α2, · · ·, αn) =



√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

µ
2qj
P )

) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
P)

qj

)) 1
n!


1
n
∑

j=1
qj

,

=



√√√√√√1−

 ∏
θ∈Sn

(1− µ

2
n
∑

j=1
qj

P )


1
n!


1

n
∑

j=1
qj

,

√√√√√√√1−

1−

 ∏
θ∈Sn

1− (1− ν2
P)

n
∑

j=1
qj


1
n!


1
n
∑

j=1
qj



=



√√√√√√√1−

(1− µ

2
n
∑

j=1
qj

P )

n!
1
n!


1

n
∑

j=1
qj

,

√√√√√√√√1−

1−


1− (1− ν2

P)

n
∑

j=1
qj

n!


1
n!


1
n
∑

j=1
qj



=



√

µ

2
n
∑

j=1
qj

P


1

n
∑

j=1
qj

,

√√√√√1−

(1− ν2
P)

n
∑

j=1
qj


1

n
∑

j=1
qj

= (µP, νP).

�

Property 2 (Monotonicity). Let αi = (µPi , νPi ) and α̂i = (µ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFMM operator, if µPi ≥ µ̂Pi and νPi ≤ ν̂Pi ,

PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α̂1, α̂2, · · ·, α̂n).

Proof. Let

PFMMQ(α1, α2, · · ·, αn)

=



√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

 = (µP, νP), and

PFMMQ(α̂1, α̂2, · · ·, α̂n)

=



√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

µ̂
2qj
θ(j)

)) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν̂2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

 = (µ̂P, ν̂P).

Since µPi ≥ µ̂Pi , based on the operational laws of Definition 2, we have

µ
2qj
θ(j) ≥ µ̂

2qj
θ(j) and

n

∏
j=1

µ
2qj
θ(j) ≥

n

∏
j=1

µ̂
2qj
θ(j) then ∏

θ∈Sn

(
1−

n

∏
j=1

µ
2qj
θ(j)

)
≤ ∏

θ∈Sn

(
1−

n

∏
j=1

µ̂
2qj
θ(j)

)
,

and (
∏

θ∈Sn

(
1−

n

∏
j=1

µ
2qj
θ(j)

)) 1
n!

≤
(

∏
θ∈Sn

(
1−

n

∏
j=1

µ̂
2qj
θ(j)

)) 1
n!

.
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Further,

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)) 1
n!

≥ 1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

µ̂
2qj
θ(j)

)) 1
n!

,

√√√√1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

µ
2qj
θ(j)

)) 1
n!

≥

√√√√1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

µ̂
2qj
θ(j)

)) 1
n!

,

and 
√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

µ
2qj
θ(j)

)) 1
n!


1

n
∑

j=1
qj

≥


√√√√√1−

(
∏

θ∈Sn

(
1−

n

∏
j=1

µ̂
2qj
θ(j)

)) 1
n!


1

n
∑

j=1
qj

.

i.e., µP ≥ µ̂P. Similarly, we also yield νP ≤ ν̂P.
Consequently, PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α̂1, α̂2, · · ·, α̂n) holds. �

Property 3 (Boundedness). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(µPi ), min(νPi )) and α− = (min(µPi ), max(νPi )), then

α+ ≥ PFMMQ(α1, α2, · · ·, αn) ≥ α−.

Proof. Based on Properties 1 and 2,
PFMMQ(α1, α2, · · ·, αn) ≤ PFMMQ(α+, α+, · · ·, α+) = α+,
PFMMQ(α1, α2, · · ·, αn) ≥ PFMMQ(α−, α−, · · ·, α−) = α−.
So, we can get α+ ≥ PFMMQ(α1, α2, · · ·, αn) ≥ α−.�

In what follows, we will discuss some special cases of the PFMM operator through changing the
values of parameter vector Q.

(1) When Q = (1, 0, · · ·, 0), Equation (6) is transformed into a Pythagorean fuzzy arithmetic
averaging operator.

PFMM(1,0,···,0)(α1, α2, · · ·, αn) =
1
n

n

∑
i=1

αi =

(√
1−

n

∏
i=1

(1− µ2
Pi
)

1
n ,

n

∏
i=1

(νPi )
1
n

)
. (7)

(2) When Q = (λ, 0, · · ·, 0), Equation (6) is transformed into a Pythagorean fuzzy generalized
arithmetic averaging operator:

PFMM(λ,0,···,0)(α1, α2, · · ·, αn) =

(√1−
n
∏
i=1

(1− µ2λ
Pi
)

1
n

) 1
λ

,

√√√√1−
(

1−
n
∏
i=1

(
1− (1− ν2

Pi
)

λ
) 1

n
) 1

λ

. (8)

(3) When Q = (1, 1, 0, 0 · ··, 0), Equation (6) is transformed into a Pythagorean fuzzy BM operator:

PFMM(1,1,0,0···,0)(α1, α2, · · ·, αn) =





√√√√√√√√√√√1−


n
∏

i, j = 1
i 6= j

(1− µ2
Pi

µ2
Pj
)



1
n(n−1)



1
2

,

√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− ν2

Pi
)(1− ν2

Pj
)
) 1

n(n−1)



1
2


. (9)
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(4) When Q = (1, 1, · · ·, 1︸ ︷︷ ︸
k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

), Equation (6) is transformed into a Pythagorean fuzzy MSM

operator [25]:

