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Abstract: With the depletion of oil resources and the aggravation of environmental pollution, electric
vehicles have a growing future and will be more popular as the main force of new energy consumption.
They have attracted greater attention from various countries. The sizing and location problem
for charging stations has been a hot point of global research, and these issues are important for
government planning for electric vehicles. In this paper, we first built a BASS model to predict
the total number of electric vehicles and calculate the size of charging stations in the coming years.
Moreover, we also developed a queuing model to optimize the location of charging stations and
solved this issue by using the exhaustion method, which regards minimum cost as the objective
function. After that, the model was tested using data from a city in China. The results show that the
model in this paper is good at predicting the number of electric vehicles in the coming years and
calculating the size of charging stations. At the same time, it can also optimize the distribution of
charging stations and make them more balanceable. Thus, this model is beneficial for the government
in planning the development of electric vehicles in the future.
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1. Introduction

With the depletion of oil resources and the aggravation of environmental pollution, electric
vehicles as the main force of the new energy consumption revolution has attracted greater attention
from various countries [1]. Vigorously developing electric vehicles can speed up the replacement of
fuel and reduce vehicle exhaust emissions. Improving the charging infrastructure system is essential
for the mass implementation of electric vehicles [2,3]. Distributed charging stations are an important
way to supplement the energy of electric vehicles, which can affect the daily life of electric vehicle
drivers. Their sizes and locations would also have an important influence on the application of electric
vehicles. Therefore, in a section of traffic, detailed requirements and conditions need to be considered
for developing the programming of a charging station, for example, the traffic convenience, service
radius, requirements of safety, price of land, and municipal planning. In the section of the power
system, some conditions also need to be considered, like the allowed capacity of the distribution
network, and line running demand, etc.

The introduction of electric vehicles, as a public transport tool in the future, would influence
human travel behaviors and patterns. Although many people could choose to charge electric vehicles
in their home, there are still a great deal of public charging stations in certain regions. Thus, electric
vehicles could also bring new challenges, such as vehicle recharging and management. It is already
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understood that there must be sufficient charging stations before introducing a certain number of
electric vehicles. In China, the government has invested a large amount of money in building the
infrastructures for charging stations [4]. Many planning models have been developed in papers that
aims to make the layout of electric charging stations better [5]. Therefore, contemporary charging
stations are paramount for the imminent organization of large-scale electric vehicles systems.

The development of electric vehicles needs the favorable support of each link in the industrial
chain. As shown in Figure 1, the electric vehicle has achieved a breakthrough in the upstream, middle
stream, and downstream aspects of the chain. The support of the post service is the most important
chain in realizing industrialization. In the post service industry chain, charging infrastructures and
electric vehicle battery recycling become very important. If the charging infrastructures cannot be
developed well, the electric vehicles will not have the health circulation to be promoted.
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This paper develops a new method to program the size and location of charging stations
synchronously, which is combined by predicting the size of charging stations and optimizing the
locations of charging stations in different years. This paper uses BASS to predict the penetration of
electric vehicles and the number of charging stations needed in different years. Then, according to
the queuing theory, the optimal model for the locations of the charging stations is proposed, which
is to minimize the total cost of electric vehicle charging stations considering the capacity of charging
stations and other constraints. Moreover, the enumeration method is used to solve this model.

This paper is arranged as follows. In Section 2, the related works about the development of
electric vehicles and charging stations are discussed. In Section 3, we build the model to calculate the
expected amounts of charging stations in the coming years and develop the theory to planning the
distribution of the charging stations. In Section 4, we test the accuracy of the model built in Section 2.
In Section 5, we discuss our conclusions.

2. Related Works

At present, there is much research all over the world on charging station programming. In the
future, with the development of electric vehicles, charging stations are one important infrastructure
that will accommodate more electric vehicles [6]. Researchers in the world have written many works
about the advantages and disadvantages of charging stations, for example minimizing the charging
time and optimizing the energy management and the capacity of electric grids [7–9]. The United
States and Japan have also committed large efforts in the development of electric vehicles, and the
governments have funded electric vehicles and charging infrastructures [10,11]. A charging station
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could offer an electric vehicle more than 100 kW, which can finish a charge in 20 min. The capacity
of each charging station is 36 kW/h. Thus, a charging station can simultaneously supply 10 electric
vehicles and ensure they have a power of 1000 kW [12].

