1010 e . /
information ﬂ“\b\w

Article

Make Flows Great Again: A Hybrid Resilience
Mechanism for OpenFlow Networks

Walber José Adriano Silva

Center for Informatics, Federal University of Pernambuco, Recife 50740-560, Brazil;
wjas@cin.ufpe.br; Tel.: +55-81-2126-8430

check for
Received: 2 April 2018; Accepted: 13 June 2018; Published: 15 June 2018 updates

Abstract: A top concern in Software-Defined Networking (SDN) is the management of network
flows. The resource limitation in SDN devices, e.g., Ternary Content Addressable Memory (TCAM)
size, and the signaling overhead between the control and data plane elements can impose scalability
restrictions for a network. A notable SDN technology is the OpenFlow protocol, and failures in links
and nodes inside an OpenFlow network could lead to drawbacks, such as packet loss. This work
proposes the Local Node Group fast reroute (LONG), a hybrid resilience mechanism for OpenFlow
networks that combines protection and restoration resilience mechanisms. The results achieved
indicate that LONG is a practical approach when compared against the state-of-the-art algorithms.

Keywords: resilience mechanism; OpenFlow network; flow management; software-defined
networking

1. Introduction

Software-Defined Networking (SDN) is emerging as a new paradigm [1-4], which proposes to
avoid the vertical integration and separation of logic control from devices to promote innovation.
SDN enables a global view and network programmability of the infrastructure through its centralized
network management approach based on the so-called SDN controller [5,6].

There are some instances of the concepts of SDN [7], and one of them is the OpenFlow protocol [8].
The OpenFlow protocol (a standardized open interface) allows an OpenFlow controller to program the
Forwarding Information Base (FIB) of OpenFlow switches [8]. In an OpenFlow network, the flows
are deployed with Ternary Content Addressable Memory (TCAM) [9]. TCAM memories are very
fast, however with the limitation of being of high cost and high energy consumption. In addition,
currently OpenFlow switches have between ~500 and 2500 OpenFlow rules [10] (with high-end
switches supporting more than 100,000 rules), and the effective use of OpenFlow switches memory is
vital to operating OpenFlow networks, especially in cases of failures. Besides the memory limitation,
the SDN controller has to maintain a consistent view of the network state [11,12]. Depending on the
approach to fetch the information about the network state, the signaling between the switches and
controller can play a crucial role in the network communication overhead.

Furthermore, it is essential to have a minimal guarantee that the network will remain available and
operational, even when part of the network goes down (e.g., caused by a link failure). For OpenFlow
networks, the resilient mechanisms are approaches that seek to bring minimal guarantees for the
network connectivity. Previous works basically classified two types of resilient mechanisms for
OpenFlow networks [13,14]: restoration (uses a reactive strategy), where in the presence of a link
failure, the controller reacts by signaling the data plane elements to restore the broken flows affected by
the failure; and protection (uses a proactive strategy), when backup paths are configured and installed
in advance before failures occur.

Information 2018, 9, 146; doi:10.3390/info9060146 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0001-5296-2234
http://www.mdpi.com/2078-2489/9/6/146?type=check_update&version=1
http://dx.doi.org/10.3390/info9060146
http://www.mdpi.com/journal/information

Information 2018, 9, 146 2 of 19

Decoupling hardware and software of network devices is a major feature of SDN and hence
imposes more latency for restoration resilience mechanisms due to communication between data
and control plane elements. However, this approach makes the network state maintenance more
straightforward, once the failure event is notified to the controller.

One fast protection resilience mechanism is specified in the OpenFlow protocol, the Fast Failover
Group Table [15] (FF). Since OpenFlow Version 1.1, the specification depicts the implementation of
the Fast Failover Group Table, a resilience mechanism located in an OpenFlow switch that could
change primary paths to backup paths in the presence of link failure. The main goal is to decrease the
unavailable time of the network after a link failure.

Thus, an OpenFlow switch with FF can take local action to restore the failure without the
requirement of communicating the failure to the OpenFlow controller. Although FF notoriously
reduces the recovery time after a link failure [14,16,17], it produces an inconsistency of the network
state inside the controller, as all restoration processes occur at the data plane level (OpenFlow switches).
Hence, the inconsistency in the control plane level (controller) could lead to a suboptimal bandwidth
and TCAM memory utilization, as well as increase the latency in network flows.

Thus, as far as we know, none previous works were designed to mix protection and recovery
mechanisms to mitigate the effects of failure links inside OpenFlow networks. The extensive survey [18]
also highlights the necessity of a hybrid approach in the field. Therefore, this work proposes the Local
Node Group fast reroute (LONG), a resilience mechanism for OpenFlow networks that applies an
aggregation technique to keep the number of OpenFlow rules installed minimal and uses an active
strategy, which mixes the benefits of proactive and reactive strategies for resilience mechanisms
without losing the global view of the network state. The main contributions of this work are:

e A literature review of the current state-of-the-art in resilience mechanisms for OpenFlow networks
is in Section 3;
o The presentation of LONG, a hybrid resilience mechanism for OpenFlow networks, is in Section 4;

The remainder of this paper is organized as follows: Section 2 presents preliminary concepts
about OpenFlow and resilience mechanisms; Section 3 depicts related works; Section 4 details LONG’s
logic; Section 5 describes the performance evaluation executed; Section 6 discusses the main results of
this paper; and finally, Section 7 provides the final thoughts.

2. Preliminaries

Resilience mechanisms are vital for SDN networks. They assist network operators to reach high
levels of availability. However, to apply a resilience mechanism, the controller has to be aware of the
state of the network. One element of the network state is the topology. Thus, a brief review of how the
SDN controller can fetch the topology information is given in the next subsection.

2.1. Topology Discovery

The topology discovery process can be reached using flood messages. Figure 1 depicts a process
of discovering the topology in an OpenFlow network, where the long dashed lines represent the
control packets from/to OpenFlow switches or hosts. This process intensively uses the OpenFlow
flood port [19], where an incoming packet is distributed to all physical ports except the input port and
those disabled by the Spanning Tree Protocol (STP). Obviously, the switching loop treatment has to be
done to avoid broadcast storms during the discovery process of the SDN topologies with cycles.

The SDN controller is responsible for acquiring physical network information, such as links and
OpenFlow switches’ identifications and features (e.g., supported link rates of each switch port). It also
creates a logical abstraction of the representation of the physical topology that can be properly used by
the other components. Regarding implementation, one discovery protocol, used in Ethernet networks,
that provides topology discovery is the Link Layer Discovery Protocol (LLDP).