PFMM

(1, 1, · · ·, 1︸ ︷︷ ︸
k

,0, 0, · · ·, 0︸ ︷︷ ︸
n−k

)

(α1, α2, · · ·, αn) =



√√√√1−

(
∏

1≤i1≺···≺ik≤n
(1−

k
∏
j=1

µ2
Pij
)

) 1
Ck

n


1
k

,

√√√√√√1−

1−
(

∏
1≤i1≺···≺ik≤n

(
1−

k
∏
j=1

(1− ν2
Pij
)

)) 1
Ck

n


1
k

. (10)

(5) When Q = (1, 1, · · ·, 1), Equation (6) is transformed into a Pythagorean fuzzy geometric
averaging operator:

PFMM(1,1,···,1)(α1, α2, · · ·, αn) =

(
n

∏
i=1

αi

) 1
n

=

( n

∏
i=1

µPi

) 1
n

,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

. (11)

(6) When Q = (1/n, 1/n, · · ·, 1/n), Equation (6) is transformed into a Pythagorean fuzzy
geometric averaging operator:

PFMM(1/n,1/n,···,1/n)(α1, α2, · · ·, αn) =
n

∏
i=1

α
1
n
i =

( n

∏
i=1

µPi

) 1
n

,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

. (12)

3.2. The PFWMM Operator

Definition 8. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. If

PFWMMQ(α1, α2, · · ·, αn) =

(
1
n! ∑

θ∈Sn

n

∏
j=1

(nwθ(j)αθ(j))
qj

) 1
n
∑

j=1
qj

, (13)

where PFWMMQ is called the PFWMM operator and θ(j)(j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutation of (1, 2, · · ·, n).

Theorem 2. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Then, the aggregated value by using the PFWMM operator

is also a PFN, and

PFWMMQ(α1, α2, · · ·, αn)

=



√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− µ2
θ(j))

nwθ(j))
qj

)) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν
2nwθ(j)
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj

.
(14)

Proof. Based on the operational law (3) in Definition 2, nwθ(j)αθ(j) =
(√

1− (1− µ2
θ(j))

nwθ(j) , ν
nwθ(j)
θ(j)

)
,

and we can replace µθ(j) and νθ(j) with
√

1− (1− µ2
θ(j))

nwθ(j) and ν
nwθ(j)
θ(j) , respectively, in Equation (6),

thus obtaining Equation (14). Since αθ(j) is a PFN, then nwθ(j)αθ(j) is also a PFN. Similar to the proof of
Theorem 1, we know Equation (14) is also a PFN. �
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In the following, we will discuss some desirable properties of the PFWMM operator.

Property 4 (Monotonicity). Let αi = (µPi , νPi ) and α̂i = (µ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFMM operator, if µPi ≥ µ̂Pi and νPi ≤ ν̂Pi , then

PFWMMQ(α1, α2, · · ·, αn) ≥ PFWMMQ(α̂1, α̂2, · · ·, α̂n).

The Proof of Property 4 is similar to that of Property 2, so is omitted here.

Property 5 (Boundedness). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(µPi ), min(νPi )) and α− = (min(µPi ), max(νPi )), then

α+ ≥ PFWMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof of Property 5 is similar to that of Property 3, so is omitted here.

Theorem 3. The PFMM operator is a special case of the PFWMM operator.

Proof. When w = (1/n, 1/n, · · ·, 1/n)T

PFWMMQ(α1, α2, · · ·, αn)

=



√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− µ2
θ(j))

n× 1
n )

qj
)) 1

n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν
2n× 1

n
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj



=



√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

µ
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

.

�

Theorem 4. The Pythagorean fuzzy weighted averaging operator [6] is a special case of the
PFWMM operator.

Proof. When Q = (1, 0, · · ·, 0),

PFWMM(1,0,··· ,0)(α1, α2, · · ·, αn)

=



√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− µ2
θ(j))

nwθ(j))
qj

)) 1
n!


1

n
∑

j=1
qj

,

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− ν
2nwθ(j)
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj


=


√√√√1−

(
n
∏
j=1

(1− µ2
Pj
)

nwj

) 1
n

,

√√√√√1−

1−
(

n
∏
j=1

ν
2nwj
Pj

) 1
n



=

(√
1−

n
∏
j=1

(1− µ2
Pj
)

wj ,
n
∏
j=1

ν
wj
Pj

)
.

�

4. Some Pythagorean Fuzzy Dual MM Operators

In this section, we will define the Pythagorean fuzzy dual MM (PFDMM) operator and
Pythagorean fuzzy dual weighted MM (PFDWMM) operator.
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4.1. The PFDMM Operator

Definition 9. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, and αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs. If

PFDMMQ(α1, α2, · · ·, αn) =
1

n
∑

j=1
qj

(
∏

θ∈Sn

n

∑
j=1

(qjαθ(j))

) 1
n!

, (15)

where PFDMMQ is called the PFDMM operator and θ(j)(j = 1, 2, · · ·, n) is any a permutation of (1, 2, · · ·, n),
and Sn is the collection of all permutations of (1, 2, · · ·, n).

