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Abstract: Aerial images are subject to various types of noise, which restricts the recognition and
analysis of images, target monitoring, and search services. At present, deep learning is successful
in image recognition. However, traditional convolutional neural networks (CNNs) extract the main
features of an image to predict directly and are limited by the requirements of the training sample
size (i.e., a small data size is not successful enough). In this paper, using a small sample size, we
propose an aerial-image denoising recognition model based on CNNs with a multi-scale residual
learning approach. The proposed model has the following three advantages: (1) Instead of directly
learning latent clean images, the proposed model learns the noise from noisy images and then
subtracts the learned residual from the noisy images to obtain reconstructed (denoised) images; (2)
The developed image denoising recognition model is beneficial to small training datasets; (3) We
use multi-scale residual learning as a learning approach, and dropout is introduced into the model
architecture to force the network to learn to generalize well enough. Our experimental results on
aerial-image denoising recognition reveal that the proposed approach is highly superior to the other
state-of-the-art methods.
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1. Introduction

As one of the classical problems in aerial imaging, aerial images for regional scenes, searching,
and military scouting are subject to various types and degrees of noise, which may occur during
transmission and acquisition. The appearance of noise in aerial images interferes with the quality of
the original images, which has direct or indirect influences that complicate the timely recognition,
analysis, target monitoring, and search services [1]. Therefore, image denoising is a crucial issue in the
field of computer vision that has been widely discussed and studied by researchers [2–4]. At present,
most of the existing denoising methods mainly focus on the scenario of additive white Gaussian
noise (AWGN), whereby an observed noisy image y is modeled as a combination of a clean image x
and AWGN v; that is, y = x + v. Using a general model, Elad & Aharon [5] presented sparse and
redundant representations over learned dictionaries, whereby the proposed algorithm simultaneously
trained a dictionary on its content using the K-SVD algorithm. However, its computational complexity
is one of the shortcomings of this algorithm.

In recent years, with the development of deep learning, the research results of deep architecture
have shown good performance [6–9]. In the task of image denoising, Frost et al. [10] and Kuan et
al. [11] proposed spatial linear filters that assume that the resulting values of image filtering are linear
with respect to the original image, by searching for the correlation between the intensity of the center
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pixel in the moving window and the average intensity of the filter window. Therefore, the spatial
linear filter achieves a trade-off between the constant all-pass identity filter in the edge-containing
region and balance in the uniform region. However, the spatial linear filter methods are not enough
to integrally preserve edges and details and are unable to preserve the average value, especially
when the equivalent number of look (ENL) of the original Synthetic Aperture Radar (SAR) image
is very small. To address this problem, Zhang et al. [12] considered that image speckle noise can be
expressed more accurately through nonlinear models than through linear models and proposed a novel
deep-neural-network-based approach for SAR image despeckling, learning a nonlinear end-to-end
mapping between the speckled and clean SAR images by a dilated residual network (SAR-DRN),
which enlarges the receptive field and maintains the filter size and layer depth. Likewise, Wei et
al. [13] proposed the deep residual pan-sharpening neural network (DRPNN); that is, the concept
of residual learning was introduced to form a very deep convolutional neural network (CNN) to
make full use of the high nonlinearity of the deep learning models, which overcomes the drawbacks
of the previously proposed methods and performs high-quality fusion of Panchromatic (PAN) and
Multi-spectral (MS) images. Furthermore, Yuan et al. [14] introduced multi-scale feature extraction
and residual learning into the basic CNN architecture and propose a multi-scale and -depth CNN
for the pan-sharpening of remote sensing imagery that overcomes some shortcomings; for example,
in the Component Substitution (CS) and Multiresolution Analysis (MRA) based fusion methods, the
transformation from observed images to fusion targets is not rigorously modeled, and distortion
in the spectral domain is very common. In the Model-based optimization (MBO)-based methods,
the linear simulation from the observed and fusion images is still a limitation, especially when the
spectral coverages of the PAN and MS images do not fully overlap and lead to the fusion process
being highly nonlinear. Very recently, Zhang et al. [15] proposed an image denoising model using
residual learning of deep CNNs (feed-forward denoising CNN—DnCNN) that has provided promising
performance among the state-of-the-art methods. Specifically, the model utilizes residual learning and
batch normalization to speed up the training process as well as boost the denoising performance.