Information 2018, 9, 146 30f 19

Besides, the controller also monitors the underlying infrastructure to maintain topology
consistency. If a link suffers a failure, it is expected that the controller receives status information from
the OpenFlow switch via the OFPT_PORT_STATUSmessage notification [19]. Thus, it is expected
that every modification on the topology is communicated to the controller, and then, it provides an
appropriated treatment to keep the consistency of the topology and network state. The controller
can also use either Loss Of Signal (LOS) or Bidirectional Forwarding Detection (BFD) [20] to detect

link failure.
OpenFlow
Controller

Figure 1. Topology discovery using flood messages.

2.2. OpenFlow Fast Failover Group Table

An OpenFlow network uses the concept of flow to carry traffic inside the network. A flow is
a sequence of packets sent from a particular source to a particular destination following a given
path [5], where the packets match the same fields values of a flow entry. A path is an ordered sequence
of OpenFlow switches and links from the origin to the destination. In an OpenFlow switch, the flow
entry matched fields, in a flow table, include Layer 2, 3 or 4 header information, the ingress port or the
metadata values [19].

As explained in the work of [21], which proposes an SDN resilience mechanism implemented
in hardware that use OpenState [22] (an extension of the OpenFlow specification for stateful packet
processing), the resilience mechanism deployed in hardware has a notorious minimal unavailability
time in comparison with software approaches. Thus, since OpenFlow Version 1.1, the OpenFlow
specification provides the implementation of the Fast Failover group table (FF) [15], which is a resilience
mechanism deployed in an OpenFlow switch, which could change primary paths to backup paths in
the presence of link failures. The main goal of FF is to decrease the restoration time after a failure and
avoid the overhead communication between switch and controller.

Figure 2 depicts a scheme for using FF. Suppose an OpenFlow switch has the flow table as
indicated, in which the instruction of a flow is to apply the FF group type. Thus, the switch will
autonomously monitor the first port in the action buckets, seeking for a change in the first watch port.
If a link failure occurs with that network port interface, the status of the port will not have the bit
OFPPS_LIVEenabled, and the switch will apply the next action in that action bucket. In the example of
Figure 2, if port 2 goes down (caused by a failure), the switch stops forwarding traffic to port 2 and
starts forwarding traffic to port 3. Whenever a link failure occurs, the controller must gain awareness
about the underlying topology, as presented in the aforementioned Section 2.1.

Information 2018, 9, 146 4 0f 19

Flow table
Match field | Instruction | (., }——-20% 3
& Groupl

OpenFlow
Switch

Group table
Group Identifier| Group type Action buckets

Watch port: 2; Outport:2
Groupl Fast Failover W:tgh ggrt: 3: Oatggrtﬂ

(...) (looa)) (looa))

Figure 2. Scheme of the fast failover.

3. Related Works

This section compiles and classifies a few recent works and approaches in the field of resilience
mechanisms. It also presents the challenge of managing the number of rules required in a resilience
mechanism, as the OpenFlow switches have a limited memory that can be used. This section concludes
with a presentation of the state-of-the-art resilience schemes.

3.1. Classification of Resilience Mechanisms

A trade-off among rule installation and the signaling overhead between OpenFlow switches and
the OpenFlow controller must be made [23,24]. Traditionally, the resilience mechanisms have been
classified into two basic categories [17,18,25,26]: reactive approach (or restoration); and proactive
approach (or protection).

Restoration solutions create rules on demand to react in the link failure events. Whenever
a link failure occurs, the controller reacts by signaling the data plane elements to restore the broken
flows affected by the failure. For OpenFlow networks, restoration solutions are similar to the
usual process of flow creation. When a packet does not match any rule installed in an OpenFlow
switch, often the switch enqueues the packet and informs the controller of a new flow creation via
OFPT_PACKET_INmessages [19]. Afterward, the controller computes the rules to be associated with
the new flow and installs them in the network. Once the rules are installed, on the switches, packets are
dequeued and forwarded to the network. The freshly-installed rules will then process any subsequent
packet of the flow without further intervention of the controller [18].

On the other hand, in a protection (or proactive) approach, rules are populated in advance,
when backup paths are configured and installed before failures occur. In other words, a protected flow
is created in the network before a failure occurs or any packet belonging to the primary path arrives at
an OpenFlow switch port.

Instead of restoration and protection approaches, a third type in the classification of resilience
mechanisms can be used, as well [23]. The active approach optimizes the control of network traffic,
signaling and memory utilization by exploring the bird’s eye-view of SDN. This is reachable with
the monitoring state of the network searching to mitigate the occurrence of a node/link failure.
It is basically a hybrid of the proactive and reactive strategies. Therefore, this work describes and
investigates LONG, a hybrid (or active) resilience mechanism to be deployed in OpenFlow networks.

3.2. Schemes of Resilience Mechanisms

In [27], the authors proposed a protection resilient mechanism against link and node failures to
avoid disconnections between switches and controllers. They used pre-configured backup links in
the switches, and when the communication failure occurs between the switch and the SDN controller,
the switch can take local action by using the backup path to the controller. This local action does

Information 2018, 9, 146 50f 19

not need to involve other switches or the controller. Regarding disruption between OpenFlow
switches, the authors in [14] proposed a restoration algorithm when link failures occur between
OpenFlow switches.

The authors in [17] also presented a failover scheme for the protection of an individual link that
connects two switches and used the Bidirectional Forwarding Detection (IBFD) [28] to detect the
availability of network links. BFD works by sending control and echo messages between switches
to discover the state of the connected links. Thus, they combined OpenvSwitch [29] (an OpenFlow
switch implementation) with BFD and the OpenFlow Fast Failover group table [15] into a seamless
solution. However, their scheme did not consider potential network traffic congestion when a failure
occurs and flows need to use the backup paths, which may be already congested, making the situation
even worse.

To improve the resilience mechanism of fast failover, the work in [30] applied ¢ multiple backups
paths for protection, called t-resilient. Thus, an SDN network operator could increase the number of
alternative protect paths for a link between OpenFlow switches. Configuring multiple backup paths
inside the OpenFlow switches has its drawbacks. OpenFlow switches often are deployed with Ternary
Content Addressable Memory (TCAM). TCAM memories are very fast, however with the limitations
of being high cost, because they require much space in their chip hardware, and having high energy
consumption. Thereby, the appropriate use of rules is a fundamental approach for a practical SDN
network operation.

Although having multiple protection paths seems to be intuitive for increasing the availability
of the network, other works indicate that the probability of multiple links failing on a network over
a single administrative domain is very low (e.g., a data center) [31,32]. Hence, a straightforward
resilience mechanism for OpenFlow networks is to assume the scenario that only one link failure
occurs at a given time.