Researchers have written a number of works regarding the influence of promoting charging
stations. Shukla and Wang [13,14] have done research about the influence of the government on
public charging infrastructures. In those two papers, it was written that the deployment of charging
infrastructures could allocate public resources more efficiently. A related method and framework
to deploy the charging stations of electric vehicles considering travel range constraints was also
proposed. Mu proposed a spatial-temporal model to calculate the influence of electric vehicles on
electric grids, considering the various strategies of transportation and OD of vehicles [15]. Wang [16]
analyzes the impact of electric vehicle interconnection from different aspects and proposes that the
impact of the charging load on the power grid can be divided into two categories: local and wide area.
Shojaabadi [17] studied the variable factors and concluded that electric vehicles had negative effects
on system load and voltage. Fazelpour [18] studied the impact of large-scale access of electric vehicles
on the voltage stability of weak nodes in the electric grid. It is proposed that charging stations should
avoid the weak nodes built in the electric grid and avoid charging during the peak load period.

With the development of electric vehicles, some researchers also surveyed the power grids for
their capacity to support the promotion of electric vehicles. Alhelou proposed a new scheme to provide
necessary primary reserve from electric vehicles by using a multi-agent control of each individual
vehicle [19]. Alhelou also adopted model-based fault detection and isolation (FDI) techniques, which
is built based on an unknown input observer (UIO), which is robust for systems with unknown
inputs [20,21]. Makdisie presented smart grid infrastructure issues and integrated solar PV-sourced
electricity in the smart grid [22].

For optimizing the charging station, some researchers also pay attention to the location and the
size of the charging stations [5,23,24]. The existing research about planning the charging stations is
based on the global urban program. Mehar [25] developed a method to solve the optimal problem
of finding locations for charging stations. Lam [26] used a greedy algorithm to optimize the location
of charging stations, considering the coverage and capacity of charging stations. In determining the
number of charging stations in the residential district, the imbalance of electric vehicle distribution
and the minimum charging distance must be considered. Jia [27] calculated the charging station in a
certain area. He also did research about the programming process of the development of charging
stations. Considering the effect of the electric vehicle load on the distribution network, an optimal
distribution model of the charging station that is based on the simulated annealing algorithm was
established. Yan [28] researched the selection of charging stations in a certain area and calculated the
size in different cities. The method proposed in the paper can determine two types of fast charging
stations and the type selection of the charging station. Dong [29] developed a model based on the
charging location problems. This paper also analyzed the influence of various charging stations on
increasing the miles of electric vehicles, which is solved by a genetic algorithm (GA) using real data
from Seattle. Gonzalez [30] first analyzed the temporal and spatial behavior of electric vehicles and
then, according to the behaviors of electric vehicles, this paper concludes the hotspots of demand for
charging stations. Liu [31] developed a mathematical model for a multistage distribution network
expansion programming, which identifies the optimal location and size of electric vehicles. This model
can allocate the power of charging stations well, and it is also helpful in reducing the number of electric
charging stations. Amarjit [32] thought it necessary to increase the number of electric vehicle charging
stations and deploy the optimal number of charging stations to balance the power. In this paper,
a formal framework has been proposed to satisfy the demands of the increasing number of electric
vehicles. Sadeghi-Barzani [33] proposed a mixed-integer non-linear (MINLP) optimization approach
to optimize the size and location of electric vehicle charging stations. This method considers various
factors to improve the accuracy of this model, for example, the electric vehicle energy loss, and station
development cost, etc. Chen [34] also investigated the optimal location of the electric vehicles. To solve
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this problem, he first developed the optimal model for the located problem of charging stations and
then developed an improved genetic algorithm to solve this model. Ge [35] proposed a model to solve
the sizing and locating problem for charging stations of electric vehicles based on grid partition, which
is also solved by the genetic algorithm. Suganya [36] developed two modes of random distribution
and centralized distribution, which considers the electric vehicle charging load. It is pointed out that
the system will display different voltage characteristics when the electric vehicle charging load is
connected to different nodes.

According to previous lectures, it is known that promoting the development of charging stations is
of great significance to drivers and the government. The power grid is basic for charging stations, and
it can decide how many charging stations are in a certain region and how they are distributed to meet
power requirements and the requirements of electric vehicles. There are some researchers who study
this issue. The above literature has made a contribution to solving the problem of the locations and the
number of electric vehicle charging stations. However, the selection of the charging station locations
and the prediction of demand for the charging stations are important factors in their development of
this crucial infrastructure. This is ignored by many scholars, especially for the long-term program of
one city. However, these documents have almost only been used to plan the distribution of charging
stations once. They have not planned this continuously in different years, which is very important
for the sustained development of one city. The purpose of this paper is to provide a more reasonable
prediction of the number of charging stations and to optimize the locations of the charging stations in
different years based on minimizing the total cost of the charging infrastructures.

