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Abstract: Nowadays, there is a high necessity to create new and robust cryptosystems. Dynamical
systems have promised to develop crypto-systems due to the close relationship between them and the
cryptographic requirements. Distributed dynamic encryption (DDE) represents the first mathematical
method to generate a public-key cryptosystem based on chaotic dynamics. However, it has been
described that the DDE proposal has a weak point in the decryption process related to efficiency and
practicality. In this work, we adapted the DDE to a low-dimensional chaotic system to evaluate the
weakness and security of the adaption in a realistic example. Specifically, we used a non-symmetric
logistic coupled map, which is known to have multiple chaotic attractors improving the shortcomings
related to the simple logistic map that manifests its inadequacy for cryptographic applications.
We found a full implementation with acceptable computational cost and speed for DDE, which it is
essential because it provides a key cryptographic requirement for chaos-based cryptosystems.

Keywords: public key encryption; cryptography; chaos; chaotic cryptography; logistic map; logistic
coupled map

1. Introduction

Chaotic systems have great potential to be applied on the encryption of information.
Crypto-systems are classified into branches: private-key and public-key [1]. In chaos-based systems, a
great deal of effort has been done in the private-key part in comparison with the public [2]. One of
the most important public-key chaos-based cryptosystem is presented in [3] where Chebyshev maps
are used to encrypt, but its efficiency is still lower than RSA [4], a common weak point for this kind
of crypto-proposal.

The logistic map is an excellent example of a chaotic system. Originally formulated to represent a
simple demographic model to explain the increase of a population, the logistic map is a one-dimensional
unimodal map and, as a result, its dynamics are quite limited [5]. It can be expressed by using the equation:

f (x) = µx(1− x) (1)

where parameter µ is in the interval 0 ≤ µ ≤ 4. The unimodal aspect of the logistic map makes it
inadequate for cryptographic applications because the parameter µ can be reconstructed from initial
conditions, as in [6], even though a reasonable number of applications have been created [6]. A new
relevant study [7] has been conducted to improve the logistic map for cryptographic applications, but
losing the mathematical simplicity of Equation (1).
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A coupled map lattice (CML) is a dynamical system that models the behavior of non-linear systems.
They are predominantly used to qualitatively study the chaotic dynamics of spatially-extended systems.
This includes the dynamics of spatiotemporal chaos where the number of effective degrees of freedom
diverges as the size of the system increases. CML incorporates a system of equations (coupled or
uncoupled), a finite number of variables, a global or local coupling scheme, and the corresponding
coupling terms [8].

The logistic coupled map is one of the simplest CMLs, first considered as the simplest biologically
realistic model that incorporates spatial effects, it is based on two coupled logistic maps by a
linear coupling:

xn+1 = f (xn) + α(yn − xn) (2)

yn+1 = f (yn)− α(yn − xn) (3)

where f (x) is the logistic map of Equation (1) and α is a coupling parameter. In the logistic map only
two routes to chaos are observed (period doubling and intermittency), and the second dimension of
the logistic coupled map allows the quasiperiodic route to occur [9]. The non-symmetric case of the
logistic coupled map [10] occurs when, in Equations (2) and (3), we use a different parameter µ for f (x),
so the equations take the form:

xn+1 = f1(xn) + α(yn − xn) (4)

yn+1 = f2(yn)− α(yn − xn) (5)

where f 1(x) means to use the logistic map of Equation (1) with µ1 and f 2(x) with µ2. Multiple chaotic
attractors are observed in this system improving the unimodal shortcoming of the simple logistic
map [8]. Figures 1 and 2 show examples of chaotic attractors for the non-symmetric logistic coupled
map (NLCM). The NLCM has a well documented chaotic range for 3.63 ≤ µ ≤ 4 and 0 ≤ α ≤ 1 [11].
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A group from University of California San Diego (UCSD) introduced a theoretical scheme
in [12] for asymmetric encryption exploiting properties of nonlinear dynamical systems where a
high-dimensional dissipative non-linear dynamical system is distributed between a transmitter and
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a receiver. Therefore, they call the method distributed dynamics encryption (DDE). The transmitter
dynamics are public, and the receiver dynamics are private, and they are not shared in the channel.
A message is encoded by modulation of the parameters of the transmitter, and this results in a shift
of the overall system attractor. An unauthorized receiver does not know the hidden dynamics of the
receiver and cannot decode the message [12]. This proposal has been criticized due to its difficulties in
the implementation and is categorized as non-practical [13].Information 2018, 9, x 3 of 12 
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This work will take the proposal of DDE and adapt it for a low-dimensional system using the
coupled logistic map. We will study the encryption, the decryption, and the common attack for this
cryptographic system. This is important for DDE because it provides an implementation without
loss of security with acceptable cost and speed, which is a relevant cryptographic requirement for
chaos-based cryptosystems suggested by [14]. It is our understanding that, at the time we wrote this
work, this is the first fully functional computational implementation for encryption of DDE, besides
the concept proof presented by the UCSD group. Even more, the work presented here is the missing
example for DDE pointed out in the literature [4].