The authors in [32] explore a failure recovery scheme using backup tunnels. The main idea of
the work is to create a general optimization framework to model traffic engineering with backup
tunnels and to be applicable for single link failures in an OpenFlow network. However, they delegate
the distribution of bandwidth usage to the OpenFlow switches, using the group type Select of the
OpenFlow specification. The problem with this approach is that the controller does not have awareness
of the flow creation process in the network.

Finally, the compilation of the remaining related works is presented in Table 1, in which
they are organized by the type of resilience mechanism, the main metrics used and the validation
methodology adopted.

Information 2018, 9, 146 6 of 19

Table 1. A comparison of related works with regards to type (restoration or protection), main metric
(depends on each work) and validation methodology (simulation, emulation or prototype). TCAM,
Ternary Content Addressable Memory; LONG, Local Node Group fast reroute.

Works Type Main Metrics Validation

Switchover time, .
Emulation and

Sharma et al. [14] Restoration round-trip time
simulation
and packet loss
Beheshti and . - . .
Protection Unprotectability Simulation
Zhang [27]
. . Data loss and .
Liu et al. [33] Protection Emulation
throughput
Adrichem et al. [17] Protection Recovery time Prototype
Stephens, Cox . e . .
. Protection TCAM utilization Simulation
and Rixner [30]

.) Flow entries, packet loss .
Lin et al. [16] Protection Emulation

and average recovery time

Packet loss Emulation and
Cascone et al. [21] Restoration

and flow entries simulation

. Flow entries and .
Zhang et al. [13] Restoration Emulation

failure recovery time

) Packet loss, memory)
Restoration o Emulation and
LONG] utilization, and) .
and protection . simulation
recovery time

3.3. Resilience Mechanisms

Figure 3 depicts the resilience mechanisms extracted from related works. Figure 3a describes
an OpenFlow network with three primary flows from Sources (51, S2, and S3) to Destination hosts
(D1, D2 and D3). To protect the path [A, B, C], a resilience mechanism can create backup rules to avoid

unavailability when a primary path suffers a link failure. In the case of the path [A, B, C], the affected
link can be link A-B or B-C.

Information 2018, 9, 146 7 of 19

Figure 3. Examples of resilience mechanisms for OpenFlow networks. (a) Flows created from and

to nodes; (b) additional rules of Path Protection (PP); (c) after link B-C failure and application of
Local Restoration (LR); (d) after link B-C failure and application of Path Restoration (PR); (e) after link
B-C failure and application of Local Fast Restoration (LFR).

A trivial approach would be to instal OpenFlow rules to protect the link A-B and other rules to
protect the flows from a link B-C failure. This logic is presented in Figure 3b, where the Path Protection
(PP) applies OpenFlow rules to protect the path [A, B, C]. Thus, if link A-B or B-C suffers a failure,
the flows from hosts S1, S2 and S3 still reach destination hosts D1, D2 and D3 by using the additional
flows installed in advance for the protection scheme. Besides, no signaling between the controller
and OpenFlow switches is needed. Nonetheless, extra rules are required to compose an operational
solution (as indicated by the paths [B, A, D, E, F, C] and [A, D, E, F, C] in Figure 3b).

Instead of the protection mechanism, a network operator can opt for a restoration approach,
where new flows are installed after failure. Figure 3¢ depicts the operation of Local Restoration (LR).
LR is indicated when the computation path time is a bottleneck of the resilience scheme to restore the
flows (network with a considerable number of nodes and links). Thus, when a link failure occurs,
the OpenFlow controller acquires the information of what nodes have evolved and reconstructs the
broken path between those nodes. If the packets belong to the affected flows, they need to be sent back
through the same input port of an OpenFlow switch; the OpenFlow specification has a special port for
this case. The OFPP_IN_PORT is a virtual port that has to be explicitly set in OpenFlow rules in order
for a switch send a packet back to the same input port [19].

Another restoration mechanism is Path Restoration (PR) (see Figure 3d), which the work of
Sharma et al. [14] uses. Different from LR, PR exercises the global view of SDN networks and computes
the best path (often using the shortest path algorithm) for each flow affected by the broken link. Note
that under certain circumstances, LR and PR can produce the same outcome. In the topology used as
the example (see Figure 3a), if link A-B suffers a failure, the recovery mechanism of LR and PR will
produce the same final network state because Node A is the disjoint point between the primary and
backup path.

Information 2018, 9, 146 8 of 19

To reduce signaling between controller and OpenFlow switches, as well as the number of flow
entries installed, a resilience recovery strategy can employ an aggregation scheme. The aggregation
scheme can use the IP network mask or tunnels. The application of Local Fast Restoration (LFR)
is presented in Figure 3e. Thus, instead of treating every flow individually (as PP and PR), LFR
aggregates all flows into one “big” flow that makes all packets affected by the failure be redirected
using this “big” flow. An example of work that applies the LFR concept is in Zhang et al. [13].

4. Local Group Node Fast Reroute

This section presents the Local Group Node fast reroute (LONG). LONG is a hybrid approach of
resilience mechanisms for OpenFlow networks that has two phases. In the first phase, a given path
is protected by the additional OpenFlow rules with FF (see Section 2.2 for more information). When
a link (or a set of links) fails, LONG applies the second phase, which restores the consistency state
of the network and optimizes all paths affected by the link failure. The next subsection presents an
example that explains and clarifies the phases of LONG.

4.1. An Example

The application of LONG in a simple topology is depicted in Figure 4, in which the source hosts
(51, S2 and S3) communicate with each destination host (D1, D2 and D3). In Figure 4a, the path
[A, B, C] is the primary path for flows from source to destination hosts. LONG applies a protection
rule from Node B to Node C (path [B, A, D, E, F]). Thus, if any of the links A-B or B-C suffers a failure,
the backup path will be used automatically with the OpenFlow feature of FF. That way, path [A, B, C]
is protected.

If a link that belongs to the primary path suffers a failure, the protected path will be used,
as indicated by Figure 4b, in which the link B-C is no longer available. As a consequence, the packets
traveling through a backup path will reach Node C (destine node). Thus, even if the link A-B fails,
all the flows from source hosts will continue to experience reachability to destination hosts because the
backup path also protects that link. This is the basic idea of LONG’s protection phase, where the main
goal is to make the paths highly available.

