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Abstract: Due to the increased complexity of real decision-making problems, representing attribute
values correctly and appropriately is always a challenge. The recently proposed Pythagorean fuzzy
set (PFS) is a powerful and useful tool for handling fuzziness and vagueness. The feature of PFS that
the square sum of membership and non-membership degrees should be less than or equal to one
provides more freedom for decision makers to express their assessments and further results in less
information loss. The aim of this paper is to develop some Pythagorean fuzzy aggregation operators
to aggregate Pythagorean fuzzy numbers (PFNs). Additionally, we propose a novel approach to
multi-attribute group decision-making (MAGDM) based on the proposed operators. Considering the
Muirhead mean (MM) can capture the interrelationship among all arguments, and the interaction
operational rules for PFNs can make calculation results more reasonable, to take full advantage
of both, we extend MM to PFSs and propose a family of Pythagorean fuzzy interaction Muirhead
mean operators. Some desirable properties and special cases of the proposed operators are also
investigated. Further, we present a novel approach to MAGDM with Pythagorean fuzzy information.
Finally, we provide a numerical instance to illustrate the validity of the proposed model. In addition,
we perform a comparative analysis to show the superiorities of the proposed method.

Keywords: Pythagorean fuzzy set; Muirhead mean; interaction operational laws; multi-attribute
group decision-making

1. Introduction

As one of the most important branches of modern decision-making theory, multi-attribute group
decision-making (MAGDM) has been widely investigated and successfully applied to many fields,
owing to its high capacity of modelling the process of real decision-making problems [1–6]. With the
development of management and economics, actual decision-making problems are becoming more
and more diversified and complicated. Thus, one of the most significant issues is representing and
denoting attribute values appropriately. Zadeh [7] originally introduced the fuzzy set (FS) theory,
which makes it possible to describe vagueness and uncertainty. However, the shortcoming of the FS
is that it only has a membership degree, making it insufficient to express fuzziness comprehensively.
Recently, Atanassov [3] put forward the concept of an intuitionistic fuzzy set (IFS), which can express
the complex fuzzy information effectively as it simultaneously has a membership degree and a
non-membership degree. Considering its effective vagueness information processing capabilities,
IFS has been widely investigated and applied to so many fields since its appearance. For instance,
Liu and Ren [8] proposed a novel intuitionistic fuzzy entropy and based on which a novel approach to
MAGDM was proposed. Ren and Wang [9] proposed a new similarity measure for interval-valued IFSs,

Information 2018, 9, 157; doi:10.3390/info9070157 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-7872-5744
https://orcid.org/0000-0001-7522-8593
http://dx.doi.org/10.3390/info9070157
http://www.mdpi.com/journal/information
http://www.mdpi.com/2078-2489/9/7/157?type=check_update&version=1


Information 2018, 9, 157 2 of 22

which considers not only the impacts of membership and membership degrees but also the median
point of interval-valued IFSs. Kaur and Garg [10] extended IFSs and proposed cubic intuitionistic fuzzy
sets as well as their aggregation operators. P. Liu and X. Liu [11] proposed the concept of linguistic
intuitionistic fuzzy sets based on the combination of IFSs and linguistic terms sets and applied them to
MAGDM. Liu and Wang [12] extend partitioned Heronian mean operator to linguistic intuitionistic
fuzzy sets and applied it to MAGDM. Lakshmana et al. [13] proposed a total order on the entire class
of intuitionistic fuzzy numbers using an upper lower dense sequence in the interval [1]. Liu and
Teng [14] proposed the concept of normal interval-valued intuitionistic fuzzy numbers and applied it
to decision-making. Liu and Chen [15] introduced some intuitionistic fuzzy Heronian mean operators
based on the Archimedean t-conorm and t-norm and applied them to dealing with MAGDM problems.

Recently, as an extension of the IFS, the Pythagorean fuzzy set (PFS) [16], which is also
characterized by a membership degree and a non-membership degree, has been proposed.
The prominent feature of the PFS that the sum of membership and non-membership degrees may be
greater than one and their square sum should be less than or equal to one, makes the PFS more powerful
and useful than the IFS. Since its appearance, it has drawn much attention. For example, Zhang [17]
proposed a novel similarity measure for PFSs and based on which a new method to Pythagorean
fuzzy MAGDM problems was developed. Zhang and Xu [18] and Ren et al. [19] respectively extended
the traditional TOPSIS (technique for order preference by similarity to ideal solution) method and
the TODIM (an acronym in Portuguese for interactive multi-criteria decision-making) approach to
solve MAGDM in a Pythagorean fuzzy context. Aggregation operators are a central topic in MAGDM,
as they can ingrate individual input data into collective ones, and rank the alternatives based on the
collective value. In the past years, quite a few Pythagorean fuzzy operators have been proposed and
been applied to MAGDM successfully [20–26]. However, the main shortcomings of these operators are:

(1) They cannot consider the interrelationship between Pythagorean fuzzy numbers (PFNs).
In other words, these aggregation operators assume that the attributes are independent, signifying
that the correlations among attribute values are not taken into consideration when aggregating them.
Generally, the Bonferroni mean (BM) [27], Heronian mean (HM) [28], and Maclaurin symmetric
mean (MSM) [29] are aggregation technologies that consider the interrelationships among arguments.
Thus, in order to overcome the shortcoming of the aforementioned aggregation operators, some
other Pythagorean fuzzy aggregation operators have been proposed. Liang et al. [30,31] proposed
some Pythagorean fuzzy Bonferroni mean and geometric Bonferroni mean operators, respectively.
Zhang et al. [32] investigated the generalized Bonferroni mean to aggregate Pythagorean fuzzy
information and proposed a family of Pythagorean fuzzy generalized Bonferroni means. Wei and
Lu [33], and Qin [34] proposed some Pythagorean fuzzy Maclaurin symmetric mean operators,
respectively. These operators consider the interrelationships between any two or among multiple
arguments, however, they fail to capture the interrelationships among all arguments. The Muirhead
mean (MM) [35] is a useful and powerful aggregation technology that captures the interrelationships
among all arguments. Moreover, it has a parameter vector that leads to flexible aggregation processes.
Quite a few existing aggregation operators are some special cases of MM. The MM was introduced
for crisp numbers and, up to now, MM has been investigated in intuitionistic fuzzy [36] and 2-tuple
linguistic environments [37]. However, to the best of our knowledge, nothing has been done about
MM in a Pythagorean fuzzy environment. Thus, in order to aggregate Pythagorean fuzzy information,
it is necessary to extend the MM to a Pythagorean fuzzy environment