As mentioned above, using the deep learning method, it has been explained that if the model
is able to be trained with a very large data size, the deep architecture will provide a competitive
result [16,17]. That is to say, these deep learning techniques require a large training dataset to establish
a prediction model to provide better model performance, which brings about a serious problem: not
only do they need to consume a lot of precious time, but the image datasets of the target region
search are often also limited. Therefore, it is still an open field of research to apply deep learning to
image-processing recognition problems with small datasets.

In this paper, to improve the model denoising recognition performance for small training datasets,
following Zhang et al. [15], with our own modified architecture, we propose an aerial-image denoising
recognition model based on a CNN with an improved multi-scale residual learning approach. Firstly,
differently from [15], the image denoising recognition model developed by us is beneficial to small
training datasets. Secondly, instead of directly outputting a denoised image, we separate the noise
from a noisy image by a deep CNN model, and then the denoised image is obtained by subtracting
the residual from the noisy observation. Finally, multi-scale residual learning is used as a learning
algorithm, and batch normalization and dropout are also incorporated to speed up the training process
and improve the model’s denoising performance.

The rest of the paper is organized as follows. Section 2 presents related work, Section 3 explains
the proposed aerial-image denoising, the experimental results and evaluation are elaborated upon in
Section 4, and finally Section 5 provides the conclusion of the paper.

2. Related Work

In this section, we give a brief review of the residual learning network (ResNet). A comprehensive
review on the ResNet can be found in [18–25].
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Compared with shallow neural networks, deep networks have a higher training error and test
error, and deep-level network structure training is also very difficult [18,19]. Supposing there exists
a shallow network, then there should be such a deep network that is made up of multiple x → x
mappings that are based on the shallow network, and the training error of the deep neural network
should not be higher than that of the corresponding shallow network. However, it is very difficult to
use multiple nonlinear layers to fit a x → x direct mapping [20–22].

To overcome the above-stated problem, the residual learning approach along with some other
approaches was introduced. The ResNet can be defined as y = ℘({Wi}, x) + x, where ℘({Wi}, x) is
the residual mapping function to be learned, y is the output vector of the considered layers, and x
is the input vector of the considered layers. As shown in Figure 1a, ℘ = W2Relu(W1x), and Relu is
defined as Relu(x) = max{0, x}.

Furthermore, the idea of residual learning is illustrated. We assume that the target mappingH(x)
is a sub-module of the neural networkϕ that we wish to learn and thatH(x) may be very complex and
difficult to learn. Now, instead of learningH(x) directly, the sub-module ϕ learns a residual function
℘(x) as

℘(x) = H(x)− x. (1)

The original mapping function x̌ can be expressed as

x̌ = ℘(x) + x. (2)

That is, ϕ can be composed of two parts: a linear direct mapping x → x and a nonlinear mapping
℘(x). If the direct mapping x → x is optimal, the learning algorithm can easily set the weight
parameters of the nonlinear mapping ℘(x) to 0. If there is no direct mapping, it is very difficult for
the nonlinear mapping ℘(x) to learn the linear mapping x → x . Additionally, He Kaiming’s [26]
experiments showed that such a residual structure in the extraction of the image texture and detail
features is a significant result.
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Figure 1. Residual learning network. 

At present, the ResNet is mainly composed of multiple residual learning modules. However, 
the consumption in stacking a number of residual learning modules to build a deep neural network 
is still a little large. Therefore, Zhang et al. [15] presented a residual module structure called a 
bottleneck, as shown in Figure 1b. Additionally, with the residual learning strategy, a new method 
named the DnCNN [15] recently showed excellent performance, implicitly removing the latent 
clean image in the hidden layers. This property motivated us to train a single DnCNN model to 
tackle several general image denoising tasks, such as Gaussian denoising, single-image 
super-resolution, and JPEG image deblocking.  

