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Abstract: The matter of success in forecasting precipitation is of great significance to flood control
and drought relief, and water resources planning and management. For the nonlinear problem
in forecasting precipitation time series, a hybrid prediction model based on variational mode
decomposition (VMD) coupled with extreme learning machine (ELM) is proposed to reduce the
difficulty in modeling monthly precipitation forecasting and improve the prediction accuracy.
The monthly precipitation data in the past 60 years from Yan’an City and Huashan Mountain,
Shaanxi Province, are used as cases to test this new hybrid model. First, the nonstationary monthly
precipitation time series are decomposed into several relatively stable intrinsic mode functions (IMFs)
by using VMD. Then, an ELM prediction model is established for each IMF. Next, the predicted
values of these components are accumulated to obtain the final prediction results. Finally, three
predictive indicators are adopted to measure the prediction accuracy of the proposed hybrid model,
back propagation (BP) neural network, Elman neural network (Elman), ELM, and EMD-ELM models:
mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error
(MAPE). The experimental simulation results show that the proposed hybrid model has higher
prediction accuracy and can be used to predict the monthly precipitation time series.

Keywords: precipitation; variational mode decomposition (VMD); extreme learning machine (ELM);
hybrid model

1. Introduction

Precipitation is the main source of recharge for water resources, and it is also a key component
of the water cycle. The changing trend of precipitation affects human life and social development
directly or indirectly [1]. The scientific prediction of precipitation is the basis for improving the
accuracy and practicality of water resources forecasting and hydrological forecasting, which is of great
significance for the rational use of water resources and the improvement of industrial and agricultural
production [2,3]. There are many factors affecting precipitation, such as local topography, climatic
zones, human activities, and so on. In addition, the fact that China’s ongoing observation of rainfall
data is not comprehensive means that there are problems such as short observation sequences and
incomplete data, so the prediction of regional precipitation is still a question worth studying [4,5].
The complex features of the precipitation time series make it a great challenge to accurately predict
changes in precipitation.

At present, there are many methods for forecasting precipitation time series. In probability
statistics, these mainly include quantitative prediction models, such as Markov models [6,7], Grey
models (GM) [8,9], and so forth. Although the above models can make multistep predictions
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of precipitation, they can only indicate that a trend of precipitation increases. In the time series
study of precipitation, models such as the autoregressive moving average (ARMA) model and the
autoregressive integrated moving average (ARIMA) model, and so forth, have been widely used to
predict precipitation [10–12]. However, these are all linear models, and the prediction of the nonlinear
time series of precipitation is not effective. BP neural network has been used to predict monthly
precipitation and has higher accuracy than traditional time series models [13]. With the rise of neural
networks, more and more methods are being used in the meteorological field. Hartmann et al. [14]
used multilayer perceptual feed-forward neural network to predict summer rainfall in the Yangtze
River basin. Ramana [15] applied wavelet neural network (WNN) in the prediction of monthly
precipitation in Darjeeling, eastern India. Xie et al. [16] employed support vector regression (SVR) to
predict the urban PM2.5 concentration in China. Zou et al. [17] adopted an improved extreme learning
machine (ELM) in the forecasting of temperature and humidity in solar greenhouses. Li et al. [18]
used the least squares support vector machine (LSSVM) to predict the annual runoff in the Xinjiang
region. Niu et al. [19] introduced a novel model—extreme learning machine (ELM) improved by
quantum-behaved particle swarm optimization (QPSO) algorithm to forecast daily runoff data.