3. Model

3.1. Predicting the Amount of Electric Vehicle Charging Stations Based on BASS

The development of electric vehicles is classified into two different groups. The first is controlled
by the government (e.g., taxi, post vehicle, bus, etc.) The other one is guided by the market (e.g.,
private car). We will predict the amount of electric vehicles guided by the market and the amount of
their charging stations based on BASS [37].

3.1.1. Predicting the Amount of Electric Vehicles

The BASS model is based on the assumption that there is no repeating buyer, which means it
only considers the first buying behavior and considers each customer as the basic unit. It is assumed
that the number of buyers can directly reflect the sales volume of the products. It is believed that, in
the BASS model, the decision of some customers to adopt a new product has no relation with other
individuals in the social circle. Although these customers have an interactive relationship with others,
they will not consider the new product because of the pressure from the people who have connection
with them. However, there are also people who are not this. In contrast, their decision to buy a new
product is affected by the people who have relationship with them. The possibility of making this
decision is related with the amount of people who have bought the new product. According to the
analysis, if a customer had not bought a new product at a certain time, the probability of buying the
new product at this time is a linear function with the number of current buyers (i.e., the people who
have bought the new product). The mathematical equation is used to express the model as follows

FT = FT−1 + p(m− FT−1) + q
FT−1

m
(m− FT−1) (1)

In the equation, FT is the cumulative amount of consumption until time T. FT−1 is the cumulative
amount of consumption until time T − 1. m is the maximum potential in the market. p is the coefficient
of innovation, which represents the number of people who buy products affected by other consumers.
q is the coefficient of imitation, which represents the number of people who buy products affected by
the Internet and others’ decisions.



Information 2018, 9, 170 5 of 19

3.1.2. The Demand Calculation for Electric Vehicle Charging Stations

• Calculation of the daily charging times of electric vehicles

The number of charging times per day for an electric vehicle is calculated by Equation (2).

N =
SY/T

SD
(2)

In Equation (2), N is the actual charging time of an electric vehicle per day, SY is the annual
average mileage of an electric vehicle in km, T is the number of driving days per year of an electric
vehicles, and SD is the driving range of an electric vehicle battery in km. According to the current
battery technology level, 120 km is desirable.

• Calculation of charging demand power of an electric vehicle

In order to forecast the demand of the charging stations, we first need to determine and quantify
various influencing factors of electric vehicle charging stations. Then, the relationship between the
quantitative factors and the mathematic model, based on the prediction of vehicle penetration, must
be established. Finally, we found a reasonable size for an electric vehicle charging station.

The demand forecasting model for the charging station is

X = M×Q× P× N (3)

In Equation (3), X is the demand of electric vehicles for charging power (in kV·A). M is the
correction factor, with a size between 0 and 1. Q is the predicted amounts of electric vehicles. P is the
power of a single electric vehicle in kV·A. N is the charging time of an electric vehicle per day.

3.2. The Optimal Location of Electric Vehicle Charging Stations

3.2.1. The Model of the Location of Charging Stations

The charging operation process of electric vehicles can be regarded as a queuing service system,
in which the customers are the electric vehicles with electrical demand and the charging and switching
infrastructure are equivalent to the service station. When an electric vehicle arrives at a charging
station, if there are no free charging stations available, queuing and waiting behavior will be required.
In the queuing model of charging operation, the demand of an electric vehicle is random [38,39].
Because of the time of charging operation and the time of electric vehicles going in and going out,
the total service time can be simulated according to the negative exponential distribution (parameters
are µ), which is satisfied with the rule of first arrival first service and the rule of the waiting system.
Thus, queuing theory can be used in the work of programming the charging stations.

According the queuing model M/M/s [40], the equation of equilibrium for the power system of
electric vehicles can be developed

γp0 = µp1

λpn−1 + (n− 1)µpn+1 = (λ + µn)pn+1 n ≤ s
λpn−1 + sµpn+1 = (λ + sµ)pn n > s

(4)

In Equation (4), pn is the possibility that n electric vehicles accept charging services. s is the
number of charging stations. The number of electric vehicles that accepted service of charge are n.
The average arriving rate for each charging station is λ, which can be calculated using Equation (5)

λn =
k1k2Dm

qt
(5)
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In Equation (5), the power consumption is k1. The average distance travelled by the electric
vehicle each day is k2. Dm is the penetration of electric vehicles in region m. The average battery
capacity of an electric vehicle is q. The average working time of a charging station is t. µ is the average
service rate of the charging stations, which can be calculated using Equation (6)

µ =
1

Ti/o + Tc/h
(6)

In Equation (6), Ti/o is the time for an electric vehicle entering and leaving one charging station.
Tc/h is the charging time.