Theorem 5. Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collection of PFNs, then the aggregated value by using
the PFDMM operator is also a PFN, and

PFDMMQ(α1, α2, · · ·, αn) =


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

ν
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

. (16)

Proof. We need to prove that Equation (16) holds and is a PFN.
(1) Firstly, we will prove that Equation (16) holds.
According to laws (3) and (1) in Definition 2,

qjαθ(j) =
(√

1− (1− µ2
θ(j))

qj , ν
qj
θ(j)

)
and

n

∑
j=1

(qjαθ(j)) =

√√√√1−
n

∏
j=1

(1− µ2
θ(j))

qj ,
n

∏
j=1

ν
qj
θ(j)

.

then, based on laws (1) and (3) in Definition 2, we can obtain

∏
θ∈Sn

n

∑
j=1

(qjαθ(j)) =

∏
θ∈Sn

√√√√1−
n

∏
j=1

(1− µ2
θ(j))

qj ,

√√√√1− ∏
θ∈Sn

(1−
n

∏
j=1

ν
2qj
θ(j))


and

(
∏

θ∈Sn

n

∑
j=1

(qjαθ(j))

) 1
n!

=


∏

θ∈Sn

√√√√1−
n

∏
j=1

(1− µ2
θ(j))

qj

 1
n!

,

√√√√√1−
(

∏
θ∈Sn

(1−
n

∏
j=1

ν
2qj
θ(j))

) 1
n!

.

Further,

1
n
∑

j=1
qj

(
∏

θ∈Sn

n
∑

j=1
(qjαθ(j))

) 1
n!

=


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

ν
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

,

which illustrates that Equation (16) holds.
(2) In the following, we will prove that Equation (16) is a PFN.

Let µP =

√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

,
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νP =


√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

ν
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

.

Then we also need to prove that Equation (16) satisfies the following two conditions.
(a) 0 ≤ µP ≤ 1, and 0 ≤ νP ≤ 1;
(b) µ2

P + ν2
P ≤ 1.

(a) Based on Definition 1,

1− µ2
θ(j) ∈ [0, 1] and (1− µ2

θ(j))
qj ∈ [0, 1],

we get
n

∏
j=1

(1− µ2
θ(j))

qj ∈ [0, 1] and ∏
θ∈Sn

(
1−

n

∏
j=1

(1− µ2
θ(j))

qj

)
∈ [0, 1].

Further,

(
∏

θ∈Sn

(
1−

n

∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!

∈ [0, 1] and

1−
(

∏
θ∈Sn

(
1−

n

∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
∈ [0, 1],

then √√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n

∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
∈ [0, 1],

i.e., 0 ≤ µP ≤ 1. Similarly, we can yield 0 ≤ νP ≤ 1. Therefore, condition (a) is satisfied.
(b) Because µ2

θ(j) + ν2
θ(j) ≤ 1, then ν2

θ(j) ≤ 1− µ2
θ(j), we can obtain the inequality as follows:

µ2
Pi
+ ν2

Pi
= 1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
+

1−
(

∏
θ∈Sn

(1−
n
∏
j=1

ν
2qj
θ(j))

) 1
n!


1
n
∑

j=1
qj

≤ 1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
+

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj
= 1,

i.e., µ2
P + ν2

P ≤ 1. Consequently, condition (b) is satisfied.
Based on the proof above, we know that Theorem 5 holds. �

Similar to the properties of the PFMM operator, we can easily obtain some properties of the
PFDMM operator as follows.

Property 6 (Idempotency). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) are equal, i.e., αi = α = (µP, νP) for all
i, then

PFDMMQ(α1, α2, · · ·, αn) = α = (µP, νP).

The Proof of Property 6 is similar to that of Property 1, so is omitted here.

Property 7 (Monotonicity). Let αi = (µPi , νPi ) and α̂i = (µ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. If µPi ≥ µ̂Pi and νPi ≤ ν̂Pi for all i, then

PFDMMQ(α1, α2, · · ·, αn) ≥ PFDMMQ(α̂1, α̂2, · · ·, α̂n).
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The Proof of Property 7 is similar to that of Property 2, so is omitted here.

Property 8 (Boundedness). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(µPi ), min(νPi )) and α− = (min(µPi ), max(νPi )), then

α+ ≥ PFDMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof of Property 8 is similar to that of Property 3, so is omitted here.
In what follows, we will discuss some special cases of the PFDMM operator through changing

the values of parameter vector Q.
(1). When Q = (1, 0, · · ·, 0), Equation (16) is transformed into a Pythagorean fuzzy geometric

averaging operator:

PFDMM(1,0,···,0)(α1, α2, · · ·, αn) =

(
n

∏
i=1

(µPi )
1
n ,

√
1−

n

∏
i=1

(1− ν2
Pi
)

1
n

)
. (17)

(2). When Q = (λ, 0, · · ·, 0), Equation (16) is transformed into a Pythagorean fuzzy generalized
geometric averaging operator:

PFDMM(λ,0,···,0)(α1, α2, · · ·, αn) =


√√√√1−

(
1−

n
∏
i=1

(
1− (1− µ2

Pi
)

λ
) 1

n
) 1

λ

,

(√
1−

n
∏
i=1

(1− ν2λ
Pi
)

1
n

) 1
λ

. (18)

(3). When Q = (1, 1, 0, 0 · ··, 0), Equation (16) is transformed into a Pythagorean fuzzy geometric
BM operator:

PFDMM(1,1,0,0,···,0)(α1, α2, · · ·, αn) =



√√√√√√√√√√√1−

1−
n
∏

i, j = 1
i 6= j

(
1− (1− µ2

Pi
)(1− µ2

Pj
)
) 1

n(n−1)