Empirical mode decomposition (EMD), wavelet decomposition, and other methods provide a
new idea for processing nonlinear signals. EMD has been applied to the decomposition prediction
of nonlinear time series [20,21], but EMD has the effect of mode mixing and point effects [22].
The introduction of ensemble empirical mode decomposition (EEMD) [23] and variational mode
decomposition (VMD) [24] has improved the mode mixing to some extent. Especially VMD transforms
signal decomposition into nonrecursive variational mode decomposition model. Its number of
components is also less than that of EMD and EEMD, and it shows better noise robustness. VMD
has been widely used in many fields, such as prediction of stock price [25], short-term load [26]
and solar irradiation [27], fault diagnosis [28,29], feature extraction [30,31], and so on. In order to
improve the prediction accuracy, the hybrid model combined with a single model has been widely
used in the field of prediction. Wang et al. [32] developed a new model of EMD-ELM to predict the
hourly solar radiation, and the results showed the superiority of the model. Niu et al. [33] applied the
EEMD combined with LSSVM for day-ahead PM2.5 concentration prediction and obtained accurate
results. Zhang et al. [34] proposed a new hybrid model, EEMD with Elman neural network, for annual
runoff time series forecasting in the Dongting Lack basin, and the results showed that this proposed
model gave a good performance. The hybrid forecasting model formed by combining VMD with
other algorithms has been successfully applied in many fields. Lahmiri [25] proposed a hybrid model
combining VMD and BP neural network for intraday stock price forecasting, and the results showed
that this proposed model gave a good performance. Liang et al. [26] developed a hybrid model based
on VMD and Particle Swarm Optimization (PSO) optimized deep belief network (DBN) to predict
short-term load; compared with other single models, the results illustrated the superior performance of
the proposed model. Zhang et al. [27] utilized VMD and PSO optimized least squares support vector
machine to predict the solar irradiation, and experiment results showed that the combined prediction
method was more accurate and provided guidance for the study of solar irradiation. Fan et al. [35]
used the VMD to decompose the wind speed series, then applied the optimized relevance vector
machine (RVM) for short-term wind speed interval prediction. The hybrid model greatly reduced the
complexity of the data and improved the prediction accuracy. Sun et al. [36] applied the VMD and
Spiking Neural Networks (SNNs) hybrid prediction model in the actual intercontinental exchange (ICE)
carbon price data. Simulation results and analysis suggest that the proposed VMD-SNN forecasting
model outperforms conventional models in terms of forecasting accuracy and reliability.

As reviewed before, the hybrid model has better prediction accuracy than the single model.
Therefore, in this paper, a new hybrid model based on VMD coupled with ELM neural network is
proposed for monthly precipitation time series forecasting. First, the original monthly precipitation
time series were decomposed into several relatively stable intrinsic mode functions (IMFs) by using
VMD. Then, an ELM prediction model was established for each IMF. Next, the predicted values of
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these components were accumulated to obtain the final prediction results. Finally, three predictive
indicators were adopted to measure the prediction accuracy of the BP model: the ELM model, the
EMD-ELM model, and the VMD-ELM model. In order to test this new hybrid model, the monthly
precipitation in the past 60 years from Yan’an City and Huashan Mountain, Shaanxi Province, was
used as a case study.

This paper is organized as follows: Section 2 briefly describes the basic theory of VMD, ELM, and
the hybrid VMD-ELM; Section 3 provides the case study analysis, which introduces the research data
and performs decomposition preprocessing, the evaluation index of the prediction accuracy, and the
analysis of the prediction results of each model; Section 4 presents the conclusion of the paper.

2. Basic Theory

2.1. Variational Mode Decomposition

VMD is an effective signal decomposition method. Its overall framework is a variational
problem [24,26], which is different from the EMD of circular filtering. Each IMF is assumed to
be a finite bandwidth with a different center frequency and the goal is to minimize the sum of the
estimated bandwidths for each IMF. The algorithm can be divided into the structure and solution of
the variational problem. The detailed description is as follows:

1. The structure of variational problem

The VMD algorithm converts the signal decomposition into an iterative solution process of the
variational problem. The original signal is decomposed into K mode functions uk(t) (k = 1, 2, · · · , K),
such that the sum of the estimated bandwidths for each mode function is minimized. Its constrained
variational model is constructed as follows:

min
{uk},{ωk}

{
K
∑

k = 1

∣∣∣∣∣∣∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∣∣∣∣∣∣2
2

}
s.t.