By solving Equation (6), the state probability of the charging system can be developed
as Equation (7) 

po =

[
s=1
∑

k=0

1
k!

(
λ
µ

)k
+ 1

s! ·
µ

µ−λ

(
λ
µ

)s
]−1

pn =


1

s!sn−s

(
λ
µ

)n
po (n > s)

1
n!

(
λ
µ

)n
po (n ≤ s)

(7)

In Equation (7), the parameters are as follows.
The service efficiency of the charging station is ρ, calculated by

ρ =
λ

µ
(8)

The utilization ratio of the charging station is β, calculated by

β =
λ

µs
(9)

The waiting queue length is Lq and the average queue length is Ls, which are calculated as follows. Lq = ρs βpo

s!(1−β)2

Ls = Lq +
λ
µ

(10)

The time an electric vehicle is in the charging system and the waiting time are Ts and Tq,
respectively. They are calculated as follows.{

Ts =
Ls
λ

Tq =
Lq
λ

(11)

In the charging system, the greater the number of charging stations, the better the service efficiency
is. However, the number of charging stations cannot increase exponentially. Thus, it is important to
optimize the deployment of charging stations.

In this paper, the optimization objective is to minimize the sum of the waiting time cost of electric
vehicles and the operating costs of the charging station, and the queuing model is established based
on the queuing system theory. This is shown in Equation (12)

Min F(s) = e1s + e2Ls (12)

In Equation (12), F(s) is the average total cost per unit of time generated by the facility for the
charging stations, e1 is the average time cost (including equipment maintenance costs, depreciation
costs, labor costs, etc.) for one charging station, and e2 is the average time cost (including power
consumption, energy costs, travel value, etc.) of a single electric vehicle.
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If s is the number of charging stations, then{
F(s− 1) > F(s)
F(s) < F(s + 1)

(13)

According to the queuing theory, it can be determined that the optimal number of charging
stations (s) is when the sum of the waiting time cost of the electric vehicle and the annual average
operation cost of the charging station is at the minimum amount.

The deployment of a charging station should strike a balance between construction costs and
transportation costs [41,42]. Centralized charging stations are attached to substation construction.
The number may be considered as a fixed number, and the less the battery changing stations in
the city (assuming uniform distribution), the greater the total distance from the battery changing
station to the charging station. Thus, with increasing the cost of road transport, the cost of building
the corresponding battery changing station is reduced. If the number of battery changing stations
increases, the result is the opposite. Therefore, a balance must be achieved to determine the appropriate
number of charging stations in the city that will meet the needs of the charging electric vehicles.

The paper establishes the model as follows.

Min C =
N

∑
n=1

C1·xn + C2 (14)

Subject to

∑
m∈M

zm = 1 (15)

Zmn ≤∑
m

xn∀ m ∈ M, n ∈ N (16)

∑
n

xn ≤ 1 (17)

xn ∈ {0, 1}∀ n ∈ N (18)

ynk ∈ {0, 1}∀ n ∈ N, k ∈ K (19)

Zmn ∈ {0, 1}∀ m ∈ M, n ∈ N (20)

C1 is the operating cost, calculated as follows.

C1 = e1s + CTD
1 (21)

C2 is the transportation cost.

C2 = α ∑
m

∑
n

Hm·Zmn·dmn + β ∑
n

∑
k

yng·dng (22)

In the equation,
M = {m} is the set of demand areas,
K = {k} is the set of substation locations,
N = {n} is the set of points for power stations,
s is the size of the substations,
Hm is the electricity demand in the demand area,
dmn is the distance from the demand point (m) to the candidate site (n),
dnk is the distance from the candidate site (n) to the centralized charging station (k), and
α, β is the economic transport coefficient.
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In the constraint conditions, Equation (15) shows that all electric vehicles in the demand area m
can only accept the services of nearby sites within a certain period of time.

Equation (16) indicates that electric vehicles can be served only when the substation is built at the
candidate site n.

Equation (17) shows that only one substation can be built at a candidate station site.
In Equation (18), if the size of the substation at the candidate site n is s, then it is 1, otherwise, it is 0.
In Equation (19), if substation k is selected as a centralized charging station for candidate site n,

then it is 1, otherwise, it is 0.
In Equation (20), if the demand area m chooses to accept service at the candidate site n, it is 1,

otherwise, it is 0.