In addition, the bottleneck structure module is the key for the ResNet to achieve hundreds or 
thousands of layers. In Figure 1b, there are three layers in total for the nonlinear part of the 
bottleneck structure, one m ∗ m (m = 3) convolution and two 1∗1 convolutions. Assuming that the 
dimension of the input data 𝑥 is 256, the first 1∗1 convolution can reduce the dimensions; at the 

Figure 1. Residual learning network.

At present, the ResNet is mainly composed of multiple residual learning modules. However, the
consumption in stacking a number of residual learning modules to build a deep neural network is still
a little large. Therefore, Zhang et al. [15] presented a residual module structure called a bottleneck,
as shown in Figure 1b. Additionally, with the residual learning strategy, a new method named the
DnCNN [15] recently showed excellent performance, implicitly removing the latent clean image in
the hidden layers. This property motivated us to train a single DnCNN model to tackle several
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general image denoising tasks, such as Gaussian denoising, single-image super-resolution, and JPEG
image deblocking.

In addition, the bottleneck structure module is the key for the ResNet to achieve hundreds or
thousands of layers. In Figure 1b, there are three layers in total for the nonlinear part of the bottleneck
structure, one m ∗m(m = 3) convolution and two 1∗1 convolutions. Assuming that the dimension of
the input data x is 256, the first 1∗1 convolution can reduce the dimensions; at the same time, it also
implements cross-channel information fusion to some extent and reduces the input dimension to 64.
The second 1∗1 convolution plays a major role in raising the dimension, which causes the output
dimension to return back to 256. The input and output dimensions of the middle m ∗m convolution
fall from the original 256 to 64 by the two 1∗1 convolutions, which greatly reduces the number of
parameters and also increases the module depth [23,24]. In order to boost the denoising performance
and improve image denoising recognition as much as possible, the bottleneck residual learning module
is used to replace the ordinary residual learning module [25].

3. Proposed Aerial-Image Denoising

3.1. The Proposed Method Formulation

At present, all the image denoising methods have a common formulation, as follows:

y = x + v, (3)

where y is the observed noisy image generated as the addition of the clean image x and some noise v.
Most of the discriminative denoising models aim to learn a mapping function (Equation (4)) to

predict the latent clean image from y:
H(y) ≈ x. (4)

Unlike previous methods, for aerial-image denoising, we follow DnCNN [15] and adopt the
residual learning formulation to learn the residual mapping, as follows:

℘1(y) ≈ v. (5)

Thus, we have the original function x̌:

x̌ = y− ℘1(y). (6)

Formally, to learn the trainable parameters λ in the aerial-image denoising model, the averaged
mean-square error between the desired image residuals {∆t} and estimated residuals {℘} from
noisy input

`(λ) =
1

2N

N

∑
t = 1
‖℘− ∆t‖2

F =
1

2N

N

∑
t = 1

℘(yt; λ)− (yt − xt)
2
F (7)

can be adopted as the loss function of the residual estimation, where {(yt; xt)}N
t = 1 are N pairs of the

noisy–clean training image (patch) and ‖.‖2
F is the Frobenius norm, which, for a matrix H, can be

calculated by the following formula:
‖H‖2

F = ∑
i,j

∣∣hij
∣∣2. (8)

The architecture of the proposed aerial-image denoising model for learning ℘(y) as shown in
Figures 2 and 3 illustrates that the reconstructed denoised image x̌ is obtained by subtracting the
residual image ℘1(y) from the noisy observation image y. In the following, we explain the architecture
of the multi-scale learning module for the aerial-image denoising model.
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3.2. Multi-Scale Learning Module

It is assumed that the output of the previous layer Xi−1 is composed of the ni−1 feature mappings
(i.e., ni−1 channels). Firstly, to produce a set of feature mappings zik , multi-scale filters are applied to
the input data, as follows:

zik = Wik ∗ (Xi−1) + Bik (9)

where Wik and Bik are the convolutional filters and biases of the kth type of the ith layer, respectively,
and Wik includes nl filters of size ni−1 × fik × fik .