(2) The aforementioned aggregation operators are based on the traditional Pythagorean fuzzy
operational rules introduced in [18]. However, these operations cannot be used to deal with some
situations. For instance, let p1 = (µ1, v1) and p2 = (µ2, v2) be two PFNs, if µ1 = 0 and µ2 6= 0, then
according to the operational laws proposed by Zhang and Xu [18], we can obtain µp1⊕p2 = 0. It is
noted that µ2 is not accounted for at all. Similarly, if v1 = 0 and v2 6= 0, then and v2 is not accounted for
at all. It is not consistent with our intuition and the reality. To overcome the drawback of the proposed
operations, Wei [38] proposed the interaction operations for PFNs.
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Therefore, to take full advantages of MM and Wei’ [38] Pythagorean fuzzy interaction operations,
we propose a family of Pythagorean fuzzy interaction Muirhead mean operators. Thus, the proposed
operators not only capture the interrelationships among all input arguments, but also effectively
handle situations in which a membership or non-membership degree of an attribute value is equal to
one. It is worth pointing out that in [39], Zhu and Li also proposed some Pythagorean fuzzy Muirhead
mean operators. However, the proposed operators in this paper are different from those proposed by
Zhu and Li. The main difference is that Zhu and Li’s [39] operators are based on the basic operational
laws proposed in [18]. Therefore, Zhu and Li’s [39] operators do not work for situations in which one
membership degree or one non-membership degree is equal to one. Our operators are based on the
interaction operational rules of PFNs, so that the proposed operators in this study are more powerful
and flexible than Zhu and Li’s operators. Further, based on the proposed aggregation operators, we
propose a novel approach to MAGDM in which attribute values take the form of PFNs. The main
aims and motivations of this paper are: (1) to develop a family of Pythagorean fuzzy Muirhead mean
operations based on interaction operational laws; and (2) to propose a novel approach to MAGDM
with Pythagorean fuzzy information. The rest of the paper is organized as follows. Section 2 recalls
some basic concepts, such as PFS, MM, and the interaction operations of PFNs. Section 3 extends the
MM to Pythagorean fuzzy environment and proposes the Pythagorean fuzzy interaction Muirhead
mean (PFIMM) operator and the Pythagorean fuzzy interaction weighted Muirhead mean (PFIWMM)
operator. Section 4 extends the DMM to aggregating Pythagorean fuzzy information and develops
the Pythagorean fuzzy interaction dual Muirhead mean (PFIDMM) operator and the Pythagorean
fuzzy interaction weighted dual Muirhead mean (PFIDWMM) operator. Section 5 develops a novel
approach to MAGDM with Pythagorean fuzzy information based on the proposed operators. Section 6
provides a numerical example to illustrate the performance of the proposed method and the final
section summarizes the whole paper.

2. Basic Concepts

In this section, we briefly review the concepts of IFS, PFS, and MM.

2.1. IFS and PFS

Definition 1 [3]. An intuitionistic fuzzy set A with an object X is defined as follows:

A = {〈x, µA(x), vA(x)〉 |x ∈ X} (1)

where µA(x) and vA(x) represent the membership and non-membership degrees respectively, satisfying µA(x) ∈
[0, 1], vA(x) ∈ [0, 1] and µA(x) + vA(x) ∈ [0, 1], ∀x ∈ X. For convenience, (µA(x) , vA(x)) is called an
intuitionistic fuzzy number (IFN), which can be denoted by α = (µ, v).

Yager [16] extended Atanassov’s IFS and proposed the PFS.

Definition 2 [16]. A Pythagorean fuzzy set P with an object X is defined as follows:

P =
{〈

x, µp(x), vp(x)
〉∣∣x ∈ X

}
, (2)

where µp(x) and vp(x) are the membership degree the non-membership degree respectively, satisfying µp(x) ∈
[0, 1], vp(x) ∈ [0, 1] and (µP(x))2 + (vP(x))2 ≤ 1, ∀x ∈ X. Then the hesitancy degree of P is defined as

πP(x) =
√

1− (µP(x))2 − (vP(x))2, ∀x ∈ X. For convenience,
(
µp(x), vp(x)

)
is called a PFN, which can

be denoted by p = (µP, vP).

To compare two PFNs, Zhang and Xu [18] proposed a comparison law.
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Definition 3 [18]. Let p = (µ, v) be a PFN, then the score function of p is defined as S(p) = µ2 − v2. For
any two PFNs, p1 = (µ1, v1) and p2 = (µ2, v2), if S(p1) > S(p2), then p1 > p2; if S(p1) = S(p2), then
p1 = p2.

Moreover, Zhang and Xu [18] proposed some operations for PFNs.

Definition 4 [18]. Let p = (µ, v), p1 = (µ1, v1) and p2 = (µ2, v2) be any three PFNs, and λ be a positive
real number, then

(1) p1 ⊕ p2 =
(√

µ2
1 + µ2

2 − µ2
1µ2

2, v1v2

)
,

(2) p1 ⊗ p2 =
(

µ1µ2,
√

v2
1 + v2

2 − v2
1v2

2

)
,

(3) λp =

(√
1− (1− µ2)

λ, vλ

)
,

(4) pλ =

(
µλ,
√

1− (1− v2)
λ
)

.

However, the operational laws shown above cannot reflect the correlations between membership
degrees and non-membership degrees. Thus, Wei [38] proposed some interaction operations for PFNs
that are shown as the following.

Definition 5 [38]. Let p = (µ, v),p1 = (µ1, v1) and p2 = (µ2, v2) be any of the three PFNs, and λ be any
positive real number, then

(1) p1 ⊕ p2 =
(√

1−
(
1− µ2

1
)(

1− µ2
2
)
,
√(

1− µ2
1
)(

1− µ2
2
)
−
(
1− µ2

1 − v2
1
)(

1− µ2
2 − v2

2
))

,

(2) p1 ⊗ p2 =
(√(

1− v2
1
)(

1− v2
2
)
−
(
1− µ2

1 − v2
1
)(

1− µ2
2 − v2

2
)
,
√

1−
(
1− v2

1
)(

1− v2
2
))

,

(3) λp =

(√
1− (1− µ2)

λ,
√
(1− µ2)

λ − (1− µ2 − v2)
λ
)

,

(4) pλ =

(√
(1− v2)

λ − (1− µ2 − v2)
λ,
√

1− (1− v2)
λ
)

.

2.2. The Muirhead Mean

The MM was introduced by Muirhead [35] for crisp numbers. The prominent advantage of the
MM is that it can capture interrelationships among all of the aggregated arguments.

Definition 6 [35]. Let ai(i = 1, 2, · · · , n) be a collection of crisp numbers and R = (r1, r2, . . . , rn) ∈ Rn be a
vector of parameters, then the MM can be defined as

MMR(a1, a2, . . . , an) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

a
rj
ϑ(j)

) 1
n
∑

j=1
rj

(3)

where ϑ(j)(j = 1, 2, · · · , n) is any permutation of (1, 2, . . . , n), Sn is the collection of ϑ(j)(j = 1, 2, · · · , n).

Liu and Li [36] proposed the dual operator of MM, which is called the DMM operator.