K
∑

k = 1
uk(t) = f (t)

(1)

where ωk represents the frequency center of each IMF, {uk} = {u1, u2, · · · , uK};
{ωk} = {ω1, ω2, · · · , ωK}.

2. The solution of variational problem

The above constrained variational problem can be changed into a nonbinding variational problem
by introducing a quadratic penalty factor C and Lagrange multipliers θ(t), where C guarantees the
reconstruction accuracy of the signal and θ(t) maintains the rigor of the constraint. The augmented
Lagrange is denoted as:

L({uk}, {ωk}, θ) = C
K
∑

k = 1

∣∣∣∣∣∣∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣ f (t)− K
∑

k = 1
uk(t)

∣∣∣∣∣∣∣∣2
2
+

〈
θ(t), f (t)−

K
∑

k = 1
uk(t)

〉 (2)

The alternate direction method of multipliers (ADMM) is used to solve (2), then the un+1
k , ωn+1

k
and θn+1 are updated alternately (n represents the number of iterations), which is given by:

ûn+1
k (ω) =

f̂ (ω)−
K
∑

k = 1
ûk(ω) +

θ̂(ω)
2

1 + 2C(ω−ωk)
2 (3)
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ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(4)

θ̂n+1(ω) = θ̂n+1(ω) + τ

[
f̂ (ω)−

K

∑
k = 1

ûn+1
k (ω)

]
(5)

where ûn+1
k (ω) is equal to the wiener filtering results of the current remaining amount f̂ (ω)− ∑

i 6=k
ûi(ω).

ωn+1
k is the center of gravity of the power spectrum of the current IMF, performing inverse Fourier

transform on ûk(ω) to obtain the real part {uk(t)}.
Given a discriminant accuracy e > 0, the convergence condition of the stop iteration is as follows:

K

∑
k = 1

‖ûn+1
k − ûn

k ‖
2
2

‖ûn
k ‖

2
2

< e (6)

The specific process of the VMD algorithm is summarized as follows:

Step 1: Initialize
{

u1
k
}

,
{

ω1
k
}

, θ̂1, and n.

Step 2: Update the value of
{

ûn+1
k

}
,
{

ωn+1
k

}
, and θ̂n+1 according to Equations (3)–(5).

Step 3: Judge whether or not the convergence condition (6) is met, then repeat the above steps to update
parameters until the convergence stop condition is satisfied.

Step 4: The corresponding mode subsequences are obtained according to the given model number.

2.2. Extreme Learning Machine

Extreme learning machine (ELM) is a new algorithm proposed by Huang et al. [37] for developing
by single-hidden layer feedforward neural networks (SLFNs). ELM greatly improves the learning
speed and generalization performance of the network, and overcomes these problems of local
minimum, overfitting, and inappropriate choice of learning rate that are common in traditional
gradient algorithms. In recent years, it has been widely used in time series prediction and has achieved
good predictive effect [38]. The structure of typical SLFNs is shown in Figure 1.Information 2018, 9, x 5 of 13 
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Figure 1. The structure of typical SLFNs.

The model consists of three layers, including an input layer, a hidden layer, and an output
layer. The input layer and the hidden layer neurons, and the hidden layer and the output
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layer neurons are fully connected. Among them, the input layer has n neurons, that is, there
are n input variables. The hidden layer has l neurons, the output layer has m neurons, that
is, there are m output variables. Suppose there are N different random samples (xi, ti), where
ti = [ti1, ti2, · · · , tin]

T ∈ RN , xi = [xi1, xi2, · · · , xin]
T ∈ RN , the SLFNs model for which the incentive

function is g(x) = (g1(x), g2(x), · · · , gl(x)) can be expressed as:

l

∑
i = 1

βigi
(
wi · xj + bj

)
= yj, j = 1, 2, 3, · · · , N (7)

where wi = [wi1, wi2, · · · , win]
T is the connection weight vector between the ith hidden layer neuron

and the input layer neuron, and the connection weight vector between the ith hidden layer neuron
and the output layer neuron is βi = [βi1, βi2, · · · , βim]

T . bi is the threshold of the ith hidden layer and
yj is the output value of the node.