Secondly, each convolution produces nl feature maps. Therefore, the multi-scale convolution [24]
is composed of K× ni feature maps. The feature maps are divided into nl nonoverlapping groups, and
the tth group is made up of K feature maps, that is, zt

i1
, zt

i2
, zt

i3
, · · · , zt

ik
; then maximum pooling across

zt
i1

, zt
i2

, zt
i3

, · · · , zt
ik

is performed by the maxout activation function δ(.). The function Yt
i (x, y),

Yt
i (x, y) = δ

(
zt

i1(x, y), zt
i2(x, y), zt

i3(x, y), · · · , zt
ik (x, y)

)
, (10)

is the maxout output of the tth group at the position (x, y), where zt
ip
(x, y)(p = 1, 2, . . . , k) is the data

at a particular position (x, y) in the pth feature map for the tth group.
In our paper, the multi-scale convolutional layer comprises three (K = 3) types of filters,

fi1 = 5 × 5, fi2 = 3 × 3, and fi3 = 1 × 1, as shown in Figure 4. Across the feature maps,
the maxout function executes maximum element-wise pooling. During each iteration of the training
process, the activation function ensures that the unit with the maximum value in the group is activated.
Conversely, the convolution layer feeds the feature map to the maxout activation function.

The difference is that instead of the single 3∗3 convolution kernel in the convolution module, the
multiple 1∗1, 3∗3, and 5∗5 convolution kernels are used, so that the convolution layer can observe the
input data from different scales, so as to help the different convolution kernels converge to different
values, which effectively avoids the collaborative work of the network [27,28].
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In Figure 4, k is the scaling parameter, and the three convolutions of unit width are 1 ∗ 1 ∗ 16,
3 ∗ 3 ∗ 16, and 5 ∗ 5 ∗ 16. Then after the transformation of the scaling parameter k, the network width is
as follows:

3→ 3 ∗ k. (11)

The corresponding three convolution kernels are as follows:

1 ∗ 1 ∗ 16→ 1 ∗ 1 ∗ 16 ∗ k,
3 ∗ 3 ∗ 16→ 3 ∗ 3 ∗ 16 ∗ k ,
5 ∗ 5 ∗ 16→ 5 ∗ 5 ∗ 16 ∗ k.

(12)

For the traditional ResNet, when the network depth reaches a certain degree, the effect of the
network becomes less obvious [26]. However, the proposed multi-scale ResNet not only increases the
network depth, but also makes the network training very easy. The experimental results show the
improvement in performance, as detailed in Section 4.2.

3.3. Dropout

Considering the excellence in dropout [6] for CNNs, we incorporated dropout for the image
denoising recognition [29,30], where dropout is explained hereunder.

We assume that a neural network with L hidden layers and the feed-forward operation of a
standard neural network can be described as follows and can be seen in Figure 5a:

z(l+1)
i = b(l+1)

i + w(l+1)
i ·yl(i = 1, 2, 3, · · ·) (13)

y(l+1)
i = f

(
z(l+1)

i

)
(i = 1, 2, 3, · · ·) (14)

where l ∈ {1, 2, 3, · · · , L} represents the hidden layers of the network; y(l) represents the vector of
outputs from layer l (where y(0) = x is the input); b(l) and W(l) are the biases and weights of layer l,
respectively; z(l) represents the vector of inputs into layer l; i is any hidden unit; and f is any activation
function, such as

f (x) =
1

1 + exp(−x)
. (15)



Information 2018, 9, 169 7 of 18

However, with dropout, the feed-forward operation can be expressed as follows and can be seen
in Figure 5b:

r(l)j ∼ Bernoulli(p)(j = 1, 2, 3, · · ·) (16)

ỹ(l) = r(l) ∗ y(l) (17)

z(l+1)
i = b(l+1)

i + w(l+1)
i ·ỹl(i = 1, 2, 3, · · ·) (18)

y(l+1)
i = f

(
z(l+1)

i

)
(i = 1, 2, 3, · · ·) (19)

where Bernoulli() is the binomial distribution function and p is the probability that a neuron is
discarded, ranging in interval [0, 1], where the probability of being retained is 1− p; r(l) is a vector of
independent Bernoulli random variables for any layer l, and each random variable has a probability p
of being 1. To create the thinned outputs ỹ(l), the vector is sampled and multiplied with the output
elements of the layer, y(l). Then the process in which ỹ(l) is used as input to the next layer begins to be
applied for each layer.
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Figure 5. A comparison of the basic operations between the standard and dropout networks.