1
2

,



√√√√√√√√√√√1−


n
∏

i, j = 1
i 6= j

(1− ν2
Pi

ν2
Pj
)



1
n(n−1)



1
2


. (19)

(4). When Q = (1, 1, · · ·, 1︸ ︷︷ ︸
k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

), Equation (16) is transformed into a Pythagorean fuzzy

geometric MSM operator:

PFDMM

(1, 1, · · ·, 1︸ ︷︷ ︸
k

,0, 0, · · ·, 0︸ ︷︷ ︸
n−k

)

(α1, α2, · · ·, αn)=


√√√√√√1−

1−
(

∏
1≤i1≺···≺ik≤n

(
1−

k
∏
j=1

(1− µ2
Pij
)

)) 1
Ck

n


1
k

,


√√√√1−

(
∏

1≤i1≺···≺ik≤n
(1−

k
∏
j=1

ν2
Pij
)

) 1
Ck

n


1
k

. (20)

(5). When Q = (1, 1, · · ·, 1), Equation (16) is transformed into a Pythagorean fuzzy arithmetic
averaging operator:

PFDMM(1,1,···,1)(α1, α2, · · ·, αn) =

√1−
n

∏
i=1

(1− µ2
Pi
)

1
n ,

(
n

∏
i=1

νPi

) 1
n
. (21)

(6). When Q = (1/n, 1/n, · · ·, 1/n), Equation (16) is transformed into a Pythagorean fuzzy
arithmetic averaging operator:

PFDMM(1/n,1/n,···,1/n)(α1, α2, · · ·, αn) =

√1−
n

∏
i=1

(1− µ2
Pi
)

1
n ,

(
n

∏
i=1

νPi

) 1
n
. (22)
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4.2. The PFDWMM Operator

Definition 10. Let Q = (q1, q2, · · ·, qn) ∈ Rn is parameter vector, αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weighted vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1, If

PFDWMMQ(α1, α2, · · ·, αn) =
1

n
∑

j=1
qj

(
∏

θ∈Sn

n

∑
j=1

(qjα
nwθ(j)
θ(j) )

) 1
n!

. (23)

then PFDWMMQ is called the PFDWMM operator.

Theorem 6. Let Q = (q1, q2, · · ·, qn) ∈ Rn be a parameter vector, αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a
collection of PFNs, and w = (w1, w2, · · ·, wn)

T be the weight vector of αi, where wi indicates the importance

degree of αi, satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Then, the aggregated value by using the PFDWMM operator

is also a PFN, and

PFDWMMQ(α1, α2, · · ·, αn)

=


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ
2nwθ(j)
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− v2
θ(j))

nwθ(j))
qj

)) 1
n!


1

n
∑

j=1
qj

.
(24)

Proof. According to operational law (4) in Definition 2, then α
nwθ(j)
θ(j) =

(
µ

nwθ(j)
θ(j) ,

√
1− (1− ν2

θ(j))
nwθ(j)

)
,

and we can replace µθ(j) and νθ(j) with µ
nwθ(j)
θ(j) and

√
1− (1− ν2

θ(j))
nwθ(j) , respectively, in Equation (16),

to obtain Equation (24). Since αθ(j) is a PFN, α
nwθ(j)
θ(j) is also a PFN. Similar to the proof of Theorem 5, we

know Equation (24) is also a PFN. �

In the following, we will discuss some desirable properties of the PFDWMM operator.

Property 9 (Monotonicicty). Let αi = (µPi , νPi ) and α̂i = (µ̂Pi , ν̂Pi ), (i = 1, 2, · · ·, n) be two collections of
PFNs. Through using the PFDWMM operator, if µPi ≥ µ̂Pi and νPi ≤ ν̂Pi , then

PFDWMMQ(α1, α2, · · ·, αn) ≥ PFDWMMQ(α̂1, α̂2, · · ·, α̂n).

The Proof of Property 9 is similar to that of Property 2, so is omitted here.

Property 10 (Boundedness). Let αi = (µPi , νPi ), (i = 1, 2, · · ·, n) be a collections of PFNs, α+ =

(max(µPi ), min(νPi )) and α− = (min(µPi ), max(νPi )), then

α+ ≥ PFDWMMQ(α1, α2, · · ·, αn) ≥ α−.

The Proof Property 10 is similar to that of Property 3, so is omitted here.

Theorem 7. The PFDMM operator is a special case of the PFDWMM operator.
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Proof. When w = (1/n, 1/n, · · ·, 1/n)T ,

PFDWMMQ(α1, α2, · · ·, αn)

=


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ
2n× 1

n
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− v2
θ(j))

n× 1
n )

qj
)) 1

n!


1

n
∑

j=1
qj



=


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ2
θ(j))

qj

)) 1
n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(1−
n
∏
j=1

v
2qj
θ(j))

) 1
n!


1

n
∑

j=1
qj

.

�

Theorem 8. The Pythagorean fuzzy weighted geometric averaging operator [6] is a special case of the
PFDWMM operator.

Proof. When Q = (1, 0, · · ·, 0),

PFDWMM(1,0,··· ,0)(α1, α2, · · ·, αn)

=


√√√√√√1−

1−
(

∏
θ∈Sn

(
1−

n
∏
j=1

(1− µ
2nwθ(j)
θ(j) )

qj
)) 1

n!


1
n
∑

j=1
qj

,


√√√√1−

(
∏

θ∈Sn

(
1−

n
∏
j=1

(1− (1− v2
θ(j))

nwθ(j))
qj

)) 1
n!