Definition 7 [36]. Let ai(i = 1, 2, · · · , n) be a collection of crisp numbers and P = (p1, p2, · · · , pn) ∈ Rn be
a vector of parameters. If

DMMP(a1, a2, . . . , an) =
1

n
∑

j=1
pj

(
∏

ϑ∈Sn

n

∑
j=1

(
pjaϑ(j)

)) 1
n!

(4)
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Then DMMP is called the DMM, where ϑ(j)(j = 1, 2, · · · , n) is any permutation of (1, 2, . . . , n) and Sn is
the collection of ϑ(j)(j = 1, 2, · · · , n).

3. The Pythagorean Fuzzy Interaction Muirhead Mean and the Pythagorean Fuzzy Interaction
Weighted Muirhead Mean

In this section, we extend the MM to Pythagorean fuzzy environment and propose some new
Pythagorean fuzzy aggregation operators.

3.1. The Pythagorean Fuzzy Interaction Muirhead Mean

Definition 8 . Let pi(i = 1, 2, . . . , n) be a collection of PFNs and R = (r1, r2, . . . , rn) ∈ Rn be a vector of
parameters. If

PFIMMR(p1, p2, . . . , pn) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

p
rj
ϑ(j)

) 1
n
∑

j=1
rj

(5)

then PFIMMR is called the PFIMM, where ϑ(j)(j = 1, 2, · · · , n) is any a permutation of (1, 2, · · · , n), and
Sn is the collection of ϑ(j)(j = 1, 2, · · · , n).

According to the interaction operations for PFNs presented in Definition 5, the following theorem
can be obtained.

Theorem 1. Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, the aggregated value by using the
PFIMM is still a PFN and

PFIMMR(p1, p2, . . . , pn) =



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2

,

1−

1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

(
n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!


1

n
∑

j=1
rj


1
2


(6)

Proof. According to the Definition 5, we have

p
rj
ϑ(j) =

(√(
1− v2

ϑ(j)

)rj −
(

1− µ2
ϑ(j) − v2

ϑ(j)

)rj
,

√
1−

(
1− v2

ϑ(j)

)rj

)
(7)

and,
n

∏
j=1

p
rj
ϑ(j) =

√√√√ n

∏
j=1

(
1− v2

ϑ(j)

)rj −
n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
,

√√√√1−
n

∏
j=1

(
1− v2

ϑ(j)

)rj

 (8)
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Then,

∑
ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j) =

√√√√1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

)
,

√√√√ ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

)
− ∏

ϑ∈Sn

(
n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

)
(9)

Further,

1
n! ∑

ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j) =


√√√√1− ∏

ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

,

√√√√ ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


(10)

Moreover,

(
1
n! ∑

ϑ∈Sn

n
∏
j=1

p
rj
ϑ(j)

) 1
n
∑

j=1
rj

=





1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2

,

1−

1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2


(11)

Hence, Equation (6) is maintained.
For convenience, let

µ =



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2

and

v =

1−

1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

Evidently,
0 ≤ µϑ(j) ≤ 1, 0 ≤ vϑ(j) ≤ 1, 0 ≤ µ2

ϑ(j) + v2
ϑ(j) ≤ 1, (12)

and,

0 ≤
n

∏
j=1

(
1− v2

ϑ(j)

)rj ≤ 1, and 0 ≤
n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (13)
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Then,

0 ≤ 1−
(

n

∏
j=1

(
1− v2

ϑ(j)

)rj −
n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

)
≤ 1 (14)

Further,

0 ≤ 1−
n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1 (15)

and,

0 ≤ ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

≤ 1, 0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1. (16)

Moreover,

0 ≤

1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− v2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj
≤ 1 (17)

and,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj
≤ 1 (18)

Therefore,

0 ≤



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2

≤ 1

Therefore, 0 ≤ µ ≤ 1. Similarly, we can get 0 ≤ v ≤ 1.
Then,

µ2 + v2 = 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

We have proved that

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1

Thus,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj
≤ 1, and 0 ≤ 1− ∏

ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj
≤ 1

Therefore, 0 ≤ µ2 + v2 ≤ 1, which completes the proof. �

Moreover, the PFIMM has the following properties.
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Theorem 2. (Idempotency) If all of the pi(i = 1, 2, · · · , n) are equal, i.e., pi = p = (µ, v), then

PFIMMR(p1, p2, · · · , pn) = p (19)

Proof. According to Theorem 1, we can get

PFIMMR(p, p, · · · , p)

=





1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2)rj +

n
∏
j=1

(
1− µ2 − v2)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2 − v2) rj

n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2 − v2)

rj

n!
n
∑

j=1
rj



1
2

,

 1−

1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− v2)rj +

n
∏
j=1

(
1− µ2 − v2)rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2 − v2) rj

n!


1

n
∑

j=1
rj




1
2


=


√√√√√√√
1− ∏

ϑ∈Sn

1− (1− v2)

n
∑

j=1
rj
+ (1− µ2 − v2)

n
∑

j=1
rj


1
n!

+ ∏
ϑ∈Sn

(1− µ2 − v2)

n
∑

j=1
rj

n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

(1− µ2 − v2)
1
n! ,

√√√√√√√1−

1− ∏
ϑ∈Sn

1− (1− v2)

n
∑

j=1
rj
+ (1− µ2 − v2)

n
∑

j=1
rj


1
n!

+ ∏
ϑ∈Sn

(1− µ2 − v2)

n
∑

j=1
rj

n!


1

n
∑

j=1
rj



=


√√√√√√
1−

1− (1− v2)

n
∑

j=1
rj
+ (1− µ2 − v2)

n
∑

j=1
rj

+ (1− µ2 − v2)

n
∑

j=1
rj


1

n
∑

j=1
rj
−

(1− µ2 − v2)

n
∑

j=1
rj


1

n
∑

j=1
rj

,

√√√√√√1−

1−

1− (1− v2)

n
∑

j=1
rj
+ (1− µ2 − v2)

n
∑

j=1
rj

+ (1− µ2 − v2)

n
∑

j=1
rj


1

n
∑

j=1
rj



=


√√√√√√
(1− v2)

n
∑

j=1
rj


1

n
∑

j=1
rj
−

(1− µ2 − v2)

n
∑

j=1
rj


1

n
∑

j=1
rj

,

√√√√√√1−

(1− v2)

n
∑

j=1
rj


1

n
∑

j=1
rj


=
(√

(1− v2)− (1− µ2 − v2),
√

1− (1− v2)
)
=
(√

µ2,
√

v2
)
= (µ, v).