In the multi-scale learning module, when the input and output neurons remain unchanged, half
of the hidden neurons in the network are deleted randomly (temporary), so that the corresponding
parameters will not be updated when the network is propagating in reverse. At the time of training,
the dropout is equivalent to training a subnet of the whole network every time. If there are n nodes in
the network, the number of available subnets should be 2n. When n is large enough, the subnets used
in each training will not be the same. Finally, the whole network can be regarded as the average of the
multiple subnet models. By doing this, the training set can avoid overfitting of a certain subnet and
enhance the generalization ability of the network.

As described above, dropout helps the network retain robustness. Figure 6 shows the test error
rates obtained for many different datasets (CIFAR-10, MNIST, etc.) as training progressed. As seen
from two separate clusters of trajectories, the same datasets trained with and without dropout had
significantly different test errors, and dropout brought a great improvement across all architectures.
For our aerial-image denoising model, we found that incorporating dropout boosted the accuracy
of the model and made the training process faster. The experimental results show that the dropout
location and drop ratio p affected the network performance, as detailed in Section 4.2.2.
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4. Experimental Results and Setting

The main purpose of the experimental work of this paper was to confirm the performance of our
proposed approach in the aerial-image denoising recognition model.

4.1. System Environment

The computer configuration used in the experimental environment was as shown in Table 1.

Table 1. The machine configuration used in experimental environment.

Computer Configuration

Processor Intel(R) Core(TM) i7-7700HQ CPU @ 2.90 GHz
GPU NVIDIA GeForce GTX1050 Ti
RAM 8 GB

Hard disk SSD 256 GB
Operating system Windows 7 @ 64 bit
Test framework Tensorflow

In our experiment, the model for Gaussian denoising was trained with noise levels σ = 10
σ = 15, and σ = 25 independently. Firstly, we considered the images of the Caltech [31] database to
train the model. The database is a publicly available aerial database that comprises an aircraft dataset
and a vehicle dataset. We mixed 475 images from the vehicle dataset and 350 images from the aircraft
dataset to train the model. Finally, 55 images were randomly selected from the two datasets, which
were not included in the training period but were used for the test model.

4.2. Parameter Setting Analysis

4.2.1. Experimental Parameters

In the experiment, the momentum random gradient descent method was used. At the 50th
and 100th epochs, the learning rate increased by a factor of 0.1, and the total number of epoch runs
was 150.The experiment ran on two blocks of NVIDIA GeForce GTX1050 Ti, and mini-batch had 100
samples for each GPU. In addition, other parameters are shown in Table 2.

Table 2. The parameter in experimental environment.

Parameter

Loss Function Initial Learning Rate Drop Probability Momentum Weight Decay

Cross-entropy 0.1 0.3 0.9 0.0005
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4.2.2. Selecting Dropout Location

From Section 3.3, we know that dropout can effectively avoid network overfitting and improve
the denoising performance. Therefore, it is necessary to discuss the influence of dropout location on
the network performance. Figures 7 and 8 show the different dropout locations in the multi-scale
residual learning module and the influence of parameter p (drop ratio) on the network image denoising
recognition performance, respectively.
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From Figure 8, we can see that in Scenario 5, when p was 0.3, the error rate of the test set was the
smallest, 3.88%. On the contrary, in Scenario 4, when p was 0.3, the error rate of the test set was the
largest, 4.32%. Therefore, for the proposed multi-scale ResNet, we adopted Scenario 5, that the node
discarding probability p is 0.3 and a dropout layer is added before the full connection layer.
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Figure 8. The influence of parameter p and dropout for multi-scale residual learning network (ResNet).