2. Encryption

The basic idea of distributed dynamics encryption (DDE) is to split a dynamical system of
dimension DT + DR into two parts with DT transmitter variables t(n) = [t1(n); . . . ; tDT(n)], and DR
receiver variables r(n) = [r1(n) ; . . . ; rDR(n)]. The receiver receives the scalar signal st(n) from the
transmitter, and the transmitter receives the scalar signal sr(n) from the receiver:

t(n + 1) = FT(t(n), sr(n), m(n)) (6)

r(n + 1) = FR(r(n), st(n)) (7)

where m(n) is the message which we want to encrypt. We allow that m(n) only takes values 0 or 1;
this requirement creates a binary message. The receiver must simulate the entire dynamics before she



Information 2018, 9, 160 4 of 12

starts the communication; this will create a list of points necessary for encrypting and decrypting the
message. To perform the simulation, she will select the parameters and equations that will serve as the
public and private keys, which is explained below.

The encryption for our low-dimensional implementation comes from a relation between
Equations (4)–(7), where x (Equation (4)) will be the dynamic split to the transmitter and y (Equation (5))
will be the receiver part:

xn+1 = f1(xn) + α(yn − xn) + A ∗m (8)

yn+1 = f2(yn)− α(yn − xn) (9)

where the parameter A is a modulation of the message. In our implementation A takes random values
between 0.001 and 0.01 to provide additional security to the system. Figure 3 shows an eight-bit
encrypted message (01010111, which, using the ASCII standard, is the letter, “W”). For an easy
identification we differentiate the points which correspond to a 0 bit to those which correspond a 1 bit.
The security of this implementation resides in the overlap and closeness of those points. Only if you
have the previous simulation can you decrypt the message. Figure 4 shows a different attractor with a
longer message of 32-bits (01010111 01101111 01110010 01110100, which, using the ASCII standard, is
a four-letter message, “Wort”). In this scheme, a different chaotic attractor represents a different pair of
cryptographic keys. Equation (8), with its corresponding parameters, is the public key and Equation (9)
is the private key. Something relevant is that the receiver does not need to know the parameter A to
decrypt the message: in this sense parameter A represents a private key of the transmitter, providing
more security to the encrypted message. Parameter A is not used in the decryption process because
we are using a chaotic attractor, which, after some iterations of the full dynamic, is only known by the
receiver, and the signal sent by the transmitter will converge to the attractor or not.
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3. Decryption

An authorized receiver knows all quantities, public and private, and can establish off-line the
admissible attractors, or other dynamical aspects of the total system, for all allowed values of m(n).
For decryption, it is necessary to previously know all the points of the simulation. The decrypting
process corresponds to the calculation of the distance of each received point from the transmitter to
the points of the simulations. It is necessary to compute this distance to every point of the simulation
and select the minimum value. If this value is lower than a tolerance parameter, which is related to
parameter A of Equation (8), it is a 0-bit, and if it is greater, it is a 1-bit.

Even though this decryption process seems to be easy when the full dynamic is known, it is
computational expensive, an aspect covered in Section 6 of this paper.