The parameter vector R of PFIMM plays an important role in the final result. In the following, we
explore some special cases of PFIMM. �

Case 1: If R = (1, 0, . . . , 0), then the PFIMM is reduced to the following

PFIMM(1,0,0,...,0)(p1, p2, · · · , pn) =


√√√√1−

n

∏
j=1

(
1− µ2

i
) 1

n

,

√√√√ n

∏
j=1

(
1− µ2

i
) 1

n

−
n

∏
j=1

(
1− µ2

i − v2
i
) 1

n

 =
1
n

n

∑
i=1

pi (20)

which is the Pythagorean fuzzy interaction averaging (PFIA) operator.
Case 2: If R = (λ, 0, . . . , 0), then the PFIMM is reduced to the following

PFIMM(λ,0,0,...,0)(p1, p2, . . . , pn) =


√√√√√√
1−

(
1−

n
∏
j=1

(
1− v2

i

)λ
+

n
∏
j=1

(
1− µ2

i − v2
i

)λ

) 1
n


1
λ

−
n
∏
j=1

(
1− µ2

i − v2
i

) 1
n

,

√√√√√√1−

1−
(

1−
n
∏
j=1

(
1− v2

i

)λ
+

n
∏
j=1

(
1− µ2

i − v2
i

)λ

) 1
n

+
n
∏
j=1

(
1− µ2

i − v2
i

) λ
n


1
λ

 =

(
1
n

n
∑

i=1
pi

λ

) 1
λ

,

(21)
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which is the generalized Pythagorean fuzzy interaction averaging (GPFIA) operator.
Case 3: If R = (1, 1, 0, 0, · · · , 0), then the PFIMM is reduced to the following

PFIMM(1,1,0,0,...,0)(p1, p2, . . . , pn) =

1−
n
∏

i,j=1
i 6=j

(
1−

(
1− v2

i

)(
1− v2

j

)
+
(

1− µ2
i − v2

j

)(
1− µ2

j − v2
j

)) 1
n(n−1)

+
n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
j

)(
1− µ2

j − v2
j

)) 1
n(n−1)


1
2

−
n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
j

)(
1− µ2

j − v2
j

)) 1
2n(n−1)



1
2

,

1−

1−
n
∏

i,j=1
i 6=j

(
1−

(
1− v2

i

)(
1− v2

j

)
+
(
1− µ2

i − v2
i

)(
1− µ2

j − v2
j

)) 1
n(n−1) +

n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
i

)(
1− µ2

j − v2
j

)) 1
n(n−1)


1
2


1
2


=

 1
n(n−1)

n
∑

i,j=1
i 6=j

pi pj


1
2

,

(22)

which is the Pythagorean fuzzy interaction BM (PFIBM) operator.

Case 4: If R =

 k︷ ︸︸ ︷
1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0

, then the PFIMM is reduced to the following

PFIMM


k︷ ︸︸ ︷

1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0


(p1, p2, . . . , pn) =


1− ∏

1≤i1≺···≺ik≤n

(
1−

k
∏
j=1

(
1− vij

)2
+

n
∏
j=1

(
1− µij − vij

)2
) 1

Ck
n
+ ∏

1≤i1≺···≺ik≤n

n
∏
j=1

(
1− µij − vij

) 2
Ck

n


1
k

− ∏
1≤i1≺···≺ik≤n

n
∏
j=1

(
1− µij − vij

) 2
kCk

n



1
2

,

1−

1− ∏
1≤i1≺···≺ik≤n

(
1−

k
∏
j=1

(
1− vij

)2
+

n
∏
j=1

(
1− µij − vij

)2
) 1

Ck
n
+ ∏

1≤i1≺···≺ik≤n

n
∏
j=1

(
1− µij − vij

) 2
Ck

n


1
k


1
2


=

 ⊕
1≤i1≺...≺ik≤n

k
⊗

j=1
pij

Ck
n


1
k

,

(23)

which is the Pythagorean fuzzy interaction Maclaurin symmetric mean (PFIMSM) operator.
Case 5: If R = (1, 1, · · · , 1), then the PFIMM is reduced to the following

PFIMM(1,1,··· ,1)(p1, p2, · · · , pn) =

(√
n

∏
i=1

(
1− v2

i
) 1

n −
n

∏
i=1

(
1− µ2

i − v2
i
) 1

n ,

√
1−

n

∏
i=1

(
1− v2

i
) 1

n

)
=

(
n

∏
i=1

pi

) 1
n

(24)

which is the Pythagorean fuzzy interaction geometric averaging (PFIGA) operator.
Case 6: If R = (1/n, 1/n, . . . , 1/n), then the PFIMM is reduced to the PFIGA operator, which is shown
as Equation (24).

3.2. The Pythagorean Fuzzy Interaction Weighted Muirhead Mean

Evidently, the main drawback of the PFIMM is that it cannot take the weights of arguments into
consideration. Therefore, we propose the PFIWMM.
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Definition 9 . Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, w = (w1, w2, · · · , wn)
T be the

weight vector of pi(i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and
n
∑

i=1
wi = 1. Let R = (r1, r2, . . . , rn) ∈ Rn be a

vector of parameter. If

PFIWMMR(r1, r2, . . . , rn) =

(
1
n! ∑

ϑ∈Sn

n

∏
j=1

(
nwϑ(j)pϑ(j)

)rj

) 1
n
∑

j=1
rj

(25)

then we call PFIWMMR the PFIWMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n), and Sn is the collection of all permutations of (1, 2, . . . , n).

According to Definition 5, we can get the following theorem.

Theorem 3. Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, then the aggregated value by the
PFIWMM is still a PFN and

PFIWMMR(p1, p2, · · · , pn) =




1− ∏

ϑ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µ2

ϑ(j)

)nwϑ(j)
+
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+

∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj

n!
n
∑

j=1
rj



1
2

,

1−


1−

(
∏

ϑ∈Sn

(
1−

n
∏
j=1

(
1−

(
1− µ2

ϑ(j)

)nwϑ(j)
+
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

)) 1
n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj



1
2


(26)

The proof of Theorem 3 is similar to that of Theorem 1, which is omitted here in order to save space.

4. The Pythagorean Fuzzy Interaction Dual Muirhead Mean and the Pythagorean Fuzzy
Interaction Weighted Dual Muirhead Mean

4.1. The Pythagorean Fuzzy Interaction Dual Muirhead Mean Operator

Definition 10 . Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, and R = (r1, r2, . . . , rn) ∈ Rn be a
vector of parameters. If

PFIDMMR(p1, p2, · · · , pn) =
1

n
∑

j=1
rj

(
∏

ϑ∈Sn

n

∑
j=1

(
rj pϑ(j)

)) 1
n!

(27)

then we call PFIDMMR the PFIDMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n) and Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 4. Let pi = (µi, vi)(i = 1, 2, . . . , n) be a collection of all permutations of PFNs, the aggregated value
by the PFIDMM is also a PFN and
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PFIDMMR(p1, p2, · · · , pn) =
1−

1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

,



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2


(28)

Proof. According to the operational laws of PFNs in Definition 5, we can get

rj pϑ(j) =

(√
1−

(
1− µ2

ϑ(j)

)rj
,

√(
1− µ2

ϑ(j)

)rj −
(

1− µ2
ϑ(j) − v2

ϑ(j)

)rj

)
(29)

and,
n

∑
j=1

(
rj pϑ(j)

)
=

√√√√1−
n

∏
j=1

(
1− µ2

ϑ(j)

)rj ,

√√√√ n

∏
j=1

(
1− µ2

ϑ(j)

)rj −
n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

 (30)

Therefore,

∏
ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)
=

√√√√ ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
)
− ∏

ϑ∈Sn

(
n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
)

,√√√√1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
).