4.2.3. Network Depth

Instead of the network depth being based on the experience, the optimal network depth was
acquired through the experiments. The multi-scale ResNet structure includes 3n multi-scale residual
learning modules with two layers of convolution for each learning module, and the entire network
has (6n + 2) layers. In addition, there is a scaling parameter k for each convolution layer. Each layer
consists of three different scale convolutions 1∗1, 3∗3, and 5∗5, and the network width is 3 ∗ k. In
order to explore the effect of different scaling parameters and depths on the network performance, we
conducted some experiments on the Caltech dataset. The results are shown in Figure 9 and Table 3.

It can be seen from Table 3 that with the increase in the parameter k, the network depth decreased.
However, the model became more and more complex, and more and more parameters needed to be
trained. Accordingly, the recognition error rate of the model for the test set also became continually
lower. In Table 3, the scaling parameter of model 8 was 5, which was larger than that of model 7, and
the number of parameters was also more than 10 M, but the accuracy rate declined. The main reasons
may be that the structure of model 8 was too complex and the number of parameters was too great,
which increased the training difficulty, and a slight overfitting phenomenon occurred. In addition,
we can see from Figure 3 that with the increase in training times, the error rate tended to be stable.
Therefore, in the experiment, in order to obtain the best network effect, the scaling parameter was set
to 4 and the network depth was set to about 26.
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Table 3. The error rate of test set under different network structures, where k is the scaling parameter
and n is the number of learning modules.

Model States

Model Number k n Network Depth Parameters Error Rate

i 1 12 74 12.9 M 4.813%
ii 1 16 98 18.7 M 4.913%
iii 1 20 122 22.8 M 4.965%
iv 2 8 50 36.1 M 4.191%
v 3 5 32 47.8 M 4.178%
vi 3 6 38 59.1M 4.238%
vii 4 4 26 66.4 M 3.883%
viii 5 3 20 76.4 M 4.012%
ix 6 2 14 81.3 M 4.099%

To further evaluate the performance of the proposed model, it was necessary to test the running
state of the model under conditions of different scaling parameters and network depths, as shown in
Table 4.

Table 4. The running state of model under different scaling parameters and network depths, where
“—” indicates that GPU resources were exhausted and could not be trained (blue font indicates the
best).

Model State

k n Network Depth Parameters (M) Training Situation Error Rate (%)

1 20 122 22.8 Normal training 4.965
1 21 128 25.3 —
1 22 134 26.8 —
2 8 50 36.1 Normal training 4.229
2 9 56 40.9 —
2 10 62 43.9 —
3 6 38 59.1 Normal training 4.232
3 7 44 68.0 —
3 8 50 69.5 —
4 4 26 66.4 Normal training 3.883
4 5 32 83.6 —
4 6 38 88.5 —
5 3 20 76.4 Normal training 4.012
5 4 26 105.5 —
5 5 32 108.3 —
6 2 14 81.3 Normal training 4.099
6 3 20 110.2 —
6 4 26 114.7 —

As we can see from Table 4, with the increase in the scaling parameter k, the number of parameters
of the network training also increased. When the scaling parameter was 4, the network could only be
added to 26 layers, and the training parameter is 66.4 M. When the number of layers was increased,
the GPU resources were exhausted. In addition, when the scaling parameter increased to 5, 76.4 M
parameters could be trained at most. In addition, when the number of parameters reached about 70 M,
the proposed multi-scale ResNet algorithm did not have serious overfitting problems.

It also can be seen from Table 4 that the proposed multi-scale ResNet (scaling parameter of 4 and
network depth of 26) was the best. The error rate on the Caltech dataset was about 3.883%. To further
study the impact of the network depth on the network performance, we fixed the scaling parameters
to 4, slightly adjusting the number of groups of learning modules.
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The multi-scale ResNet consists of three groups of learning modules, and each group contains n
learning modules. To obtain the ideal number groups of learning modules, we changed the numbers of
learning modules in each group so that they were not completely equal. Supposing that the numbers
of learning modules in the groups are x, y, and z (x being the number of modules close to the input
layer, y being the number of modules close to the output layer, and z being the fixed scaling parameter),
the value of z was 4, and the values of x and y were changed. The experimental results are shown in
Figure 10.
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As can be seen from Figure 10, when x = 5, y = 3, and z = 4, the error rate was 3.693%, which
was much better than for all variables being equal to 4. This indicates that appropriately increasing
the number of modules that are close to the input layer can better capture the original features of the
picture and help to improve the network performance. In the next part, we describe the use of these
parameters to evaluate our proposed aerial-image denoising recognition methods.