4. Cryptanalysis

An unauthorized receiver may attempt several methods to attack DDE and decode the secret
message m(n), but it has been demonstrated in [15] that the only one where non-defense can be used
it is the one analyzed in this section. As the security resides in the fact the signal traveling in the
channel is chaotic, our implementation is still as defensible as the original DDE. Figure 5 shows the
data traveling through the communication channel, where an unauthorized receiver cannot easily
resolve the message, and also due to topologically transitivity, as more data is transmitted in the
channel, all the space will be occupied. On the other hand, Figure 6 shows the case when the attractor
is not chaotic: here, it is easy to identify the two states (0 or 1).

One such method is to reconstruct the positions of the attractors that correspond to the
transmission of 0 and 1 by storing and clustering samples of many transmitted bits. Knowing the
positions of the attractors would enable the unauthorized receiver to decode the message using the
same method as the authorized receiver [12].
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The chaotic dynamics may contain channel and noise that make the dynamics stochastic.
An unauthorized receiver may attempt to generate a hidden Markov model of the transmitter public
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dynamics for each possible value of the message m, and obtain a maximum likelihood (ML) estimation
m’ of the message m. The decoded message will then be given by:

m′ = maxm∈(0,1)p(st(1), . . . , st(DT + 1)|m) (10)

In order to generate the hidden Markov model, the unauthorized receiver will need to quantize
the transmitter state in a time delay reconstructed embedding space, and to estimate the state transition
probabilities, as well as the observation probabilities of the model [15].

The attack proposed was implemented for our low-dimensional model. Figure 7 shows how
the case of a message encrypted using a non-chaotic map where the training accuracy is 95%, which
shows the effectiveness of the attack. When the number of bits is lower than that necessary to train
the model, according to [14], the accuracy reduces to lower than 40%, in which a probabilistic attack,
as in [1], cannot help this particular attack. This case is shown in Figure 8 where the red line is the
decision boundary, which is far from being correct. Figure 9 has a larger number of bits, 60,000, and the
boundary is more visible, but it is not enough to recover the message. Figure 10 shows the case where
the number of bits is equal to that necessary to perform the attack: it is visible how the decision curve
can resolve for 0 or 1-bits. Equation (9) from [15] shows the number of states that can be transmitted
before the decision curve can be resolved:

Ns ≈
(

LT
Lq

)DT

(11)

where LT is the range of the data transmitted and Lq is the quantization in the signal. Equation (11) is
still useful in our case because it has been derived in general for any CML. For our implementation
this number is around 4 × 107 which shows why Figure 10 can resolve the decision curve and how the
security of this implementation is of the same level as the original DDE proposal.
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A relevant feature to point out is to see how a very small change in the dynamics of the receiver
creates very different attractors. This can be observed in Figures 1 and 2, where the only change
between them is the value of µ with just a 0.2 differential, and the produced dynamic is totally different.
This is very useful because we do not need to change the public key to have a new crypto dynamic,
representing a good option to protect from the attack described in this section.

The NLCM represents an improvement over the logistic map, but another map with our
low-dimensional crypto scheme, like the piecewise linear map [16], represents a new pair of crypto keys.

The chaos degradation is a well-known problem for chaos-based cryptosystems [17]. In DDE, this
problem is addressed by two means: (i) as the chaotic process is involved only in the simulation part,
which happens off communication, algorithms of quality verification can be performed before using
the data for the encryption; and (ii) also, as we are proposing when coupled maps from nature are used,
there is information from the characterization of the phenomena that can indicate the degradation of
the chaos, i.e., when the data is taken from an analog circuit.

5. Communication Scenario

In this section, we are going to provide the encryption and decryption algorithms for our proposal
and give an example of the communication scenario between Alice and Bob.

Key selection. Alice should select µ1, µ2, and α. Additionally, Bob has his own private key: the
parameter A, which is selected in the interval accepted by Alice.

Requirements. Alice, with the key selected, must compute the simulation with the help of Equations (8)
and (9). This will generate a long list of (X,Y) points. Furthermore, she defines a tolerance which is related
with the minimum value that she will accept for the parameter A.

Algorithm for encryption. To encrypt a message m, Bob should do the following:

(a) Obtain Alice’s authentic public key (Equation (8) and µ1).
(b) Represent the message as binary code.
(c) Obtain Alice’s first 50 X data.
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(d) Compute 50 Y data for the first bit, using Equation (8), µ1, X data, and parameter A.
(e) Send Y data to Alice.
(f) Repeat for the next bits with a new 50 X data from Alice.