1

n
∑

j=1
qj


=


√√√√( n

∏
j=1

µ
2nwj
j

) 1
n

,

√√√√1−
(

n
∏
j=1

(1− v2
j )

nwj

) 1
n


=

(
n
∏
j=1

µ
wj
Pj

,

√
1−

n
∏
j=1

(1− v2
Pj
)

wj

)
.

�

5. New Approach to MCGDM with Pythagorean Fuzzy Information

In this section, we propose a new MCGDM method under the Pythagorean fuzzy environment
based on the PFWMM operator or PFDWMM operator. A typical MCGDM problem with Pythagorean
fuzzy information can be described as follows. Let A = {A1, A2, · · ·, Am} be a discrete set
of alternatives, and C = {C1, C2, · · ·, Cn} be a finite set of criteria with the weight vector is

w = {w1, w2, · · ·, wn}, satisfying wj ∈ [0, 1] (j = 1, 2, · · ·, n) and
n
∑

j=1
wj = 1. Assume that

E =
{

E1, E2, · · ·, Ep
}

be a finite set of experts with the weight vector is η =
{

η1, η2, · · ·, ηp
}

, satisfying

ηk ∈ [0, 1](k = 1, 2, · · ·, p) and
p
∑

k=1
ηk = 1. The evaluation information of alternative Ai(i = 1, 2, · · ·, m)

with respect to criteria Cj(j = 1, 2, · · ·, n) provided by the expert Ek(k = 1, 2, · · ·, p) can be denoted as
αk

ij = (µk
Pij

, νk
Pij
), where αk

ij is a PFN. Therefore, the Pythagorean fuzzy evaluation matrix Rk = (αk
ij)m×n

provided by the expert Ek is obtained.
In what follows, a novel approach based on the PFWMM operator or PFDWMM operator is

proposed to solve the MCGDM problem with Pythagorean fuzzy information, and the detailed steps
are depicted as follows.

Step 1: Generally, there are two types of criteria, i.e., benefit criterion and cost criterion. Therefore,
the Pythagorean fuzzy evaluation matrix should be normalized by

αk
ij =

{
(µk

Pij
, νk

Pij
), for benefit criterion.

(νk
Pij

, µk
Pij
), for cos t criterion.
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Step 2: Construct the group decision matrix R = (αij)m×n by applying the PFWMM operator or
PFDWMM operators to aggregate all individual evaluation matrix Rk.

αij = PFWMM(α1
ij, α2

ij, · · ·, α
p
ij),αij = PFDWMM(α1

ij, α2
ij, · · ·, α

p
ij).

Step 3: Calculate the comprehensive evaluation value αi by using the PFWMM or PFDWMM
operators to aggregate all the performance values of alternative with regard to each criterion.

αi = PFWMM(αi1, αi2, · · ·, αin),αi = PFDWMM(αi1, αi2, · · ·, αin).

Step 4: Determine the priority of alternatives according to the score value S(αi).

6. An Example

To validate the effectiveness and feasibility of the proposed method, we adopt a numerical
example that is about the selection decision of enterprise resource planning (ERP) system. An enterprise
wants to select a suitable ERP system to improve the competitive capability of the company.
In order to make a scientific decision, three experts are selected to form the expert team, denoted
as E = {E1, E2, E3}, where E1 is a CIO, E2 and E3 are two senior representatives from the user
department. Suppose that the importance of experts is equal, namely, η = (1/3, 1/3, 1/3)T . Through
analyzing the ERP system, the expert team determines the assessment criteria including function and
technology (C1), strategic fitness (C2), vendor ability (C3), and vendor reputation (C4). According
to the existing experience and knowledge, the weight vector of the criteria is assigned by experts
as w = (0.2, 0.1, 0.3, 0.4)T . Five potential ERP systems A = {A1, A2, A3, A4, A5} are chosen by
the expert team as candidates. Subsequently, the experts adopt PFNs to provide the assessment
information of the alternatives with regard to each criterion. The Pythagorean fuzzy decision matrices
are provided by three experts, shown in Tables 1–3, respectively. In what follows, we apply the
proposed method to obtain the best ERP system for the enterprise.

Table 1. The Pythagorean fuzzy decision matrix provided by the E1.

Alternatives C1 C2 C3 C4

A1 (0.4, 0.8) (0.8, 0.6) (0.6, 0.7) (0.3, 0.8)
A2 (0.7, 0.5) (0.8, 0.4) (0.8, 0.5) (0.3, 0.6)
A3 (0.3, 0.4) (0.3, 0.7) (0.7, 0.4) (0.6, 0.4)
A4 (0.6, 0.6) (0.7, 0.5) (0.7, 0.2) (0.4, 0.6)
A5 (0.5, 0.7) (0.6, 0.4) (0.9, 0.3) (0.6, 0.7)

Table 2. The Pythagorean fuzzy decision matrix provided by the E2.

Alternatives C1 C2 C3 C4

A1 (0.3, 0.9) (0.7, 0.6) (0.5, 0.8) (0.3, 0.6)
A2 (0.7, 0.4) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.3, 0.6) (0.7, 0.7) (0.7, 0.6) (0.4, 0.4)
A4 (0.4, 0.8) (0.7, 0.5) (0.6, 0.2) (0.4, 0.7)
A5 (0.2, 0.7) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

Table 3. The Pythagorean fuzzy decision matrix provided by the E3.