3.2.2. Solution for an Optimal Model

The above optimal model belongs to the 0-1 programming problem. 0-1 programming is a special
form of integer programming. Its decision variables can only be expressed as 0 or 1. In this paper,
it means whether or not to choose the site. The combination of the possible values of all variables can
be calculated and, the optimal solution is selected. This method is named the exhaustion method [43]
(or the enumeration method). It is needed to be calculated as 2n, and the number of calculations will
increase exponentially with the increase of n. The algorithm becomes unrealistic when n is too large.
In practice, the major method of solving the programming is the implicit enumeration method.

In this paper, the implicit enumeration method is used to solve the optimization function, and the
following improvements have been made.

1. For the primary scheme, in this paper, we first checked the municipal traffic restrictions and the
grid constraint separately. If a constraint condition is not satisfied, there is no need to check the
following constraints.

2. If a feasible solution is found through the search, a filter condition is added immediately. If the
object function value is less than that of the feasible solution, there is no need to compare the
following constraints, and the search is continued directly.

The flow chat is shown as Figure 2.
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4. Case Study

4.1. General Situation of the Case

The basic planning steps for a charging station are based on the research results of ordinary
gas stations, substations, and distributed power sources. The first step is the primary selection for
the location of charging stations, which needs to consider two related factors: the municipal traffic
and the power grid in the planned city. This is offered by the government in this paper. The next
step is to develop an optimal model to determine the location of the charging stations. In this paper,
we proposed an optimal model that minimizes the cost of charging stations.

In this paper, a city in China is selected as the research region. The municipal planning, vehicle
penetration, power grid programming, and other needed data are known. In the optimal location of
the charging station, 2030 is regarded as the programming year, which means that we will optimize
the distribution of charging stations in 2020, 2025, and 2030.

4.1.1. Electric Vehicle Penetration and the Primary Location of Charging Stations

In this paper, the following table shows the GDP and vehicle penetration in the area to be planned,
which is presented in Table 1.

Based on the main factors affecting the location of electric vehicle charging stations, the primary
locations were selected. The main parameters are shown in the Table 2, which includes the number of
candidate locations, geodetic coordinates, vehicle flow, land price, and the ratio of entering stations.
The geodetic coordinates are switched with geographic coordinates in the coordinates we defined.

Table 1. The general situation for the GDP and the penetration of vehicles.

Year GDP (Yuan) Penetration of Private
Vehicles (in Thousands)

Penetration of All Vehicles
(in Thousands)

1995 724 2.942 8.763
1996 932 3.570 10.759
1997 1089 4.762 13.562
1998 1176 5.987 18.363
1999 1253 7.857 21.762
2000 1371 10.876 29.472
2001 1512 12.384 37.762
2002 1670 19.786 48.342
2003 1848 26.786 56.234
2004 2232 35.834 71.492
2005 2850 45.734 93.234
2006 3292 56.590 109.838
2007 3823 67.987 138.662
2008 4452 76.379 176.587
2009 5148 89.432 232.759
2010 5743 114.258 283.789

Table 2. The general situation of the candidate locations.

Candidate Location
Number

Geodetic Coordinates Vehicle Flow
(Thousand/Day)

Land Price
(Yuan/m2)

Ratio of Entering
Stations (%)X (meter) Y (meter)

1 9520 2510 18.190 6800 0.018
2 7200 3040 22.780 6800 0.016
3 4970 2730 15.130 4700 0.019
4 1630 2760 10.200 3500 0.028
5 12,820 6550 11.050 3200 0.023
6 8890 5410 18.360 6100 0.029
7 6790 7280 13.090 4300 0.025
8 3650 6650 11.730 2800 0.031
9 3235 4749 11.050 3500 0.023
10 6683 5527 18.360 4300 0.019
11 5954 8497 13.090 2800 0.025
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4.1.2. General Situation of the Distribution Network

This paper simplifies the original power distribution network, which include three power stations
and 39 points. The details are shown in Tables 3–5.

Table 3. The general situation of the power stations.

Number of Node KVA (in MVA)
Geodetic Coordinates

X (meter) Y (meter)

1 2*50 7747 2266
2 2*31.5 9600 7252
3 2*40 3734 4635

Table 4. The loading data of the nodes.

Node Number Active Power (km) Reactive Power Node Number Active Power Reactive Power

4 550 500 22 428 179
5 600 370 23 298 217
6 840 769 24 428 179
7 910 787 25 478 412
8 349 234 26 100 80
9 873 549 27 140 123
10 523 783 28 397 238
11 739 472 29 534 340
12 234 123 30 342 298
13 432 238 31 298 217
14 532 423 32 297 232
15 297 232 33 534 340
15 534 340 34 342 298
17 342 298 35 298 217
18 298 217 36 428 179
19 428 179 37 478 412
20 478 412 38 450 313
21 732 539 39 298 179

Table 5. The impedance and limitation of electric currents.