The goal of SLFNs learning is to minimize the output error, which can be expressed as:

N

∑
j = 1
‖yj − tj‖ = 0 (8)

The parameters βi, wi and bi satisfy the following formula:

l

∑
i = 1

βig
(
wi · xj + bj

)
= tj, j = 1, 2, 3, · · · , N (9)

and the above formula can be expressed as a matrix:

Hβ = T (10)

where H is the hidden layer output matrix of the neural network, and the specific form is as follows:

H(w1, · · · , wl , b1, · · · , bl , x1, · · · , xN) =

 g(w1 · x1 + b1) · · · g(wl · x1 + bl)
... · · ·

...
g(w1 · xN + b1) · · · g(wl · xN + bl)


N×l

(11)

The connection weight vector can be obtained by solving the least squares solution of the
following equation:

min
β
‖Hβ− T‖ (12)

and the solution is:
β̂ = H+T (13)

where H+ is the Moore–Penrose generalized inverse of matrix H.
The algorithm of ELM is as follows:

Step 1: Determine the number of hidden layer neurons. Randomly initialize input layer weight wi and
hidden layer threshold bi.

Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight β.

Compared with the traditional neural network algorithm (such as BP neural network), ELM does
not need to set a large number of network training parameters artificially. It only needs to set the
number of hidden layer nodes and select the activation function type according to the problem to be
solved. During the execution of the algorithm, there is no need to adjust input weight and hidden
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layer threshold, and a unique optimal solution is generated. Therefore, compared with the traditional
gradient-based learning algorithm, ELM has the advantages of fast learning and good generalization
performance. In the prediction field, it has also achieved better performance than BP neural network
and radial basis function (RBF) neural network [39].

2.3. The Proposed Hybrid VMD-ELM Model

Since precipitation is affected by many factors, the precipitation time series has complicated
nonlinear characteristics. Modeling with a single predictive model is difficult. Therefore, a hybrid
forecasting model based on VMD and ELM is proposed to improve the prediction accuracy of monthly
precipitation time series. The VMD algorithm is utilized to decompose the monthly precipitation time
series into several relatively stable IMFs and reduce the difficulty of modeling. Then, the IMFs are
easily predicted by using ELM. Finally, the predicted values of these components are aggregated as the
final prediction results. Figure 2 clearly shows the workflow chart of the proposed hybrid VMD-ELM
forecasting model in detail. The VMD-ELM model contains four main steps as follows:

Step 1: Load the original data, and the data is decomposed into a set of IMFs by using VMD method.
Step 2: Set up an ELM prediction model for each IMF. Divide the data of each IMF component into

training samples and test samples and all samples are normalized.
Step 3: Determine the number of input layers, output layers, and hidden layers of the ELM model.
Step 4: The established ELM model is used to predict each IMF. The reconstructed IMFs are the final

prediction results for the monthly precipitation time series.
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3. Data Simulation and Analysis