Alternatives C1 C2 C3 C4

A1 (0.6, 0.8) (0.7, 0.6) (0.5, 0.8) (0.5, 0.5)
A2 (0.6, 0.5) (0.9, 0.2) (0.8, 0.1) (0.3, 0.5)
A3 (0.4, 0.7) (0.7, 0.5) (0.6, 0.1) (0.2, 0.9)
A4 (0.2, 0.9) (0.5, 0.6) (0.6, 0.2) (0.1, 0.6)
A5 (0.1, 0.6) (0.8, 0.2) (0.9, 0.2) (0.6, 0.5)
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6.1. Implementation of the Proposed Method

To obtain the best ERP system, the computation steps are shown in the following:
Step 1: The criterion value of the ERP system does not require normalization because all the

criteria are benefit type.
Step 2: Based on the individual evaluation matrix Rk(k = 1, 2, 3), we employ the PFWMM

operator or PFDWMM operator (Suppose Q = (1, 1, 1)) to obtain the group decision matrix R, and the
results are shown in Tables 4 and 5, respectively.

Table 4. The collective decision matrix obtained by the PFWMM operator.

Alternatives C1 C2 C3 C4

A1 (0.4160, 0.8421) (0.7319, 0.6000) (0.5313, 0.7718) (0.3557, 0.6656)
A2 (0.6649, 0.4702) (0.8653, 0.2860) (0.8000, 0.3123) (0.3000, 0.5372)
A3 (0.3302, 0.5919) (0.5278, 0.6481) (0.6649, 0.4354) (0.3634, 0.6987)
A4 (0.3634, 0.8047) (0.6257, 0.5372) (0.6316, 0.2000) (0.2520, 0.6377)
A5 (0.2154, 0.6707) (0.7268, 0.2860) (0.8653, 0.3131) (0.6000, 0.6119)

Table 5. The collective decision matrix obtained by the PFDWMM operator.

Alternatives C1 C2 C3 C4

A1 (0.4605, 0.8320) (0.7389, 0.6000) (0.5372, 0.7652) (0.3832, 0.6214)
A2 (0.6707, 0.4642) (0.8746, 0.2520) (0.8000, 0.1710) (0.3000, 0.5313)
A3 (0.3376, 0.5518) (0.6176, 0.6257) (0.6707, 0.2884) (0.4448, 0.5241)
A4 (0.4448, 0.7560) (0.6481, 0.5313) (0.6377, 0.2000) (0.3357, 0.6316)
A5 (0.3267, 0.6649) (0.7509, 0.2520) (0.8746, 0.2884) (0.6000, 0.5944)

Step 3: With the aid of the PFWMM operator or PFDWMM operator (suppose Q = (1, 1, 1, 1)),
the comprehensive evaluation value αi of the ERP system can be obtained. The calculated results are
shown in Table 6.

Table 6. The comprehensive evaluation value by PFWMM and PFDWMM operators.

Operator A1 A2 A3 A4 A5

PFWMM (0.4700, 0.7707) (0.5948, 0.4751) (0.4150, 0.6672) (0.5015, 0.5599) (0.4269, 0.6635)
PFDWMM (0.6483, 0.6583) (0.7915, 0.3001) (0.6264, 0.4482) (0.7478, 0.3847) (0.6142, 0.4285)

Step 4: Calculate the scores of the comprehensive evaluation value αi of each ERP system
(results shown in Table 7). The ranking of the ERP systems can be obtained according to the scores in
descending order. The obtained rankings are shown in Table 7.

Table 7. The score values and the ranking results of five alternatives by two operators.

Operator S(α1) S(α2) S(α3) S(α4) S(α5) Ranking Order

PFWMM 0.3135 0.5640 0.3710 0.3568 0.4690 A2 � A5 � A3 � A4 � A1
PFDWMM 0.4935 0.7682 0.5968 0.5957 0.7056 A2 � A5 � A3 � A4 � A1

Based on the ranking results in Table 7, we know that the ranking order obtained by the PFWMM
operator and PFDWMM operator are the same, and the best ERP system is A2.

To further demonstrate the effectiveness and applicability of the presented approach, we employ
the proposed method to solve two practical MCDM problems concerned with the investment decision
respecting Internet stocks [11] and investment decision respecting R&D projects [11]. This paper
refers to individual decision-making, while these two investment decision problems are group
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decision-making problems. Hence, the implementation of the presented approach is performed
based on the comprehensive evaluation matrix that is obtained by employing the PFWA operator to
aggregate the individual evaluation matrix.

The investment decision problem of Internet stocks involves four Internet stocks (A1, A2, A3, A4)
and three benefit criteria (C1, C2, C3), and the weight vector of the criterion is w = (0.5, 0.2, 0.3).
The comprehensive evaluation matrix of Internet stocks with respect to each criterion is shown in
Table 8. The obtained results and ranking orders are shown in Table 9. From Table 9, we can see that
the ranking order obtained by the proposed method and algorithm 1 is totally identical. The best and
worst Internet stocks are A1 and A4, respectively.

Table 8. The collective evaluation matrix of Internet stocks regarding each criterion [11].

Alternatives C1 C2 C3

A1 (0.77, 0.19) (0.88, 0.18) (0.77, 0.17)
A2 (0.61, 0.67) (0.51, 0.56) (0.67, 0.18)
A3 (0.68, 0.27) (0.70, 0.51) (0.67, 0.48)
A4 (0.66, 0.62) (0.56, 0.67) (0.56, 0.36)

weight 0.5 0.2 0.3

Table 9. The score values and ranking results of four Internet stocks.