Line Impedance (Ω) Reactance (Ω) dBµA (A) Line Impedance (Ω) Reactance (Ω) dBµA (A)

(1,4) 0.1357 0.0724 445 (21,22) 0.2377 0.1236 380
(4,5) 0.1357 0.0724 445 (3,23) 0.0783 0.0392 445
(1,6) 0.1357 0.0724 445 (23,24) 0.6591 0.3164 380
(6,7) 0.1357 0.0724 445 (24,25) 0.1999 0.1000 380
(7,8) 0.0970 0.0517 380 (24,26) 0.7871 0.4093 380
(1,9) 0.1357 0.0724 510 (3,27) 0.1465 0.0762 445

(9,10) 0.1357 0.0724 510 (27,28) 0.2377 0.1141 380
(10,11) 0.0970 0.0517 380 (3,29) 0.0783 0.0376 445
(1,12) 0.1323 0.0647 510 (29,30) 0.6591 0.3427 380
(12,13) 0.2200 0.1080 445 (30,31) 0.1999 0.1000 380
(13,14) 0.1630 0.3076 380 (2,32) 0.7871 0.3778 380
(1,15) 0.1483 0.0771 510 (32,33) 0.1037 0.0539 380
(3,16) 0.1037 0.0539 510 (2,34) 0.1978 0.0950 380
(16,17) 0.1978 0.0989 445 (34,35) 0.0862 0.0448 380
(17,18) 0.0862 0.0448 380 (35,36) 0.1674 0.0804 380
(18,19) 0.1674 0.0804 380 (2,37) 0.2492 0.1296 445
(3,20) 0.2492 0.1246 445 (37,38) 0.1999 0.1000 445
(20,21) 0.1465 0.0703 380 (37,39) 0.7871 0.3936 445

The detailed nodes of the power distribution network are shown in Figure 3. The black points
represent the nodes of the power distribution network. Each of them can be connected with charging
stations. The bold stripes are the original lines of the power distribution network. In general, there
are only a few of them, which are connected with power companies. The pinstripes are the lines of



Information 2018, 9, 170 11 of 19

the power distribution network, which aim to make connections between each node of the power
distribution network.
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4.2. Predicting the Amount of Electric Vehicle Charging Stations

4.2.1. Estimation of the Innovation Coefficient p (or the External Influence Coefficient)

The innovation coefficient (p) reflects the number of electric vehicle buyers. p is within 1.0, and
a value closer to 1 means that the consumer will accept the electric vehicle once it is produced. In
addition, the innovation coefficient will also be affected by the degree of perfection of the electric
vehicles. Because electric vehicles have just been promoted in China, they have less sales. However, the
tendency of sales for electric vehicles is to simulate that of other products. Combined with the BASS
model to predict the sales of new products, the value of p is taken to be between 0.01–0.03. Combined
with the development of electric vehicles in China, this article sets p as shown in Figure 4.

Information 2018, 9, x 11 of 19 

The detailed nodes of the power distribution network are shown in Figure 3. The black points 

represent the nodes of the power distribution network. Each of them can be connected with 

charging stations. The bold stripes are the original lines of the power distribution network. In 

general, there are only a few of them, which are connected with power companies. The pinstripes 

are the lines of the power distribution network, which aim to make connections between each node 

of the power distribution network. 

31 30

29 28

27
23 24

16

17

18

19 14 13

12 15

3

1

4

5
20

21

22

25

26

36 35 34

3233

37
38

39

8

7

6
9 10 11

2

The nodes of power distribution 

network

The original line of power 

distribution network

The line of power distribution 

network

 

Figure 3. Nodes of the power distribution network. 

In the table, as the connection lines in the system generally use an open loop operation mode, 

the contact point in the simplification process will not have a significant impact on the objective 

function value of the optimal location model. 

4.2. Predicting the Amount of Electric Vehicle Charging Stations 

4.2.1. Estimation of the Innovation Coefficient p (or the External Influence Coefficient) 

The innovation coefficient (p) reflects the number of electric vehicle buyers. p is within 1.0, and 

a value closer to 1 means that the consumer will accept the electric vehicle once it is produced. In 

addition, the innovation coefficient will also be affected by the degree of perfection of the electric 

vehicles. Because electric vehicles have just been promoted in China, they have less sales. However, 

the tendency of sales for electric vehicles is to simulate that of other products. Combined with the 

BASS model to predict the sales of new products, the value of p is taken to be between 0.01–0.03. 

Combined with the development of electric vehicles in China, this article sets p as shown in  

Figure 4. 