Algorithm for decryption. To recover the message Alice should do the following:

(a) Pair the first X data sent to Bob with the Y data received from Bob.
(b) Take just the last 12 pairs.
(c) For each pair calculate the Euclidian distance to each point of the long (X,Y) list of the simulation

and preserve the minimum value of the distance.
(d) If the average of the 12 minimum pairs is greater than the tolerance, it is a 1-bit, otherwise it is

a 0-bit.
(e) Repeat for the next 50 Y data from Bob.

Now for the example: Let us say that Alice wants to communicate with Bob, and he has a very
important message to send her, the letter W. They want to use our crypto-proposal to transmit this
letter by a secure channel. First Alice needs to choose the crypto-keys, µ1, µ2, and α. Recall that they
must lead to chaotic conditions (she could verify this with help of the Lyapunov exponent of NLCM
from [11]). Let us say she uses µ1 = 3.1, µ2 = 2.9, and α = 0.3314, the same attractor from Figure 1.
She will announce publicly Equation (8) with µ1 and α from the previous selection and keep secret
Equation (9) and µ2. Bob will take this public information to transmit the message. Alice makes
the simulation offline using Equations (8) and (9), and it will produce a long list of (X,Y) points.
Equation (9), with its parameters, is the private key; it does not travel by channel. To start the
communication from the long list that Alice has, she sends 50 X data to Bob. He will take his message
and convert it to binary, he could use ASCII, so W will be 01010111, in eight bits. He takes the first bit,
0, and using Equation (8) recalculates a new pair Y for the fifty received from Alice and send back to
her, in this Equation (8) it is the parameter A which Bob actually chooses, it is better if it is random,
also to compute Equation he needs a Y0 starting value which he selects also randomly. Eve the evil
genius, who is listening in the channel from the data sent by Bob, cannot reconstruct the first bit from
the 50 numbers thanks to the private keys of Bob and the fact that Equation (8) is in a chaotic state.
Eve will need to wait until having enough data to use the attack described in the previous section.
Alice receives the 50 Y numbers and using the last 12, pairs them with the last 12 of X that she sent and
calculates the distance to every point in the long list from the simulation that she has and takes the
minimum distances for the 12 pairs. If the average of the 12 minimum distances are lower than the
tolerance (the minimum value that A can be) is a 0-bit, and if it is greater than the tolerance, it is a 1-bit.
In this case, Alice will see a 0-bit. Now, the process is repeated for the next bits. Alice does not need to
send adjacent X data to Bob for the transmission of the message.

6. Computer Experiment

Our implementation has been made in Python with the help of packages Numpy for the data
management and HMMlearn for the Markov chain used in the attack. The calculations were performed
on a Linux system with a Core i7 2.6GHz PC with 16 GB of RAM. Figures 1–4 were computed with
one million points for the chaotic attractor with an average time of 33 s for the calculation. Figure 10
has the higher computation time; in this case, the Markov chain training took an average time of 72 h
due to the 50 million bits needed for the training.

Table 1 shows the performance of the encryption and decryption algorithms where, as expected,
the time of both increases as more bits are needed to be processed. It is remarkable how the encryption
time is relatively small compared with the decryption time. This expensive decryption time is the
weakness of DDE and opens additional research into this kind of crypto-system. However, we have
shown how the DDE may be implemented.
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Table 1. Details of the encryption/decryption time.

No. Bits Encryption Time (s) Decryption Time (s)

8 0.045 141.1081
16 0.0997 293.1638
32 0.2017 600.4974
64 0.3199 1318.4119

128 0.5973 2567.0675
256 1.7431 5297.5988

7. Conclusions

In this paper, we have made a full implementation of DDE, where we have described both
encryption and decryption processes, showing how the implementation of DDE is possible with
a low-dimensional dynamical system. This is relevant to this research field because it provides
a functional example for DDE with the same kind of security provided by the high-dimensional
systems which it is a key cryptographic requirement for chaos-based cryptography. Further, this
implementation opens the possibility to investigate better ways to enhance the efficiency of DDE.

Our low-dimensional DDE represents a platform to evaluate different coupled maps. Future
research can be done in the comparison of the security of low-dimensional and high-dimensional DDE.
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