(31)

Further,

(
∏

ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)) 1
n!

=
√√√√ ∏

ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!

,

√√√√1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj

) 1
n!

.

(32)

Therefore,

1
n
∑

j=1
rj

(
∏

ϑ∈Sn

n
∑

j=1

(
rj pϑ(j)

)) 1
n!

=


1−

1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

,



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2


(33)
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Therefore, Equation (28) is kept.
In the following, we prove the aggregated value is a PFN. For convenience, let

µ =

1−

1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

v =



1− ∏
ϑ∈Sn

(
1−

n
∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj



1
2

.

Evidently,
µϑ(j) ∈ [0, 1], vϑ(j) ∈ [0, 1], 0 ≤ µ2

ϑ(j) + v2
ϑ(j) ≤ 1. (34)

Therefore,

0 ≤
(

1− µ2
ϑ(j)

)rj ≤ 1, 0 ≤
(

1− v2
ϑ(j)

)rj ≤ 1, 0 ≤
(

1− µ2
ϑ(j) − v2

ϑ(j)

)rj ≤ 1 (35)

Further,
0 ≤

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1, 0 ≤
n

∏
j=1

(
1− µ2

ϑ(j)

)rj −
n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (36)

Thus,
0 ≤ 1−

n

∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj ≤ 1. (37)

Further,

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!
≤ 1,0 ≤ ∏

ϑ∈Sn

(
1−

n

∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

≤ 1. (38)

Moreover,

0 ≤

1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!

 ≤ 1. (39)

Therefore,

0 ≤ 1−

1− ∏
ϑ∈Sn

(
1−

n

∏
j=1

(
1− µ2

ϑ(j)

)rj
+

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!

+ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj
≤ 1 (40)

i.e., 0 ≤ µ ≤ 1. Similarly, we can get 0 ≤ v ≤ 1.
Moreover,

µ2 + v2 = 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

(41)

As we have proved that

0 ≤ ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!

≤ 1 (42)
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Therefore,

∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj

, 0 ≤ 1− ∏
ϑ∈Sn

n

∏
j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj

n!
n
∑

j=1
rj
≤ 1. (43)

Therefore, 0 ≤ µ2 + v2 ≤ 1, which completes the proof. �

Moreover, the PFIDMM has the following properties.

Theorem 5. (Idempotency) If all pi = (i = 1, 2, . . . , n) are equal, i.e., pi = p = (µ, v), then

PFIDMMR = (p1, p2, . . . , pn) = p (44)

In the following, we investigate some special cases of PFIDMM with respect to R.
Case 1: If R = (1, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(1,0,··· ,0)(p1, p2, . . . , pn) =


√√√√ n

∏
j=1

(
1− v2

i
) 1

n

−
n

∏
j=1

(
1− µ2

i − v2
i
) 1

n

,

√√√√1−
n

∏
j=1

(
1− v2

i
) 1

n

 (45)

which is the Pythagorean fuzzy interaction arithmetic averaging operator.
Case 2: If R = (λ, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(λ,0,··· ,0)(p1, p2, . . . , pn) =


√√√√√√1−

1−
(

1−
n
∏
j=1

(
1− µ2

i

)λ
+

n
∏
j=1

(
1− µ2

i − v2
i

)λ

) 1
n

+
n
∏
j=1

(
1− µ2

i − v2
i

) λ
n


1
λ

,

√√√√√√
1−

(
1−

n
∏
j=1

(
1− µ2

i

)λ
+

n
∏
j=1

(
1− µ2

i − v2
i

)λ

) 1
n


1
λ

−
n
∏
j=1

(
1− µ2

i − v2
i

) 1
n

,

(46)

which is the Pythagorean fuzzy interaction generalized arithmetic averaging operator.
Case 3: If R = (1, 1, 0, 0, · · · , 0), the PFIDMM is reduced to the following

PFIDMM(1,1,0,0,··· ,0)(p1, p2, . . . , pn) =

1−

1−
n
∏

i,j=1
i 6=j

(
1−

(
1− µ2

i

)(
1− µ2

j

)
+
(
1− µ2

i − v2
i

)(
1− µ2

j − v2
j

)) 1
n(n−1) +

n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
i

)(
1− µ2

j − v2
j

)) 1
n(n−1)


1
2


1
2

,



1−
n
∏

i,j=1
i 6=j

(
1−

(
1− µ2

i

)(
1− µ2

j

)
+
(

1− µ2
i − v2

j

)(
1− µ2

j − v2
j

)) 1
n(n−1)

+
n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
j

)(
1− µ2

j − v2
j

)) 1
n(n−1)


1
2

−
n
∏

i,j=1
i 6=j

((
1− µ2

i − v2
j

)(
1− µ2

j − v2
j

)) 1
2n(n−1)



1
2


,

(47)

which is the Pythagorean fuzzy interaction arithmetic BM operator.

Case 4: If R =

 k︷ ︸︸ ︷
1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0

, the PFIDMM is reduced to the following



Information 2018, 9, 157 14 of 22

PFIDMM


k︷ ︸︸ ︷

1, 1, · · · , 1,

n−k︷ ︸︸ ︷
0, 0, · · · , 0


(p1 , p2 , . . . , pn) =

1−

1− ∏
1≤i1≺···≺ik≤n

(
1−

k
∏

j=1

(
1− µij

)2
+

n
∏

j=1

(
1− µij

− vij

)2
) 1

Ck
n + ∏

1≤i1≺···≺ik≤n

n
∏

j=1

(
1− µij

− vij

) 2
Ck

n


1
k


1
2

,



1− ∏
1≤i1≺···≺ik≤n

(
1−

k
∏

j=1

(
1− µij

)2
+

n
∏

j=1

(
1− µij

− vij

)2
) 1

Ck
n + ∏

1≤i1≺···≺ik≤n

n
∏

j=1

(
1− µij

− vij

) 2
Ck

n


1
k

− ∏
1≤i1≺···≺ik≤n

n
∏

j=1

(
1− µij

− vij

) 2
kCk

n



1
2


,

(48)

which is the Pythagorean fuzzy interaction Maclaurin symmetric mean operator.
Case 5: If R = (1, 1, · · · , 1), the PFIDMM is reduced to the following

PFIDMM(1,1,··· ,1)(p1, p2, . . . , pn) =

(√
1−

n

∏
i=1

(
1− µ2

i

) 1
n ,

√
n

∏
i=1

(
1− µ2

i

) 1
n −

n

∏
i=1

(
1− µ2

i − v2
i

) 1
n

)
(49)

which is the Pythagorean fuzzy interaction arithmetic averaging operator.
Case 6: If R =

(
1
n , 1

n , · · · , 1
n

)
, the PFIDMM is reduced to the Pythagorean fuzzy interaction arithmetic

averaging operator, which is shown as Equation (49).