Nonetheless, the use of a backup path can result in a non-optimal network utilization because it is
possible that the flows will travel a longer distance than necessary after a link failure. A restoration
phase is fundamental to make all the paths optimal again. Often, the shortest path algorithm is used to
create optimal paths (in which the path length is the metric), but an optimal path can be defined with
any metric that a network operator stipulates.

A resilience mechanism deployed in the network hardware, such as FF, can lead to an inconsistent
global view of the network because when a link failure occurs, all multiplex actions of FF are performed
inside the OpenFlow switch without the consent of the controller [11]. In this situation, the controller
must recover the current network state.

Different from previous works that adopted specific protocols for discovering a link failure
(e.g., BFD [28]), LONG uses the OpenFlow messages OFPT_PORT_STATUS sent by OpenFlow switches
to the controller. Those messages contain the identification of the switch and port affected by the failure.
Therefore, the controller acquires information necessary to recover the network state consistency and
perform corrections to non-optimized flows.

Once the controller is aware of the a link failure, it starts a restoration phase to recover the
consistency of the network state and makes flows that are using backup paths optimal again. Figure 4c
presents the scheme for the restoration of the path between Nodes A and C, after the link B-C failure.
That concludes LONG’s final phase.

Information 2018, 9, 146 9 of 19

B) N \ 2.
i o //’/\\3\ 3/ 3
s \i S N o zf

S3 | D 21—4“1 E 2—41 F |

@)

- :\4/;‘\ //\,\3; -
- N4 A A%)
()

Figure 4. LONG dynamics before and after a link failure. (a) LONG before the link B-C failure.
Path [A, B, C] is protected. (b) LONG after the link B-C failure (proactive protection). (¢) LONG after
the protection and restoration phases are applied.

4.2. Notation and Concepts

For brevity, first, the notation used throughout this work is summarized in Table 2, and an
individual description for each item is provided. The notation is used to compose the LONG algorithms,
and those are detailed in the next subsections.

Thus, before delving into the algorithms, some concepts need to be defined. One of them is the
concept of endpoints. They are places inside an OpenFlow network where the network operator has
some interest for packets to reach that location (notation O; see Table 2). An endpoint can be a host,
a switch port connected to a load balancer appliance, the ingress/egress of the backbone network,
and so forth. Thus, an endpoint consists of two elements. The first one is the source, where the packets
are identified to belong a specific flow, and the destination, the place where the packets are released
from the flow. Furthermore, the path connecting the source to the destination is composed using
a tunnel.

This work models an OpenFlow network as a directed graph (or digraph) G(V, E), where V is
a set of nodes (e.g., OpenFlow switches) and E a set of edges (e.g., network links). For the creation
of the network state, the OpenFlow controller usually uses flood messages to discover the topology
and maintain the graph data structure, G(V, E). Thereby, with the topology of the OpenFlow network
known, the flow creation algorithms can be applied, once the OpenFlow controller has an instance of
the data structure of G. One way to reach that topology information is fetching OpenFlow switches
with control packets to discover the origin and destiny of the links, switches and hosts (as already
described in Section 2.1).

Information 2018, 9, 146

10 of 19

Table 2. Notation adopted.

Notation Description
The network topology, where V denotes the set
G(V,E) of nodes (switches) and E the set of edges (links

between switches)

0 Set of endpoints (source and destination of
a flow)

I A set of path identifiers

5 Source endpoint (source a flow)

d Destination endpoint (destination a flow)

get_port(v,d)

Function that returns the output port for

destination d of switch v

Function that returns the match for a given

MT (e, @)
argument
ofps OpenFlow packet port status event
opo OpenFlow packet output event
send(e, o) Function that sends an Outputpacket.
F All flows installed and active in the network.
v An OpenFlow switch

l

A failed link

Provides the number of elements in a given set

4.3. LONG Protection Phase

The protection phase of LONG is responsible for distributing the primary and backup paths
through the network. Algorithm 1 depicts the protection phase of LONG, where it is assumed that the
network topology is known, the set of endpoints and a set of path identifiers is provided.

Between lines 1 and 7, the primary path is computed using Dijkstra’s algorithm (line 2).
Afterwards, a unique identification for primary and backup paths is reserved from the set of identifiers
(lines 3 and 4), and that identification is assigned to be installed for primary and backup paths

(lines 5 and 6).

Algorithm 1 The algorithm of LONG for the protection phase.

Input: The network topology G(V, E), set of endpoints O, set of identifiers I.

Output: For all endpoints, install primary and backup paths between source and destination.

1: for (s,d) in O do

2: Pyy < Find the shortest path from s to d on G with Dijkstra’s algorithm.

primary_id < get_an_available_tag(!,d).

backup_id < get_an_available_tag(I,d).

install_backup_path(P,,backup_id).

. end for

3
4
5. install_primary_path(Psy,primary_id).
6
7

Information 2018, 9, 146 11 of 19

For installation of the primary path, Algorithm 2 is used. The algorithm requires the network
topology, the identifier selected for the primary path, the switches that compose the endpoints and
the path between those endpoints. Lines 2-5 initialize the variables, and then the installation of the
primary path occurs between lines 6 and 12.

Algorithm 2 Install primary path.

Input: The network topology G(V, E), an identifier i, switch source sw_src, switch destination sw_dst,
P,; path from sw_src to sw_dst

Output: Install a primary path between switch source and switch destination using the selected
identifier.

: {Initializing variables:}

. in_port < 0.

: out_port < 0.

: counter < 0.

. path_length < || Py]|.

: for counter < path_length —1 do

out_port < get_port(G, Pyz[counter], Pyg[counter + 1])

match <— MT (i)

opo < create_open flow(out_port, match, action)

© 0 N U oA W N e

10: send(opo, Pyy[counter])
11: counter < counter + 1.
12: end for

Algorithm 3 installs the backup paths for the primary path. The idea here is proactive install rules
that avoid any unavailability in the primary path.

Algorithm 3 Install backup paths.

Input: The network topology G(V, E), an identifier i, switch source sw_src, switch destination sw_dst,
P,; path from sw_src to sw_dst
Output: Install backup paths between switch source and switch destination using the selected tag.
1: for src_node,dst_node in P,; do
e < get_edge(E,src_node,dst_node).
Gf — G(V,E — E).
P!, < Find the shortest path from src_node to dst_node on G with Dijkstra’s algorithm.

2

3

4

5: in_port < 0.
6 out_port < 0.

7. counter < 0.

8: path_length < ||P.,||.
9

for counter < path_length — 1 do

10: out_port < get_port(G, P.;[counter], P.,[counter + 1])
11: match < MT(i)

12: opo < create_open flow(out_port, match, action)

13: send(opo, P! ;[counter])

14: counter <— counter + 1.