Operator S(A1) S(A2) S(A3) S(A4) Ranking Order

Algorithm 1 [11] 0.5944 0.1183 0.3195 0.0807 A1 � A3 � A2 � A4
PFWMM 0.7818 0.5098 0.5865 0.4737 A1 � A3 � A2 � A4

PFDWMM 0.8313 0.6223 0.6741 0.5614 A1 � A3 � A2 � A4

The investment decision problem of the R&D project includes three potential R&D projects
(A1, A2, A3) and five benefit criteria (C1, C2, C3, C4, C5); the weight vector of the criterion is
w = (0.2, 0.1, 0.3, 0.15, 0.25). The comprehensive evaluation matrix of R&D projects based on each
criterion is shown in Table 10, and the ranking index and ranking results of three R&D projects are
presented in Table 11. From Table 11, we know that the ranking order of R&D projects obtained in the
developed approach is the same as that determined by algorithm 2. The preferred R&D project is A1,
and the worst one is A3.

Table 10. The collective evaluation matrix of R&D project regarding each criterion [11].

Alternatives C1 C2 C3 C4 C5

A1 (0.77, 0.21) (0.71, 0.18) (0.77, 0.17) (0.75, 0.10) (0.76, 0.20)
A2 (0.59, 0.64) (0.53, 0.46) (0.67, 0.29) (0.45, 0.65) (0.80, 0.24)
A3 (0.68, 0.34) (0.68, 0.51) (0.67, 0.51) (0.80, 0.45) (0.45, 0.77)

weight 0.2 0.1 0.3 0.15 0.25

Table 11. The ranking index and ranking results of three R&D projects.

Operator S(A1) S(A2) S(A3) Ranking Order

Algorithm 2 [11] 0.9083 −1.1927 −2.2731 A1 � A2 � A3
PFWMM 0.7331 0.5008 0.5279 A1 � A2 � A3

PFDWMM 0.5931 0.4230 0.3449 A1 � A2 � A3

Based on the above analysis on two investment decision problems, we can conclude that the
method presented in this paper is effective and feasible.
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6.2. Sensitivity Analysis

To illustrate the influence of different values of parameter vector Q, we change the values of
parameter vector Q in our proposed method to rank the alternatives. The results are shown in Table 12.

Table 12. Ranking order of alternatives determined by different parameter vector Q.

Parameter Vector Q Ranking Order by PFWMM Ranking Order by PFDWMM

Q = (3, 0, 0, 0) A5 � A2 � A4 � A3 � A1 A5 � A3 � A2 � A4 � A1
Q = (2, 0, 0, 0) A5 � A2 � A4 � A3 � A1 A5 � A2 � A3 � A4 � A1
Q = (1, 0, 0, 0) A2 � A5 � A4 � A3 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 0, 0) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 1, 0) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1
Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1

Q = (0.25, 0.25, 0.25, 0.25) A2 � A5 � A3 � A4 � A1 A2 � A5 � A3 � A4 � A1

From Table 12, we know the ERP systems obtained with different parameter vectors Q are slightly
different. The main reason is that the PFWMM operator highlights the impact of overall arguments, but
the PFDWMM operator emphasizes the role of individual arguments. When Q = (1, 0, 0, 0), it is worth
noting that the PFWMM operator and PFDWMM operator will reduce to Pythagorean fuzzy weighted
averaging operator and Pythagorean fuzzy weighted geometric operator, respectively. In addition,
from Figures 1 and 2 we can make the following conclusions. For the PFWMM operator, when the
parameter vector Q has only one real number and the rest are 0, we discover that the larger the real
number of parameter vector Q, the greater the value of the score function will become. The more
interdependent relationships of criteria we consider, the smaller the score function will become.
Nevertheless, for the PFDWMM operator, the conclusion is just the opposite: that is, the greater
the real number of parameter vector Q, the smaller the value of the score function will become.
The more relationships between attributes we consider, the larger the value of the score function will
become. Therefore, the experts can select different values of parameter vector Q based on different
risk preferences.
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6.3. Comparative Analysis

In order to further verify the validity and illustrate the advantage of the proposed approach, we
compare our developed method with other existing MCGDM methods including the Pythagorean
fuzzy weighted averaging (PFWA) operator and Pythagorean fuzzy weighted geometric (PFWG)
operator [6], the symmetric Pythagorean fuzzy weighted averaging (SPFWA) operator and symmetric
Pythagorean fuzzy weighted geometric (SPFWG) operator [6], the Pythagorean fuzzy weighted
geometric Bonferroni mean (PFWGBM) operator [14], and the Pythagorean fuzzy weighted Maclaurin
symmetric mean (PFWMSM) operator [25]. The ranking results are shown in Table 13.

Table 13. Ranking order of alternatives obtained by different methods.

Operator Parameter Ranking Order

PFWA No A2 � A5 � A3 � A4 � A1
PFWG No A2 � A5 � A4 � A3 � A1
SPFWA No A2 � A5 � A3 � A4 � A1
SPFWG No A2 � A5 � A3 � A4 � A1

PFWGBM p = q = 1 A2 � A5 � A3 � A4 � A1
PFWMSM k = 2 A2 � A5 � A3 � A4 � A1
PFWMM Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1

PFDWMM Q = (1, 1, 1, 1) A2 � A5 � A3 � A4 � A1

As we can see from Table 13, the ranking order of the ERP systems by the PFWG operator
is slightly different with the other methods, but the best and worst ERP systems are A2 and A1,
respectively. This verifies that the PFWMM and PFDWMM operators we developed are reasonable
and valid for MCGDM problems with Pythagorean fuzzy information.