3.1. Data Decomposition Preprocessing

Shaanxi Province is located in the northwest of China, across the north temperate zone and
subtropical zone, and it is a continental monsoon climate as a whole. Yan’an City is located in the
southern half of Shaanxi Province. The landform is dominated by the loess plateau and hills. The area
belongs to the plateau continental monsoon climate. The average annual precipitation is more than
500 mm, and the rainfall is unevenly distributed during the year. Precipitation is mainly concentrated
from June to September. Huashan is located in Huayin City of Shaanxi Province. It was called “west
high mountain” in ancient times and is one of the famous five high mountains in China. Huashan
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is far away from the ocean and lies between 30◦ and 60◦ in the north latitude of the west wind belt,
which belongs to the warm temperate continental monsoon climate. The average annual precipitation
has been about 900 mm for many years. This paper takes the monthly precipitation data of Yan’an
and Huashan for a total of 60 years from 1958 to 2017. The data is from the China Meteorological Data
Service Center (http://data.cma.cn/). The time series of monthly precipitation in the two places for
60 years are shown in Figure 3.
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Given the nonlinearity of the monthly precipitation series, there will be a greater error with direct
prediction. In order to improve the accuracy of prediction, the data complexity needs to be reduced.
The original data is decomposed to several IMFs by using VMD. The number of IMFs K is set before
proceeding with the VMD method. However, we can see from the previous test that for these two
groups of precipitation time series, the following IMFs tend to be similar when K > 6, so we chose K = 6
in this paper. The results of VMD are shown in Figure 4. The same data samples are also decomposed
by EMD as shown in Figure 5.
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As shown in Figures 4 and 5, two samples of precipitation time series are decomposed into 6 IMFs
by VMD, and 7 IMFs and one remainder are obtained by EMD. From the decomposition results, it
can be seen that the trend of the high frequency IMFs decomposed by the VMD method is relatively
stable, which is conducive to prediction. Although the low-frequency component fluctuates greatly,
the prediction error is limited. Because the final VMD forecast result is an accumulation of each IMF’s
forecast result, the characteristics of the VMD result help to improve the prediction accuracy. However,
end-point effects occur during the decomposition process of EMD. Large fluctuations occur at both
ends of the IMF component and affect all IMFs continuously. As a result, the prediction result of EMD
has a large error. Therefore, IMFs decomposed by VMD are more suitable for the establishment of
hybrid forecasting model than IMFs decomposed by EMD [40].

3.2. Performance Standards of Prediction Accuracy

This study uses the following three error indicators to evaluate the performance of the proposed
hybrid prediction model: mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute percentage error (MAPE). The error of prediction value is quantified by using the performance
indexes of MAE, RMSE, and MAPE. The smaller the value, the better the prediction accuracy. These
formulas are as follows:

MAE =
1
n

n

∑
i = 1
|x̂(t)− x(t)| (14)

RMSE =

√
1
n

n

∑
i = 1

[x̂(t)− x(t)]2 (15)

MAPE =
1
n

n

∑
i = 1

∣∣∣∣ x̂(t)− x(t)
x(t)

∣∣∣∣ (16)

where x̂(t) is forecast data, x(t) is original data.

3.3. Component Prediction and Reconstruction

There are a total of 720 values for monthly precipitation data from 1958 to 2017. After the
decomposition of the original monthly precipitation time series into 6 IMFs by employing the VMD
method, we use the ELM model to train and predict each IMF component. The number of nodes in
the input layer is 5, the number of nodes in the hidden layer is 15, and the number of nodes in the
output layer is 1. The first five values of each IMF component are used to predict the sixth value. 720
values can be divided into 715 sets of data, where the former 667 sets of data are used as the train data,
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and the latter 48 sets of data are used as the forecast data. Activation function is radial basis function.
Before training the ELM model, all the values of IMFs are normalized to improve the efficiency of the
ELM model. The normalization formula is defined as follows:

x̂i =
(xi − xmin)

(xmax − xmin)
(17)

where x̂i is the normalized data, xi is the original data, xmax is the maximum value, and xmin is the
minimum value.

The ELM prediction model is established for each IMF, and the predicted values of each
IMF component are reconstructed as the final prediction results of the hybrid VMD-ELM model.
The prediction results are as shown in Figure 6.
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Figure 6. The monthly precipitation time series prediction results of hybrid VMD-ELM model. (a) 
Yan’an; (b) Huashan. 
Figure 6. The monthly precipitation time series prediction results of hybrid VMD-ELM model.
(a) Yan’an; (b) Huashan.

As can be seen from Figure 6, the red line represents the actual monthly precipitation data, and
the blue line represents the predicted value of the combined forecast model. It can be seen that the
VMD-ELM model proposed in this paper is good for fitting the original data and can predict the
monthly precipitation in Yan’an and Huashan very well.