4.2. The Pythagorean Fuzzy Interaction Dual Weighted Muirhead Mean Operator

In the following, we introduce the PFIDWMM operator so as to consider the weights vector of the
attribute values.

Definition 11 . Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, w = (w1, w2, · · · , wn)
T be the

weight vector of pi(i = 1, 2, · · · , n), which satisfies wi ∈ [0, 1] and
n
∑

i=1
wi = 1, and let R = (r1, r2, . . . , rn) ∈

Rn be a vector of parameters. If

PFIDWMMR(p1, p2, . . . , pn) =
1

n
∑

j=1
rj

(
∏

ϑ∈Sn

n

∑
j=1

(
rj pϑ(j)

nwϑ(j)
)) 1

n!

(50)

then we call PFIDWMMR the PFIDWMM operator, where ϑ(j) = (j = 1, 2, . . . , n) is any a permutation of
(1, 2, . . . , n), and Sn is the collection of all permutations of (1, 2, . . . , n).

Theorem 6. Let pi = (µi, vi)(i = 1, 2, · · · , n) be a collection of PFNs, we can see that the aggregation result
from by the PFIDWMM is still a PFN, it can be obtained as follows:

PFIDWMMR(p1 , p2 , . . . , pn) =


1−


1− ∏

ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)nwϑ(j) +
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj



1
2

,




1− ∏

ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)nwϑ(j) +
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)
nwϑ(j)rj

n!
n
∑

j=1
rj



1
2


.

(51)
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Proof. Because p
nwϑ(j)
ϑ(j) =

(√(
1− v2

ϑ(j)

)nwϑ(j) −
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
,
√

1−
(

1− v2
ϑ(j)

)nwϑ(j)
)

, we

can replace µϑ(j) in Equation (28) with
√
(1− v2)

nwϑ(j) − (1− µ2 − v2)
nwϑ(j) , and vϑ(j) in Equation (28)

with
√

1− (1− v2)
nwϑ(j) , then we can get Equation (51).

Because pϑ(j) is a PFN, p
nwϑ(j)
ϑ(j) is also a PFN. By Equation (28), we have

PFIDWMMR(p1, p2, . . . , pn) is a PFN.
Just the same as the PFIDMM operator, the PFIDWMM operator still does not have the

monotonicity and the boundedness. �

Theorem 7. The PFIDMM operator is a special case of the PFIDWMM operator.

Proof. When w =
(

1
n , 1

n , · · · , 1
n

)
PFIDWMMR(p1 , p2 , . . . , pn) =


1−


1− ∏

ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)nwϑ(j) +
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj



1
2

,




1− ∏

ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)nwϑ(j) +
(

1− µ2
ϑ(j) − v2

ϑ(j)

)nwϑ(j)
)rj

+
n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)nwϑ(j) rj

) 1
n!

+ ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) nwϑ(j)rj
n!



1
n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)
nwϑ(j)rj

n!
n
∑

j=1
rj



1
2


=


1−

1− ∏
ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)
+
(

1− µ2
ϑ(j) − v2

ϑ(j)

))rj
+

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!
+ ∏

ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

,



1− ∏
ϑ∈Sn

(
1−

n
∏

j=1

(
1−

(
1− v2

ϑ(j)

)
+
(

1− µ2
ϑ(j) − v2

ϑ(j)

))rj
+

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!
+ ∏

ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)
rj

n!
n
∑

j=1
rj



1
2


=


1−

1− ∏
ϑ∈Sn

(
1−

n
∏

j=1

(
1− µ2

ϑ(j)

)rj
+

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!
+ ∏

ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj


1
2

,



1− ∏
ϑ∈Sn

(
1−

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
+

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)rj
) 1

n!
+ ∏

ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

) rj
n!


1

n
∑

j=1
rj

− ∏
ϑ∈Sn

n
∏

j=1

(
1− µ2

ϑ(j) − v2
ϑ(j)

)
rj

n!
n
∑

j=1
rj



1
2


= PFIDMMR(p1 , p2 , . . . , pn).

5. A Novel Approach to MAGDM with Pythagorean Fuzzy Information

Based on the proposed operators, this section provides a novel approach to MAGDM problems
in which attribute values take the form of PFNs and the weights of attributes take the form of crisp
numbers. The description of a typical MAGDM problem with Pythagorean fuzzy information is
shown as follows. Let X = {x1, x2, · · · , xm} be a set of alternatives and G = {G1, G2, · · · , Gn} be
a set of attributes with the weights vector being w = (w1, w2, · · · , wn)

T , satisfying wi ∈ [0, 1] and
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n
∑

i=1
wi = 1. For attribute Gj(j = 1, 2, · · · , n) of alternative xi(i = 1, 2, . . . , m), a PFN pij =

(
µij, vij

)
(i = 1, 2, · · · , m; j = 1, 2, · · · , n) is utilized to represent decision makers’ preference information, in
which µij denotes that degree that alternative xi satisfies the criteria Gj and vij represents the degree
that alternative xi dissatisfies the criteria Gj. Therefore, we can get a Pythagorean fuzzy decision matrix
finally, which and be denoted by P =

(
pij
)

m×n. In the followings, we introduce an algorithm to solve
this problem based on the proposed operators.

Step 1. Standardized the original decision matrix. In real decision-making problems, there exists
two kinds of attributes: benefit attributes and cost attributes. Therefore, the original decision
matrix should be normalized by

pij =

{ (
µij, vij

)(
vij, µij

) Gj ∈ I1

Gj ∈ I2
(52)

where I1 represents benefit attributes and I2 represents cost attributes.
Step 2. For alternative xi(i = 1, 2, . . . , m), utilize the PFIWMM operator

pi = PFIWMMR(pi1, pi2, · · · , pin) (53)

or the PFIDWMM operator

pi = PFIDWMMR(pi1, pi2, · · · , pin) (54)

to aggregate all the attributes values, so that a series of comprehensive preference value can
be obtained.

Step 3. Rank the overall values pi(i = 1, 2, . . . , m) based on their scores according to Definition 3.
Step 4. Rank the corresponding alternatives according to the rank of overall values and select the

best alternative.