15 end for
16: end for

Information 2018, 9, 146 12 of 19

4.4. LONG Restoration Phase

After the LONG protection phase, the LONG resilience mechanism begins the restoration phase.
Algorithm 4 depicts the restoration phase of the LONG approach. This phase is important to avoid the
underutilization of flow entries in the OpenFlow network. Thereby, the algorithm uses the o f ps packet
with the information of the link failure. Between lines 1-5, the involved switches are identified, the
topology is updated with the failed link, and the affected flows are discovered.

Then, once the current network state is known, then new paths for the affected flows can be
installed. Lines from 6-10 depict this process for each flow affected by the link failure.

Algorithm 4 The algorithm of LONG for the restoration phase.

Input: The network topology G(V, E), set of F, set of identifiers I and of ps.
Output: The flows will follow the shortest path.

1: | < get_failed_link(of ps).

2: src_node,dst_node < get_switches_af fected(G,1).

3: e < get_edge(E,src_node,dst_node).

4: Gf — G(V,E — e).

5. af fected_flows < get_af fected_flows(G,I, F).

6: for flow in af fected_flows do

7. sre,dst < get_flow(G, flow).
8 P, < Find the shortest path from src to dst on Gy with Dijkstra’s algorithm.
9 primary_id < get_an_available_identifier(I,d).
10: install_primary_path(Psy,primary_id) .
11: end for

5. Evaluation

For performance evaluation, LONG is analyzed against the PP, LR, PR and LFR approaches.
PP is a protection resilience mechanism (that creates backup rules in advance), and LR, PR and LFR
are restoration approaches (see Section 3.3 for more detail about those resilience mechanisms).
The description of those algorithms, as well as the literature reviewed are in Section 3.

Two computers were used to emulate the OpenFlow network scenarios. The first computer was
a dedicated machine with Ubuntu Version 17.04, 8 CPU cores with a clock of 2.20 GHz and 8 GB of
RAM. This computer was used as the OpenFlow controller with Ryu [34]. The second computer has
Ubuntu Version 14.04.4 with 3 GB of RAM and a dual-core CPU with a 2.4-GHz clock. This second
machine executed Mininet [35] for the network emulation environment. A physical Ethernet cable of
100 Mbps connected the computers in crossover mode.

The dataset topology from Internet Topology Zoo [36] was used. Topology Zoo is an ongoing
project that collects network topologies” information from around the world, and it is very useful for
researchers to access information from real-world topologies. The 2005” Abilene topology was adopted
to apply the experiments of LONG. Once, with the data network information, the network topology
was reproduced inside the emulation environment of Mininet [35]. The topology used has 11 nodes
and 14 links. Figure 5a presents the Abilene topology representation.

Besides the Abilene topology, another topology adopted was from the WAN Google topology.
The Google topology was extracted from the work of [37]. It was composed of 12 nodes and 18 links,
and its representation is in Figure 5b. Therefore, all topologies adopted in this work are in Figure 5.

Information 2018, 9, 146 13 of 19

Seattle

a5hington DC

Los Angeles " Atlanta

Houston

(@) (b)

Figure 5. Topologies adopted in this work. (a) The representation of the Abilene topology.
(b) The representation of a WAN Google topology.

5.1. Flows Entries

A criterion for measurement scalability is using the number of messages as an evaluation
metric [38]. Thus, one way to evaluate LONG is using the total number of possible flow entries
required for connecting two endpoints in the OpenFlow network. The flow entries can be understood
as the rules used in the flow table of an OpenFlow switch. Thereby, the flow entries consumed for the
approaches measured were: simple flow creation (where a flow connects to endpoints in the topology);
path protection; and LONG protection phase (for details about the last two approaches, see Section 4.3).

Two endpoints were randomly selected in one of the topologies and the number of flow entries in
each experiment executed measured more than 300 times, then the average was computed. Besides,
for the Abilene and Google topologies, each experiment was configured as 10 flows per path to connect
the two endpoints. In other words, a path connecting two endpoints will have 10 flows. After collecting
the measurements, the average and standard deviation were calculated, and a confidence interval of
95% was used. The results for the Abilene and Google topologies are in Figure 6.

9000 : -
8000 Simple Flow Creation ———

7000 Path Protection
6000 LON G protection phase

5000
4000
3000
2000

1000 M

0
100 200 300 400 500 600 700 800 900 1000
Number of flows

@)

Total number of flow entries

8000 : -

7000 Simple Flow Creat!on —
Path Protection ———

6000 LONG protection phase

5000

4000
3000
2000

1000 //

0
100 200 300 400 500 600 700 800 900 1000
Number of flows

(b)

Total number of flow entries

Figure 6. Number of flow entries for different topologies. (a) To the Abilene topology, the number of
flow entries for each approach adopting 10 flows per path. (b) The number of flow entries for each
approach with 10 flows per path using the Google topology.

Information 2018, 9, 146 14 of 19

The baseline for analysis is the simple flow creation. This algorithm uses one flow entry in
each OpenFlow switch for every flow created in the path between the endpoints. Compared against
path protection, path protection consumes much more flow entries on average to connect the endpoints
in both topologies; see Figure 6a,b, respectively. This result is expected, as for each flow, a protection
path must be created, as well, and that protection path avoids the unavailability of the flow in the
presence of a link failure.

However, with the LONG protection phase, the average number of flow entries is a little bit higher
than simple flow creation. This difference is caused by the additional use of flow entries to represent
the backup tunnel paths required to protect the main path of each flow. Compared to path protection,
the LONG protection phase is a more scalable solution based on the results achieved and the topologies
adopted because it will consume the least number of flows on average.

5.2. Signaling Overhead

Protection approaches install primary and backup flow entries in advance to prevent connectivity
interruptions. After alink failure, no signaling messages between OpenFlow switches and the controller
are sent to restore connectivity. This is true if and only if the rules use FF (or other hardware-based
resilience solution). Otherwise, the number of signaling messages between switches and the controller
is the number of flow entries affected by the failure, because it is necessary to change the forward port
number for every flow entry affected by the failed link.

Hence, it is mandatory to investigate the signaling overhead of restoration approaches. Those
are analyzed using scenarios that describe a link’s failure occurring in one of the topologies adopted.
Thereby, the Abilene topology depicted in Figure 5a will be used, and the following resilience
mechanisms will be compared: Local Restoration (LR), Path Restoration (PR), Local Path Restoration
(LPR) and LONG protection phase.