4.2.4. Model Architecture

In this study, as we have shown in the model architecture in Figure 2, the model was trained by
the minimizing the cost function in Equation (11), and the model architecture had a depth of (6n + 2)
layers. The image size of 32∗32∗3 was inputted and passed through the 3∗3 convolution kernel with 16
convolution kernels, and the output of the model was 32∗32∗16; then these data were passed through
the 6n convolution layers and average pool layer, followed by a dropout operation, and were finally
passed through a full connection layer and subjected to a softmax operation. In this model, residual
learning was adopted to learn the mapping ℘(y), and batch normalization was incorporated to increase
the model’s accuracy and speed up the training performance. It was seen that the proposed multi-scale
ResNet for a small training dataset has promising advantages for training deep networks and further
improves the network accuracy.

4.3. Comparison with State-of-the-Art Algorithms

In this section, we use the optimal parameters that were obtained in Section 4.2 to evaluate the
recognition ability of the proposed improved multi-scale residual neural network learning approach.
We compared our results with other aerial-image denoising methods from the existing literature, such
as PNN [32], BM3D [33], SRCNN [34], WNNM [35], and DnCNN [15], where x = 5, y = 3, and z = 4. The
experimental results revealed that our model benefits from multi-scale residual learning, parameter
setting, and particular image sizes, as can be seen in Table 5. Figures 11–16 show the randomly selected
images reconstructed by the model trained with the training sample.
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Figures 11–16 with different noise parameters are used for comparison to illustrate our
experimental results. We randomly selected some images from the test model, as shown in
Figures 11–13, which show the evaluation of the proposed model trained on 825 images, each with an
image size of 64 × 64. From the three figures, we can see that the reconstructed images were similar to
the original images; Figure 11 shows the effect better, as the reconstructed image was more similar to
the original image because of low noise (σ = 10). A similar conclusion can be observed by comparing
Figures 14–16 (Figure 14 is the most apparent).

Figures 14–16 also represent the evaluation of the proposed model trained on 825 images, each
with an image size of 180 × 180. Compared with Figure 11, the reconstructed images of Figure 14 are
more similar to the original image, which implies the proposed model benefited from a particular
image size. Furthermore, comparing Figures 12 and 15 and Figures 13 and 16 separately, a similar
conclusion can be observed. The same conclusion is also reached from Figure 17.
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Figure 17. Aerial images: model performance trained with 180 × 180 image size. (A1,A4,A7,A10)
Original images; (A2) noisy image with 64 × 64 image size and σ = 10; (A3) denoised image with 64
× 64 image size and σ = 10; (A5) noisy image with 64 × 64 image size and σ = 15; (A6) denoised
image with 64 × 64 image size and σ = 15; (A8) noisy image with 180 × 180 image size and σ = 10;
(A9) denoised image with 180 × 180 image size and σ = 10; (A11) noisy image with 180 × 180 image
size and σ = 15; (A12) denoised image with 180 × 180 image size and σ = 15.
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Table 5. The average results of our aerial-image model, where the multi-scale residual learning
network (ResNet) was the proposed aerial-image denoising method in the paper. The corresponding
experimental parameters were x = 5, y = 3, scaling parameter z = 4, and network depth of 26 (blue font
indicates the best).