6. Numerical Example

In the following, we provide a numerical example that is adopted from [21] to illustrate the
application of the proposed method. In order to know the best airline in Taiwan, the civil aviation
administration of Taiwan (CAAT) organizes several experts to form a committee to assess the four
major domestic airlines. The four airlines are the UNI Air (x1), Transasia (x2), Mandarin (x3), and
Daily Air (x4).The alternatives are assessed from four attributes: (1) the booking and ticketing service
(G1); (2) the check-in and boarding process (G2); (3) the cabin service (G3); (4) the responsiveness (G4).
Weight vector of the attributes is w = (0.15, 0.25, 0.35, 0.25)T . Experts are required to utilize a PFN
pij =

(
µij, vij

)
to express their assessments for attributes Gj(j = 1, 2, 3, 4) of airline xi(i = 1, 2, 3, 4),

and a Pythagorean fuzzy decision matrix P =
(

pij
)

4×4(i, j = 1, 2, 3, 4) is shown in Table 1. In the
following, we will solve this problem based on the proposed method.

Table 1. The Pythagorean fuzzy decision matrix.

G1 G2 G3 G4

x1 (0.9, 0.3) (0.7, 0.6) (0.5, 0.8) (0.6, 0.3)
x2 (0.4, 0.7) (0.9, 0.2) (0.8, 0.1) (0.5, 0.3)
x3 (0.8, 0.4) (0.7, 0.5) (0.6, 0.2) (0.7, 0.4)
x4 (0.7, 0.2) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)
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6.1. The Decision-Making Process

Step 1. As all of the attribute values are the same type, the original decision matrix does not need to
be standardized.

Step 2. For each alternative, utilize Equation (53) to aggregate the assessments. Here, we assume
R = (1, 1, 1, 1). Therefore, we can obtain

p1 = (0.3895, 0.2816) p2 = (0.3526, 0.1679) p3 = (0.3415, 0.1979) p4 = (0.3588, 0.1878).

Step 3. Based on Definition 3, we can calculate the score function S(pi)(i = 1, 2, 3, 4) as follows

s(p1) = 0.0724 s(p2) = 0.0961 s(p3) = 0.0775 s(p4) = 0.0935.

Therefore, the ranking order of the overall values is p2 > p4 > p3 > p1.
Step 4. According to the ranking order of the overall values, we can get the ranking order of the

corresponding alternatives. That is x2 � x4 � x3 � x1. Therefore, x2 is the best alternative,
which means Transasia is the best airline of Taiwan.

In [14], the ranking results by using the Pythagorean fuzzy weighted averaging (PFWA)
operator, the symmetric Pythagorean fuzzy weighted averaging (SPFWA) operator and the symmetric
Pythagorean fuzzy weighted geometric (SPFWG) operator are also x2 � x4 � x3 � x1, which proves
the validity of the proposed method.

In step 2, if we utilize the PFIWDMM operator to aggregate the decision makers’ preference
information, we can obtain

p1 = (0.3622, 0.3159) p2 = (0.3295, 0.2096) p3 = (0.3439, 0.1938) p4 = (0.3524, 0.1996).

Therefore, the scores of the overall values are

s(p1) = 0.0314 s(p2) = 0.0647 s(p3) = 0.0807 s(p4) = 0.0843

Thus, the ranking order of the alternatives is x4 � x3 � x2 � x1. In Ref [11], the ranking result by
utilizing the Pythagorean fuzzy weighted geometric is also x4 � x3 � x2 � x1, which also illustrate
the validity of the proposed approach.

6.2. Further Discussion

The prominent advantage of the proposed aggregation operators is that the interrelationship
among all PFNs can be taken into consideration. Moreover, it has a parameter vector that leads to
flexible aggregation operators. To show the validity and superiorities of the proposed operators,
we conduct a comparative analysis. We solve the same problem by some existing MAGDM
approaches including the SPFWA and the SPFWG operators in [22], the Pythagorean fuzzy ordered
weighted averaging weighted averaging distance (PFOWAWAD) operator in [22], the Pythagorean
fuzzy point (PFP) operator and generalized Pythagorean fuzzy point ordered weighted averaging
(GPFPOWA) in [23], the Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA) operator
in [24], the Pythagorean fuzzy Einstein ordered weighted geometric (PFEOWG) operator in [25,26],
the Pythagorean fuzzy weighted Bonferroni mean (PFWBM) operator in [30], the Pythagorean fuzzy
weighted geometric Bonferroni mean (PFWGBM) operator in [31], the generalized Pythagorean
fuzzy weighted Bonferroni mean (GPFWBM) operator and generalized Pythagorean fuzzy Bonferroni
geometric mean (GPFBGM) operator in [32], the dual generalized Pythagorean fuzzy weighted
Bonferroni mean (DGPFWBM) operator and dual generalized Pythagorean fuzzy weighted Bonferroni
geometric mean (DGPFWBGM) operator in [32], the Pythagorean fuzzy weighted Maclaurin
symmetric mean (PFWMSM) operator in [33], the generalized Pythagorean fuzzy weighted Maclaurin
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symmetric mean (GPFWMSM) operator in [34], the Pythagorean fuzzy interaction ordered weighted
averaging (PFIOWA) operator and the Pythagorean fuzzy interaction ordered weighted geometric
(PFIOWG) operator in [38], the Pythagorean fuzzy weighted Muirhead mean (PFWMM) operator,
and Pythagorean fuzzy weighted dual Muirhead mean (PFWDMM) operator [39]. Details can be
found in Table 2.

The approaches in [11–26] are based on a simple weighted averaging operator. The weaknesses of
these approaches are (1) they assume that all the input arguments are independent, which is somewhat
inconsistent with reality; (2) they cannot consider the interrelationship among input arguments;
(3) they cannot capture the interrelationship between membership degree and non-membership
degrees. However, on the contrary, the method in the present paper can capture the interrelationship
among input arguments. In addition, it provides a feasible aggregation process as it has a parameter
vector R. Quite a few existing aggregation operators are special cases of the proposed operators.
Moreover, the method is based on the interaction operations for the PFNs. Thus, the proposed
method can consider the relationship among membership and non-membership degrees. In other
words, the proposed method can effectively handle situations in which a membership degree or a
non-membership degree is zero. Thus, the proposed method is more powerful and flexible than the
methods in [21–26].

Table 2. Comparison of different aggregation operators.

Approaches
Whether Captures
Interrelationship
of Two Attributes

Whether Captures
Interrelationship

of Multiple
Attributes

Whether Captures
Interrelationship
of All Attributes

Whether Captures
Relationship of

Membership and
Non-Membership

Degrees

Whether Makes
the Method

Flexible by the
Parameter Vector

SPFWA [21] No No No No No
SPFWG [21] No No No No No

PFOWAWAD [22] No No No No No
PFP [23] No No No No No

GPFPOWA [23] No No No No No
PFEOWA [24] No No No No No

PFEOWG [25,26] No No No No No
PFWBM [30] Yes No No No No

PFWGBM [31] Yes No No No No
GPFWBM [32] Yes No No No No

GPFWBGM [32] Yes No No No No
DGPFWBM [32] Yes Yes Yes No Yes

DGPFWBGM [32] Yes Yes Yes No Yes
PFWMSM [33] Yes Yes No No No

GPFWMSM [34] Yes Yes No No No
PFIOWA [38] No No No Yes No
PFIOWG [38] No No No Yes No
PFWMM [39] Yes Yes Yes No Yes

PFWDMM [39] Yes Yes Yes No Yes
PFIWMM Yes Yes Yes Yes Yes

PFIWDMM Yes Yes Yes Yes Yes

Approaches in [30,31] are based on BM, so that they consider the interrelationships between
arguments. However, the main flaw is that they can only capture the interrelationship between any
two arguments. Approaches based on GPFWBM and GPFWBGM operators are better than approaches
in [32], as the former approaches can capture the interrelationship between any three approaches.
Approaches in [33,34] can consider the interrelationship among multiple arguments; however, all the
methods [30–34] fail to reflect the interrelationship among all input arguments. Additionally, these
methods do not consider the interrelationship among membership degree and non-membership degree.
The proposed method in this paper not only captures the interrelationship between all input arguments
but also takes the relationship between membership and non-membership degrees.