In what follows, the comparisons of proposed approaches and the other methods with regard
to some characteristics are shown in Table 14. In light of Table 14, some conclusions are summarized
as follows:

(1) The two methods developed by Ma and Xu [6] aggregate fuzzy information easily.
The drawbacks of Ma and Xu’s method are they assume that the input arguments are
not correlated, that is, they fail to consider the relationships between the input arguments.
Nevertheless, our developed operators can capture the correlations among all the input arguments,
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and fuse fuzzy information more flexibly by the parameter vector. Furthermore, the PFWA and PFWG
operators are a special case of PFWMM and PFDWMM operators, respectively, when the parameter
vector Q = (1, 0, 0, 0). Therefore, our developed approaches are more general and flexible comparing
with that proposed by Ma and Xu.

(2) The primary advantage of our proposed operators is that they can capture the relationships
between the multi-input arguments, while the method proposed by Liang et al. [14] can only deal with
a correlation between any two input arguments. In reality, interdependent relationships may exist
between more than two input arguments. Apparently, the PFWGBM operator is unable to handle this
situation because it only captures the relationship between any two arguments. Furthermore, we also
find that the PFDMM operator can transform into the PFGBM operator when the parameter vector
is set to Q = (1, 1, 0, · · ·, 0). Therefore, our approach can overcome the weakness of the PFWGBM
operator because our operators can deal with any number of input arguments being interdependent.

(3) Compared with our developed operators, although the PFWMSM operator can also deal with
relationships between multi-input arguments, our methods can provide a more flexible information
aggregation process through setting different parameter vector Q. Similarly, we can obtain the PFMSM
operator when the parameter vector is set to Q = (1, 1, · · ·, 1︸ ︷︷ ︸

k

, 0, 0, · · ·, 0︸ ︷︷ ︸
n−k

). Thus, our developed operators

are more general.
In short, based on the above comparisons and discussion, we can conclude that there are

advantages to the PFWMM operator and PFDWMM operator compared with the existing other
operators, including (a) they can capture the relationships between the multi-input arguments;
and (b) they are more robust and it is more convenient to fuse the Pythagorean fuzzy information by
the parameter vector Q.

Table 14. A comparison of the different approaches.

Approaches Captures Correlation of
Two Criteria

Captures Correlation of
Multiple Criteria

Makes Method Flexible
by the Parameter Vector

PFWA No No No
PFWG No No No
SPFWA No No No
SPFWG No No No

PFWGBM Yes No No
PFWMSM Yes Yes No
PFWMM Yes Yes Yes

PFDWMM Yes Yes Yes

7. Conclusions

In recent years, a number of researchers have developed aggregation operators under various
fuzzy environments and applied these to solve different decision-making problems. However, these
aggregation operators have some drawbacks in actual applications, such as being unable to reflect
the correlation of all input arguments. The MM operator has an apparent advantage in that it can
deal with the relationships between all the input arguments according to the parameter vector Q.
Motivated by the ideal characteristic of the MM operator, in this paper we extended the MM operator
into the Pythagorean fuzzy environment to deal with MCGDM problems with relationships between
any number of arguments. We proposed some aggregation operators, including the PFMM operator,
PFWMM operator, PFDMM operator, and PFDWMM operator. Then, some desirable properties and
special cases of the proposed operators were investigated and discussed in detail. In addition, we have
used the PFWMM and PFDWMM operators to present two methods to solve MCGDM problems with
PFNs. Finally, we gave an example to demonstrate the effectiveness and feasibility of the presented
methods through comparing with other existing approaches.
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In future research, it is necessary to verify the validity of the proposed methods by solving other
MCGDM problems such as supplier selection, risk assessment, and environment evaluation. Moreover,
based on the prominent characteristics of the MM operator, we shall extend the MM operator into
other fuzzy contexts such as the interval-valued 2-tuple linguistic environment, the interval-valued
Pythagorean fuzzy environment, and the triangle intuitionistic fuzzy context.
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Abbreviations

All abbreviations used in this paper:

BM Bonferroni mean
ERP Enterprise resource planning
FS Fuzzy set
IFS Intuitionistic fuzzy set
MCDM Multi-criteria decision-making
MCGDM Multi-criteria group decision-making
MM Muirhead mean
MSM Maclaurin symmetric mean
PFDMM Pythagorean fuzzy dual Muirhead mean
PFDWMM Pythagorean fuzzy dual weighted Muirhead mean
PFMM Pythagorean fuzzy Muirhead mean
PFN Pythagorean fuzzy number
PFS Pythagorean fuzzy set
PFWA Pythagorean fuzzy weighted averaging
PFWG Pythagorean fuzzy weighted geometric
PFWGBM Pythagorean fuzzy weighted geometric Bonferroni mean
PFWMM Pythagorean fuzzy weighted Muirhead mean
PFWMSM Pythagorean fuzzy weighted Maclaurin symmetric mean
SPFWA Symmetric Pythagorean fuzzy weighted averaging
SPFWG Symmetric Pythagorean fuzzy weighted geometric
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