Suppose that in the topology adopted (Abilene topology; see Figure 5a), the primary path is made
through the cities of Seattle, Sunnyvale, Los Angeles and Houston. Suddenly, the link connecting Los
Angeles and Houston suffers a failure. The number of affected flows and the total number of signaling
messages to recover from that failure are depicted in Figure 7. Regarding the LR and PR approaches
and based on the achieved data, PR generates fewer signaling messages to the SDN controller than
LR. This outcome is the opposite of the results presented in the work of Zhang et al. [13], where LR
generated a lesser number of update flow entries. The justification for this result is that the LR may
not be the shortest path between two given endpoints.

600

Local Restoration (LR) m==1
Path Restoration (PR) ===
500 | Local Path Restoration (LPR)
LONG Protection Phase ==
-
[

400 -
300 - M

200 -

sl bl

50 60 70 80 90 100
Number of affected flows after a link failure

Total number of signaling messages

Figure 7. Results for the signaling overhead after a link failure in different scenarios of the Abilene topology.

Information 2018, 9, 146 15 of 19

Thereby, when a link in the path between two endpoints suffers a failure, if the shortest path from
the OpenFlow switches” source and the destination of the failed link does not belong to the shortest
path between the endpoints, then LR will require more signaling messages than PR. The reason for
this signaling overhead is that there are more OpenFlow switches to restore the network connectivity
after a link failure. Besides, LR and PR produce much more signaling messages with a relative lesser
number of affected flows after a link failure, as a typical link requires hundreds of thousands of flows
per link (e.g., in the Internet Exchange Point (IXP) environment [39]).

Regarding LPR and LONG, they notoriously overcome LR and PR for signaling overhead criteria
(see Figure 7). The LPR signaling to OpenFlow switches belongs to a new path, and the LONG
restoration phase sends control messages for the affected OpenFlow switches to restore the optimal
shortest paths of the flows between endpoints. Then, based on the results achieved, LPR and LONG
are almost equivalent among the signals sent to the controller.

5.3. Failure Recovery Time

For the sake of space, two restoration and two protection resilience mechanisms were selected
to investigate the metric failure recovery time. For the restoration approach, Local Fast Restoration
(LFR) and Local Restoration (LR) were used. Both restoration approaches require signaling to the SDN
controller to recover from a link failure. However, this is not the case for the protection mechanisms,
which is the case of path protection and the LONG protection phase, as all recovery rules are already
installed inside the OpenFlow switches, and those rules protect the network from a link failure.

To execute the experiments, a subset of the Abilene topology (depicted in Figure 5a) was used.
Using the iperf [40] tool, a different number of flows from the node Sunnyvale (of Figure 5a) to the node
Houston was generated, making the primary path composed of the nodes Sunnyvale, Los Angeles
and Houston. Because this work uses the number of hops as the main metric to define what is
a better path, the backup path is composed by the nodes Sunnyvale, Denver, Kansas City and Houston.
Then, the link connecting Los Angeles and Houston suffers a failure, and for each resilience mechanism,
the results of the failure recovery time are measured and plotted in Figure 8.

600

Local Fast Restoration (LFR)
- Local Restoration (LR) pzzzz=
T sml Path Protection (PP) mmmmm
§ LONG Protection Phase == 7
0
o400 ¢
=
= 7]
_g 300 | 8
P
2
g 20t -
1]
et
5 a0 |
© %
[
0
10 20 30 40 50

Number of affected flows after a link failure

Figure 8. Results for failure recovery time after a link failure in the Abilene topology.

Figure 8 shows the failure recovery time, where the x-axis represents the number of disrupted
traffic flows and the y-axis the failure recovery time in milliseconds for each resilience mechanism.
As expected, the restoration approaches take more time to recover the flows, because a communication
between the OpenFlow switch and the controller is required. However, LER reduces the restoration
time against LR because it aggregates all the affected flows into one “big” flow, using the backup path.
LR recovers each flow individually, and hence, that behavior affects the recovery time.

Information 2018, 9, 146 16 of 19

Analyzing the protection approaches, because PP and the LONG protection phase already had
installed the backup path using the FF, when a link failure was detected by the OpenFlow switch,
then it automatically switched the primary path to the backup path. As a consequence, the recovery
time becomes minimal. However, the number of flow entries required by the PP approaches is higher
than the LONG protection phase (see Figure 6a), and that factor increases the lookup time of the
OpenFlow switch table, affecting the failure recovery time of the flows for the PP.

6. Further Discussion

LONG assumes that the network operator planned the backup paths to not suffer congestion when
those are required. This is one limitation of the LONG approach. It does not have a congestion control
mechanism after a link failure. The authors in [33] described a mechanism to avoid the congestion
situation proactively by spreading backup paths to settle k faults in an arbitrary network topology
(congestion control with protected approach). In addition, the work of [16] presented a restoration
approach to mitigate traffic congestion called the switchover mechanism. It changes flows from
one OpenFlow switch to another when the bandwidth of a backup link surpasses a given threshold
(congestion control with restoration approach).

In the work [13], the authors used one aggregation strategy, tagging VLANand aggregate
flows with the same source and destination to avoid the creation of each flow individually.
However, this aggregation only occurs after a link disruption. This could lead to packets being
lost during the computation of the restoration phase. LONG already places backup paths for the data
plane elements to taking independent actions without requiring consulting the controller.

Furthermore, previous works approach the rule placement problem [18] as a static problem that
has to be optimized. However, the behavior and dynamics of the flows inside an SDN network were
not captured as desired. Thus, a stateful proposal was made for that problem using two phases to
compose the LONG approach. Additionally, because LONG uses the path to restore flows, it does not
matter if a set of links or switches becomes unavailable, as LONG algorithm will repair those broken
flows. Hence, LONG can be used when OpenFlow switches have to enter maintenance mode [41].

Regarding reducing the number of flow entries, Palette [42] and One Big Switch [43] are works
that seek to optimize the number of flow entries. They are proposals that tried to address the OpenFlow
switches” memory limitation. They considered that the rules to be installed are non-reducible, so they
cannot enforce rule aggregations. Thus, the solutions distributed the routing rules in the network in
such a way that the routing semantics are maintained and the network policies are not violated.

The work of [44] also seeks to optimize the placement of routing rules within an SDN network.
It accomplishes this by minimizing the resources required for the treatment of network flows.
With an algebraic model and using the integer linear programming optimization technique to express
constraints in the end-to-end routing policy on the network, the work indicated how to allocate
a greater amount of traffic over memory capacity constraints using the model proposed. The work
also performs comparisons with the solutions Palette and One Big Switch and found similar values of
optimization. However, it overcomes the previous works in a scenario of extreme memory shortage,
when the SDN controller must be triggered to maintain the minimum network operating state, even if
network performance degradation occurs.