 
Figure 4. Innovation coefficient (p). Figure 4. Innovation coefficient (p).

4.2.2. Estimation of the Imitation Coefficient q (or the Internal Influence Coefficient)

Buyers who like the brand of a product are not only affected by the promotion of the new product
but also by other consumers’ feedback on the performance of the new product. The imitation coefficient
(q) can represent the number of buyers of these electric vehicles, and q is also within 0-1 programming.
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The closer 1 it is, the faster the spread speed of potential customers of electric vehicles. According to
other goods’ models, the range of q is almost in the range of 0.3–0.7. According to the development
of electric vehicles in China, this paper assumes that q is 0.3 in 2011. With the gradual progress of
industrialization of electric vehicles, q will increase gradually. In this paper, the setting of the imitation
coefficient is shown in Figure 5.
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4.2.3. Prediction Results

Most vehicle consumers have a desire to buy or rent electric vehicles. However, it is not true that all
people who want to buy electric vehicles will buy them. Thus, in this paper, we consider the difference
between buying interest and buying behavior. It is assumed that the number of potential consumers in
electric vehicles accounts for 0.8 of the number of sales in vehicles, which means that 80% of people who
buy vehicles will buy electric vehicles. The potential sales of electric vehicles are presented in Figure 6.
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In this figure, the ratio of electric vehicles slightly increased from 2010 to 2040, which means that
the ratio of electric vehicles to total vehicles increased slightly. Between 2035 and 2040, the tendency of
the ratio of electric vehicles to increase is slow because, in those years, the increasing rate of sales of
the vehicles is reduced. The predictions of the penetration of electric vehicles are shown in Figure 7.
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During those years, in this city, the penetration of electric vehicles will increase observably. In 2040,
it reaches more than 800,000. Between 2020 and 2035, the penetration of electric vehicles increases
especially fast. After 2035, the speed of growth will decrease. It is possible that, after 2035, the number
of people who need vehicles will decline.

According to Equations (2) and (3), the amount of charging power needed by electric vehicles can
be calculated. The M, P, and N are 0.5, 30 (kV·A), and 0.5 (times per day), respectively. The result is
shown in Table 6.

Table 6. Needed charging power of electric vehicles.

Name 2020 2025 2030 2035 2040

EV penetration based on predicted data
(in thousands) 177.6925302 308.2462423 473.2200311 756.7969461 946.1633827

Needed charging power (103 kV·A) 1332.694 2311.847 3549.15 5675.977 7096.225

The owners of electric vehicles often have charging packages at home. Thus, not all the electric
vehicles need a charging station. Therefore, it is necessary to introduce the index M to this model.

4.2.4. The Results Compared with Actual Data

In order to verify the accuracy of the predicting model on the penetration of electric vehicles,
the results calculated by the model in this paper are compared to the real data from the local
government. The compared results between actual data and predicted data are shown in Table 7.

Table 7. The compared results between actual data and predicted data.

Name 2011 2012 2013 2014 2015

EV penetration based on actual data
(in thousands) 23.529304 37.844535 52.14545 68.133245 84.224534

EV penetration based on predicted data
(in thousands) 23.703124 38.039423 52.698231 68.93842 85.402853

Errors (%) 0.007387 0.00515 0.010601 0.011818 0.01399
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According to this city’s development reports from 2011 to 2015, the actual data of penetration of
electric vehicles can be obtained. Comparing the actual data with the data calculated by the model in
this paper, the differences between them are about 1% during 2014 and 2015. Thus, the model we have
developed in this paper can predict the penetration of electric vehicles exactly.

4.3. The Optimal Location of Charging Stations

4.3.1. The Results of the Optimal Location of Charging Stations

This article assumes that each electric vehicle has the same battery type and quantity. According to
the document “Specification for the Automotive Power Battery Industry”, issued by the new national
standard and the Ministry of Industry and Information Technology in March 2015, the entire battery
capacity can be set to 80 kWh. Based on the current basic data of electric vehicles, the average energy
consumption per hundred kilometers can be set to 17 kWh, and the average daily mileage is about 200
km. At the same time, in the studied case, this article found that the average daily working time of the
charging stations is 12 h in this city.

According to the national standardization guidance document, with reference to the municipal
planning in the urban area, the classification of the charging stations is outlined in Table 8.

Table 8. Level specifications of charging stations.

Rank Number of Superchargers Covered Area (m2)

1 >25 900
2 15–25 450
3 8–14 280
4 <8 160

Simultaneously, we set up the time cost data of the single charging station, as shown in Table 9.

Table 9. Time cost for a single charging station (in RMB/h).