3.4. Results Analysis and Performance Comparison

For comparison purposes, all data samples are applied to the BP model, Elman model, ELM
model, and EMD-ELM model in this paper, and the predicted results of the hybrid VMD-ELM model
are compared with other models. The predicted results of all models are illustrated in Figure 7. It can
be seen from Figure 7 that each model gives different forecast results for the two monthly precipitation
time series. It is evident that the BP model, compared to the other models, gives the worst results for
the Yan’an and Huashan, and the prediction effect of a single ELM model is somewhat better than
that of the BP model. The hybrid EMD-ELM and VMD-ELM models perform better than the single BP,
Elman, and ELM models for the two cases. Moreover, the predictive effect of VMD-ELM is significantly
better than that of EMD-ELM, especially in the prediction of Huashan monthly precipitation time
series. The performance index values of each model are intuitively given in Table 1.
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Table 1. Predictive performance comparison of each model.

Place Models
Error Indicators

MAE RMSE MAPE

Yan’an

BP 33.0841 49.7006 3.3536
Elman 32.7371 47.2576 2.7936
ELM 30.5377 43.6451 2.7622

EMD-ELM 24.4135 32.7755 2.1972
VMD-ELM 15.2966 20.3605 1.7217

Huashan

BP 37.4068 50.8760 4.3309
Elman 35.3464 49.2296 4.1087
ELM 34.2236 48.6962 3.7824

EMD-ELM 29.3452 38.2472 3.1507
VMD-ELM 13.5179 16.7612 1.9101
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From Table 1, it can be seen that the BP model has the worst prediction results, which is the reason
for the inherent drawback itself. Moreover, the ELM model improves the slow learning speed of the
BP neural network and defects of easily falling into the local minimum, and the error performance
values are less than for the BP model. Furthermore, the prediction effects of the two hybrid models,
EMD-ELM and VMD-ELM, are better than those of the other single models, especially for VMD-ELM,
which is the best. The hybrid VMD-ELM model achieves smaller MAE, RMSE, and MAPE values than
the other four models for monthly precipitation time series in Yan’an and Huashan. Thus, the proposed
hybrid model can predict the variation trend of the monthly precipitation time series well, which
shows it is a good prediction model.

4. Conclusions

The reliable and accurate estimation of precipitation trends is essential in order to manage water
resources and carry out hydrological forecasts. In this paper, a hybrid forecasting model based on
VMD and ELM is proposed and applied to the prediction of monthly precipitation in Yan’an and
Huashan. The original data are decomposed into several relatively stable IMFs by using VMD, and
then each IMF is predicted by the ELM model. Finally, the predicted results of each IMF component are
aggregated as the final prediction results. The three performance indicators MAE, RMSE, and MAPE
are employed to measure the prediction accuracy of BP, Elman, ELM, EMD-ELM, and VMD-ELM
models. Based on analysis of the research results, the MAE, RMSE, and MAPE values of the hybrid
VMD-ELM forecasting model proposed in this paper are the smallest. In other words, compared with
other models, the hybrid model improves the prediction accuracy and reduces errors.

The hybrid VMD-ELM prediction model proposed in this paper can effectively improve the
accuracy of precipitation forecasting, and it has the following advantages: (a) VMD is used to
decompose the original data, and it has solved the problems of mode mixing and end-point effects in
the EMD process, reduced the data complexity, and facilitated the prediction modeling. (b) ELM has
greatly improved the defects of the traditional algorithms, such as slow training speed and ease of
falling into local minimum, and it has good generalization performance. (c) The hybrid VME-ELM
model is first used to forecast monthly precipitation. Through the study and analysis of the monthly
precipitation cases in Yan’an and Huashan over the past 60 years, it is shown that the prediction
results of the hybrid model are more accurate. The results from this research will be beneficial for
sustainable water resource management. Of course, it also has a good reference value for forecasting
actual problems accurately, such as short-time traffic flow and other time series.
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