When compression [18] strategies can be applied, the reduction of flow entries is made, keeping
the forwarding logic (or semantics) intact. Those strategies are possible because OpenFlow rules
can use wildcards to match packet header fields, such as IP addresses. The authors in [45] used
a five-element tuple consisting of TCP/IP header fields (source IP, destination IP, transport layer
protocol, TCP port and TCP port of the destination) with aggregation of those fields to mitigate the
number of flow entries in the inter-domain routing system.

An aggregation can also be done to reduce the number of flows entries. For fast rerouting inside
an SDN network, the work [13] used VLAN tags in the strategy to aggregate different flows to contour
paths that passed through failure links. This approach avoids the limitation of OpenFlow match fields

Information 2018, 9, 146 17 of 19

that cannot use a wildcard, such as transportation ports (for example, TCP or UDP ports); however,
there is a limited number of VLAN tags that can be used (maximum of 4096 possible values).

7. Conclusions

Based on the achieved results, this work concluded that LONG is a practical hybrid resilience
mechanism for OpenFlow networks. In the protected phase, LONG provides a reasonable number of
flow entries (OpenFlow rules) to protect the network against failed links, when compared with simple
flow creation and path protection. Furthermore, during the restoration phase of LONG, it is equivalent
to the local path restoration approach regarding signaling messages between OpenFlow switches and
the controller.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Singh, S.; Jha, RK. A Survey on Software Defined Networking: Architecture for Next Generation Network.
J. Netw. Syst. Manag. 2017, 25, 321-374. [CrossRef]

2. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A survey of software-defined networking:
Past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617-1634. [CrossRef]

3. Silva, W]J.A. An Architecture to Manage Incoming Traffic of Inter-Domain Routing Using OpenFlow
Networks. Information 2018, 9, 92. [CrossRef]

4. Silva, W.J.A.; Sadok, D.FH. Control Inbound Traffic: Evolving the Control Plane Routing System with
Software Defined Networking. In Proceedings of the 18th International Conference on High Performance
Switching and Routing (HPSR), Campinas, Brazil, 18-21 June 2017.

5. Kreutz, D.; Ramos, EM.V,; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined
Networking: A Comprehensive Survey. Proc. IEEE 2015, 103, 14-76. [CrossRef]

6. Silva, W.J.A.; Sadok, D.EH. A Survey on Efforts to Evolve the Control Plane of Inter-Domain Routing.
Information 2018, 9, 125. [CrossRef]

7. Feamster, N.; Rexford, J.; Zegura, E. The road to SDN: An Intellectual History of Programmable Networks.
ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87-98. [CrossRef]

8. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 69.
[CrossRef]

9. Sharma, S.; Staessens, D.; Colle, D.; Palma, D.; Goncalves, J.; Figueiredo, R.; Morris, D.; Pickavet, M.;
Demeester, P. Implementing Quality of Service for the Software Defined Networking Enabled Future
Internet. In Proceedings of the 2014 Third European Workshop on Software Defined Networks, London, UK,
1-3 September 2014; pp. 49-54.

10. Vishnoi, A.; Poddar, R.; Mann, V.; Bhattacharya, S. Effective Switch Memory Management in OpenFlow
Networks. In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems,
Mumbai, India, 26-29 May 2014.

11. Silva, W]J.A. Avoiding Inconsistency in OpenFlow Stateful Applications Caused by Multiple Flow Requests.
In Proceedings of the International Conference on Computing, Networking and Communications (ICNC),
Maui, HI, USA, 5-8 March 2018; pp. 543-548.

12. Rothenberg, C.E.; Nascimento, M.R.; Salvador, M.R.; Corréa, C.N.A.; Cunha de Lucena, S.; Raszuk, R.
Revisiting routing control platforms with the eyes and muscles of software-defined networking.
In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland,
13 August 2012; p. 13.

13. Zhang, X.; Cheng, Z.; Lin, R.; He, L.; Yu, S.; Luo, H. Local Fast Reroute with Flow Aggregation in Software
Defined Networks. IEEE Commun. Lett. 2016, 7798, 1-4. [CrossRef]

http://dx.doi.org/10.1007/s10922-016-9393-9
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.3390/info9040092
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.3390/info9050125
http://dx.doi.org/10.1145/2602204.2602219
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/LCOMM.2016.2638430

Information 2018, 9, 146 18 of 19

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Sharma, S.; Staessens, D.; Colle, D.; Pickavet, M.; Demeester, P. Enabling Fast Failure Recovery in OpenFlow
Networks. In Proceedings of the 2011 8th International Workshop on the Design of Reliable Communication
Networks (DRCN), Krakow, Poland, 10-12 October 2011; pp. 164-171.

Pfaff, B.; Lantz, B.; Heller, B.; Barker, C.; Cohn, D.; Talayco, D.; Erickson, D.; Crabbe, E.; Gibb, G.;
Appenzeller, G.; et al. OpenFlow 1.1 Specification; Open Networking Foundation: Menlo Park, CA, USA, 2011;
pp- 1-56.

Lin, Y.D.; Teng, H.Y.; Hsu, C.R; Liao, C.C.; Lai, Y.C. Fast failover and switchover for link failures and
congestion in software defined networks. In Proceedings of the 2016 IEEE International Conference on
Communications, ICC 2016, Kuala Lumpur, Malaysia, 22-27 May 2016.

Adrichem, N.L.V,; Asten, B.J.V.; Kuipers, FEA. Fast Recovery in Software-Defined Networks. In Proceedings
of the 2014 3rd European Workshop on Software Defined Networks, London, UK, 1-3 September 2014;
pp- 61-66.

Nguyen, X.N.; Saucez, D.; Barakat, C.; Turletti, T. Rules Placement Problem in OpenFlow Networks: A Survey.
IEEE Commun. Surv. Tutor. 2016, 18, 1273-1286. [CrossRef]

Pfaff, B.; Lantz, B.; Heller, B.; Barker, C.; Cohn, D.; Casado, M. OpenFlow Switch Specification—1.3 Version;
Open Networking Foundation: Menlo Park, CA, USA, 2012.

Katz, D.; Ward, D. BFD for IPv4 and IPv6 Single Hop. arXiv 2010, arXiv:1011.1669v3. [CrossRef]

Cascone, C.; Pollini, L.; Sanvito, D.; Capone, A.; Sanso, B. SPIDER: Fault resilient SDN pipeline with recovery
delay guarantees. In Proceedings of the IEEE NETSOFT 2016 IEEE NetSoft Conference and Workshops,
Software-Defined Infrastructure for Networks, Clouds, IoT and Services, Seoul, Korea, 6-10 June 2016;
pp- 295-302.