Noise Level (σ) Methods Image Size of 64 × 64, with Dropout

PSNR/SSIM PNN Multi-Scale
ResNet SRCNN BM3D WNNM DnCNN

σ = 10 38.485/0.9000 39.482/0.9271 38.551/0.9211 38.494/0.9004 38.494/0.9001 39.466/0.9271
σ = 15 36.388/0.8881 38.607/0.9202 37.112/0.9000 36.993/0.9001 36.379/0.8746 38.007/0.9202
σ = 25 35.553/0.7003 36.998/0.9193 36.996/0.9303 36.261/0.9184 36.118/0.7839 36.767/0.9192

We compared our model performance with images of the same image size. Table 5 shows the
average results of the proposed model trained on an image size of 64 × 64, the training sample size of
825 images, and with dropout; it can be seen that the proposed model improved the reconstructed
image quality by about 0.167/0.001 over the DnCNN and by about 0.931/0.006 over the SRCNN at
σ = 10 and was better than the other methods in terms of PSNR/SSIM values at σ = 10, σ = 15, and
σ = 25.

Similarly, Table 6 exhibits the model performance with an image size of 180 × 180, the training
sample size of 825 images, and with dropout. Again, it can be seen that the proposed model improved
the average reconstructed image quality at σ = 10, σ = 15, and σ = 25. However, in comparison
with the results in Tables 5 and 6, we found this image size affected the model performance; the
performance of the model trained on the image size of 180 × 180 with dropout was better than
that with the image size of 64 × 64 with dropout. This conclusion is consistent with the above
(Figures 11–16). Furthermore, comparing Tables 6 and 7, we also found that the incorporation of
dropout for image recognition (dropout location is critical) significantly improved the model network
performance. This conclusion is consistent with Section 4.2.2.

Table 6. The average results of our aerial-image model, where the multi-scale residual learning
network (ResNet) was the proposed aerial-image denoising method in the paper. The corresponding
experimental parameters were x = 5, y = 3, scaling parameter z = 4, and network depth of 26 (blue font
indicates the best).

Noise Level (σ) Methods Image Size of 180 × 180, with Dropout

PSNR/SSIM PNN Multi-Scale
ResNet SRCNN BM3D WNNM DnCNN

σ = 10 40.114/0.9009 40.987/0.9652 40.478/0.9622 40.115/0.9195 40.114/0.9191 40.582/0.9642
σ = 15 38.572/0.9441 40.208/0.9597 39.442/0.9501 39.028/0.9447 39.005/0.9448 39.881/0.9597
σ = 25 37.316/0.9311 38.448/0.9421 37.411/0.9400 37.401/0.9338 37.189/0.9278 37.644/0.9420

Table 7. The average results of our aerial-image model, where the multi-scale residual learning
network (ResNet) was the proposed aerial-image denoising method in the paper. The corresponding
experimental parameters were x = 5, y = 3, scaling parameter z = 4, and network depth of 26 (blue font
indicates the best).

Noise Level (σ) Methods Image Size of 180 × 180, without Dropout

PSNR/SSIM PNN Multi-Scale
ResNet SRCNN BM3D WNNM DnCNN

σ = 10 37.660/0.8796 39.481/0.9424 38.003/0.9008 38.104/0.9103 37.661/0.9001 38.117/0.9424
σ = 15 36.782/0.8982 38.115/0.9331 37.180/0.9115 37.178/0.9112 36.703/0.8954 37.380/0.9321
σ = 25 35.116/0.8716 36.662/0.9004 35.333/0.8894 35.371/0.8990 35.003/0.8541 35.773/0.9010
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5. Summary and Conclusions

In this paper, we propose an efficient deep CNN model for the denoising of aerial images with
a small training dataset. Unlike most of the aerial-image denoising methods, which approximate a
latent clean image from an observed noisy image, the proposed model approximates the noise from
the observed noisy image. By combining multi-scale residual learning and dropout, regarding the
influence of the network depth and the number of learning modules in each group on the network
performance, we not only speed up the training process, but also improve the denoising performance
of the model. More importantly, although the deep architecture has a better performance with a
large training dataset, the proposed aerial-image denoising model was trained with small dataset and
achieved competitive results. With a small training dataset, the experimental results showed that the
proposed aerial-image denoising model has better performance than the existing image denoising
methods. In the future, the performance expectation of the model will be improved by stacking more
multi-scale competitive modules.
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