Operating Cost Depreciation Cost Human Cost Total Cost

15 50.5 7.5 73

According queuing theory, the average time for electric vehicle users to get in and out of stations
is about 10 min, while the time to accept the service can be set to 5 min. At the same time, according to
the impact of power consumption and other factors, we assume that the average time cost of electric
vehicles to accept the service is e2 = 200 yuan/h.

According to the method in this paper, in 2020, we will first build four charging stations. In 2025,
nine charging stations will be made. In 2030, 11 will be made. The optimal location for the electric
vehicle charging station is shown in the following table. The building cost in 2020 is 3.124× 107 Yuan.
Other detailed information is shown in Table 10.

Table 10. Plan for charging stations in 2020.

Time (year) Candidate Charging
Stations

Connected Number of
Nodes Utilization Ratio

2020 1 10 41.5%
2020 5 38 30.45%
2020 9 3 44.47%
2020 7 2 42.05%



Information 2018, 9, 170 15 of 19

The building cost in 2025 is 3.362× 107 Yuan, and the detailed information is shown in Table 11.

Table 11. Plan for the charging station.

Time (year) Candidate Charging Stations Connected Number of Nodes Utilization Ratio

2025 2 1 43.5%
2025 3 1 30.4%
2025 6 39 45.8%

The building cost in 2025 is 2.894× 107 Yuan, and the detailed information is shown in Table 12.

Table 12. Plan for the charging station.

Time (year) Candidate Charging Stations Connected Number of Nodes Utilization Ratio

2030 4 32 38.3%
2030 8 25 40.2%
2020 10 16 36.5%

4.3.2. The Results Compared with the Plan of the Government

In order to verify the accuracy of the optimal results, we compared the results calculated by
the model in this paper with the plan of the government. We obtained the real data from the local
government regarding their plans for building the charging stations. The primary plan is shown
in Table 13.

Table 13. Plan of the government for the charging stations.

Time (year) Candidate Charging Stations Connected Number of Nodes Utilization Ratio

2020 3 1 37.5%
2020 4 32 30.4%
2020 5 38 38.8%
2020 7 2 32.4%
2025 6 39 41.5%
2025 8 25 33.4%
2025 10 16 40.8%
2025 11 5 38%
2030 1 1 38.3%
2030 2 10 40.2%
2030 9 3 37.5%

Compared with the method described in this paper, the plan of the government has a reduced
utilization ratio in most of the planning points. Only No. 1 and No. 9 in 2030, adopted by the
government, have a higher utilization ratio than the method we have developed. The optimal locations
of the charging stations are presented in Figure 8.

In this figure, the red points are the charging stations to be built in 2020. The blue points are to be
built in 2025. The green points are to be built in 2030. According to previous tables about the details of
the charging stations, the utilization ratios are from 30 to 50%, which is a high level for each charging
station. It also keeps the balance for the charging stations. There are no significantly lower utilization
ratios and no significantly higher utilization ratios, which means that it is not possible that all drivers
of electric vehicles swarm into one or two charging stations while other charging stations are vacant.
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5. Conclusions

In this paper, a new idea is proposed to plan charging stations in a certain city. First, we built
a model based on BASS to predict the penetration of electric vehicles and the demand of charging
stations in the coming years, which is based on the economically developed rules. In the BASS
model, we assume that the number of buyers can directly reflect consumption. According to the BASS
model, the number of buyers can be influenced by the people who have bought a new product and
by information from the Internet and the judgement of other people. In this model, the innovation
coefficient p and the imitation coefficient q can be calculated using historical data in this city. Moreover,
according to the prediction of electric vehicles, we developed a queuing model to optimize the
distribution of the charging stations. In this work, we calculated the size of the charging stations and
their locations. This model regarded the minimum cost, including transportation cost and operation
cost, as the objective function. We also found some factors as constraints, like the capacity of the
vehicles, the load of charging stations, and the load of the power grid.

Compared with real data from the government, the predicted results are relatively accurate.
The difference between real data and predicted data on the penetration of electric vehicles is about 1%
for 2014 and 2015. Thus, the power demand for electric vehicles is reliably calculated. The utilization
ratios calculated by the method in this paper are better than the plan of government. At the same time,
it also keeps the balance for charging stations, as there are no significantly lower utilization ratios and
no significantly higher utilization ratios, which can reduce the costs for users and operation bureaus.

The deployment of electric vehicles is very important for cities in the future, and the optimal
size and location of charging stations are the foundation for this program. In future work, we plan
to develop a complex method to optimize the locations of the charging stations. Perhaps we can
introduce machine learning and big data into this work as it is profitable for various cities to have
different programs according to their specific conditions.
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