Bianchi, G.; Bonola, M.; Capone, A.; Cascone, C. OpenState: Programming Platform-independent Stateful
OpenFlow Applications Inside the Switch. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 44-51.
[CrossRef]

Silva, W.J.A. Performance Evaluation of Flow Creation Inside an OpenFlow Network. In Proceedings of the
XXXV Simposio Brasileiro de Telecomunicagdes e Processamento de Sinais—SBrT2017, Sdo Pedro, SP, Brazil,
3-6 September 2017; pp. 102-106.

Silva, W.J.A.; Dias, K.L.; Sadok, D.FH. A Performance Evaluation of Software Defined Networking Load
Balancers Implementations. In Proceedings of the International Conference on Information Networking
(ICOIN), Da Nang, Vietnam, 11-13 January 2017.

Fernandez, M.P. Comparing OpenFlow controller paradigms scalability: Reactive and proactive. In Proceedings
of the International Conference on Advanced Information Networking and Applications, AINA, Barcelona,
Spain, 25-28 March 2013, pp. 1009-1016.

Akyildiz, LE; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in software defined
networks. Comput. Netw. 2014, 71, 1-30. [CrossRef]

Beheshti, N.; Zhang, Y. Fast Failover for Control Traffic in Software-defined Networks. In Proceedings of
the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3-7 December 2012;
pp- 2665-2670.

Katz, D.; Ward, D. Bidirectional Forwarding Detection. J. Phys. A Math. Theor. 2010, 53, 160.

OpenvSwitch. Open vSwitch. 2016. Available online: http://openvswitch.org/ (accessed on 13 June 2018).
Stephens, B.; Cox, A.L.; Rixner, S. Scalable Multi-Failure Fast Failover via Forwarding Table Compression.
In Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, 14-15 March 2016; pp. 1-12.
Gill, P; Jain, N.; Nagappan, N. Understanding network failures in data centers. ACM SIGCOMM Comput.
Commun. Rev. 2011, 41, 350. [CrossRef]

Zheng, J.; Xu, H.; Zhu, X,; Chen, G.; Geng, Y. We’ve got you covered: Failure recovery with backup tunnels
in traffic engineering. In Proceedings of the 2016 IEEE 24th International Conference on Network Protocols
(ICNP), Singapore, 8-11 November 2016; pp. 1-10.

Liu, H.H.; Kandula, S.; Mahajan, R.; Zhang, M.; Gelernter, D. Traffic Engineering with Forward Fault
Correction. In Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, IL, USA, 17-22 August 2014;
pp- 527-538.

Ryu. A Component-Based Software Defined Networking Framework—Ryu. 2016. Available online:
https:/ /osrg.github.io/ryu/ (accessed on 13 June 2018).

http://dx.doi.org/10.1109/COMST.2015.2506984
http://dx.doi.org/1011.1669v3
http://dx.doi.org/10.1145/2602204.2602211
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://openvswitch.org/
http://dx.doi.org/10.1145/2043164.2018477
https://osrg.github.io/ryu/

Information 2018, 9, 146 19 of 19

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Mininet. Mininet—An Instant Virtual Network on Your Laptop (Or Other PC). Available online:
https://github.com/mininet/mininet (accessed on 13 June 2018).

Topology-zoo. The internet topology zoo. IEEE]. Sele. Areas Commun. 2017, 29, 1765-1775.

Jain, S.; Zhu, M; Zolla,].; Holzle, U.; Stuart, S.; Vahdat, A.; Kumar, A.; Mandal, S.; Ong, J.; Poutievski, L.; et al.
B4: experience with a globally-deployed software defined wan. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, Hong Kong, China, 12-16 August 2013; p. 3.

Mendiola, A.; Astorga, J.; Jacob, E.; Higuero, M. A Survey on the Contributions of Software-Defined
Networking to Traffic Engineering. IEEE Commun. Surv. Tutor. 2017, 19, 918-953. [CrossRef]

Gupta, A.; MacDavid, R.; Birkner, R.; Canini, M.; Feamster, N.; Rexford, J.; Vanbever, L. An Industrial-Scale
Software Defined Internet Exchange Point. In Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), Santa Clara, CA, USA, 16-18 March 2016; pp. 1-14.

Iperf. Iperf-Perform Network Throughput Tests. 2016. Available online: http:/ /iperf.sourceforge.net/
(accessed on 13 June 2018).

Fonseca, P; Mota, E. A Survey on Fault Management in Software-Defined Networks. IEEE Commun.
Surv. Tutor. 2017, 19, 2284-2321. [CrossRef]

Kanizo, Y.; Hay, D.; Keslassy, I. Palette: Distributing tables in software-defined networks. In Proceedings of
the IEEE INFOCOM, Turin, Italy, 14-19 April 2013; pp. 545-549.

Kang, N.; Liu, Z.; Rexford, J.; Walker, D. Optimizing the “one big switch” abstraction in software-defined
networks. In Proceedings of the 9th ACM Conference on Emerging Networking Experiments and
Technologies, Santa Barbara, CA, USA, 9-12 December 2013; pp. 13-24.

Nguyen, X.N.; Saucez, D.; Barakat, C.; Turletti, T.; Sophia, I.; Méditerranée, A. Optimizing Rules Placement
in OpenFlow Networks: Trading Routing for Better Efficiency. In Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, Chicago, IL, USA, 22 August 2014; pp. 127-132.

Wang, Y.; Bi, J.; Lin, P; Lin, Y.; Zhang, K. SDI: A multi-domain SDN mechanism for fine-grained inter-domain
routing. Ann. Telecommun. 2016, 71, 625-637. [CrossRef]

@ (© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://github.com/mininet/mininet
http://dx.doi.org/10.1109/COMST.2016.2633579
http://iperf.sourceforge.net/
http://dx.doi.org/10.1109/COMST.2017.2719862
http://dx.doi.org/10.1007/s12243-016-0513-z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Topology Discovery
	OpenFlow Fast Failover Group Table

	Related Works
	Classification of Resilience Mechanisms
	Schemes of Resilience Mechanisms
	Resilience Mechanisms

	Local Group Node Fast Reroute
	An Example
	Notation and Concepts
	LONG Protection Phase
	LONG Restoration Phase

	Evaluation
	Flows Entries
	Signaling Overhead
	Failure Recovery Time

	Further Discussion
	Conclusions
	References