The approaches in [32] based on the DGPFWBM and GPFWBGM operators are much better than
the methods in [30–34], as they can consider the interrelationship among all arguments. Additionally,
they have vectors of the parameters, leading to a flexible and feasible aggregation process. However,
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the main drawback of these operators is that they do not consider the relationship between membership
degree and non-membership degree. The proposed method in this paper takes the interrelationships of
all arguments into consideration and simultaneously considers the relationship between membership
and non-membership degrees. Thus, our method in this paper is more powerful than the method
based on the DGPFWBM or GPFWBGM operators.

Compared with the approach based on the PFIOWA and PFIOWG operators, the merit of the
proposed approach is that it can reflect the membership and non-membership degrees, as it is based
on the interaction operations for PFNs. However, it cannot reflect of the interrelationship among PFNs.
Moreover, it is not as flexible as the proposed method. In addition, the Pythagorean fuzzy Muirhead
mean operators in [39] are based on basic operational laws, so that the relationship among membership
and non-membership degrees is overlooked. In other words, the operators in [39] do not work for the
situations in which one membership or non-membership degree is equal to one.

All in all, the proposed method in this paper can reflect the interrelationships among all input
arguments. In addition, it works for situations in which a membership degree or a non-membership
degree is zero, leading to less information loss and consequently making decision-making results more
reasonable. Therefore, the proposed method is more powerful and flexible than others.

It is noted that there exists a vector of parameter R in the proposed method. The parameter vector
R plays a significant role in the final ranking results. Some existing Pythagorean fuzzy aggregation
operators are special cases of the proposed operators. By assigning different parameter vectors in the
proposed operators, different overall values as well as the final ranking results can be obtained. Thus,
in the following, we investigate the influence of the vector of parameters R on the score functions and
the ranking results. We assign different values to R in the PFIWMM and PFIWDMM operators, and the
score function and ranking orders are presented in Tables 3 and 4.

Table 3. Ranking results by utilizing the different parameter vector R in the Pythagorean fuzzy
interaction weighted Muirhead mean (PFIWMM) operator.

Parameter Vector R The Scores of s(pi)(i = 1, 2, 3, 4) Ranking Results

R = (1, 0, 0, 0)
s(p1) = 0.0874 s(p2) = 0.2680
s(p3) = 0.1966 s(p4) = 0.2440 x2 � x4 � x3 � x1

R = (1, 1, 0, 0)
s(p1) = 0.1040 s(p2) = 0.1706
s(p3) = 0.1337 s(p4) = 0.1625 x2 � x4 � x3 � x1

R = (1, 1, 1, 0)
s(p1) = 0.0868 s(p2) = 0.1232
s(p3) = 0.0984 s(p4) = 0.1190 x2 � x4 � x3 � x1

R = (1, 1, 1, 1)
s(p1) = 0.0724 s(p2) = 0.0961
s(p3) = 0.0775 s(p4) = 0.0935 x2 � x4 � x3 � x1

R = (2, 0, 0, 0)
s(p1) = 0.1423 s(p2) = 0.2989
s(p3) = 0.1888 s(p4) = 0.2646 x2 � x4 � x3 � x1

As we can see in Table 3, by assigning different vector R to the PFIWMM operator, different
scores of the overall assessments can be obtained. However, the ranking results are always the same.
In addition, the more interrelationships between PFNs are taken into consideration, the smaller the
value of score functions will become. Similarly, as we can see in Table 4, different scores of the overall
assessments are obtained with different parameter vector R in the PFIWDMM operator. Similar to the
PFIWMM operator, the more interrelationships among attributes are taken into account, the smaller
the scores of the overall assessments. However, no matter what the parameter vector is, the ranking
result is always the same. Therefore, the parameter vector can be viewed as the decision makers’
risk preference.



Information 2018, 9, 157 20 of 22

Table 4. Ranking results by utilizing the different parameter vector R in the PFIWDMM operator.

Parameter Vector R The Scores of s(pi)(i = 1, 2, 3, 4) Ranking Results

R = (1, 0, 0, 0)
s(p1) = 0.2103 s(p2) = 0.2530
s(p3) = 0.2990 s(p4) = 0.3116 x4 � x3 � x2 � x1

R = (1, 1, 0, 0)
s(p1) = 0.0818 s(p2) = 0.1290
s(p3) = 0.1577 s(p4) = 0.1647 x4 � x3 � x2 � x1

R = (1, 1, 1, 0)
s(p1) = 0.0465 s(p2) = 0.0862
s(p3) = 0.1068 s(p4) = 0.1116 x4 � x3 � x2 � x1

R = (1, 1, 1, 1)
s(p1) = 0.0314 s(p2) = 0.0647
s(p3) = 0.0807 s(p4) = 0.0843 x4 � x3 � x2 � x1

R = (2, 0, 0, 0)
s(p1) = 0.0807 s(p2) = 0.1966
s(p3) = 0.3076 s(p4) = 0.3078 x4 � x3 � x2 � x1

7. Conclusions

In the field of aggregation operators, more and more operators have been proposed. However,
some operators do not take the correlations among attributes into consideration, which cannot
satisfy the needs of real decision-making problems. The MM operator can consider the interaction
relationships among any number of attributes with a parameter R. In this paper, we extend the
MM operator to PFNs and propose some new Pythagorean fuzzy operators, including the PFIMM,
PFIWMM, and PFIDWMM operators. These operators can reflect the correlations among all
Pythagorean fuzzy elements. Further, we propose a novel approach to MAGDM by using these
operators. Moreover, in order to show the application of the proposed method in this paper, we provide
a numerical example and the advantages of the new operator are more obvious by comparing the
new operator with the existing ones. Finally, we give the parameter vector R some different values to
discuss the advantages of the new approach on the ranking results of the numerical example. In further
works, we will apply the proposed method in more practical decision-making problems, such as
low carbon supplier selection, hospital-based post-acute care, risk management, medical diagnosis,
and resource evaluation, etc. In addition, we will investigate more aggregation operators for fusing
Pythagorean fuzzy information.
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