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Abstract: A linguistic cubic variable (LCV) is comprised of interval linguistic variable and
single-valued linguistic variable. An LCV contains decision-makers’ uncertain and certain linguistic
judgments simultaneously. The advantage of the Dombi operators contains flexibility due to its
changeable operational parameter. Although the Dombi operations have been extended to many
studies to solve decision-making problems; the Dombi operations are not used for linguistic cubic
variables (LCVs) so far. Hence, the Dombi operations of LCVs are firstly presented in this paper.
A linguistic cubic variable Dombi weighted arithmetic average (LCVDWAA) operator and a linguistic
cubic variable Dombi weighted geometric average (LCVDWGA) operator are proposed to aggregate
LCVs. Then a multiple attribute decision making (MADM) method is developed in LCV setting
on the basis of LCVDWAA and LCVDWGA operators. Finally, two illustrative examples about the
optimal choice problems demonstrate the validity and the application of this method.

Keywords: multiple attribute decision making; linguistic cubic variable; Dombi operations; linguistic
cubic variable Dombi weighted arithmetic average (LCVDWAA) operator; linguistic cubic variable
Dombi weighted geometric average (LCVDWGA) operator

1. Introduction

With the development of society and science, decision-making problems become more and more
complex, and they involve more and more fields, such as manufacturing domain [1,2], hospital service
quality management [3], evaluation of the supplier criterions [4], and disaster assessment [5]. Since
Zadeh [6] firstly proposed that linguistic variable (LV) could evaluate the assessment for objects, many
scholars put forward various linguistic aggregation operators and developed corresponding methods
to handle decision-making problems with linguistic information in diversified fields [7–12]. So far
language variables have come in many forms, which are classified into two types: certain linguistic
evaluations and uncertain linguistic evaluations. One of the forms can be used in one decision-making
problem and one linguistic variable can represent the evaluation of a decision maker. With respect
to an attribute over an alternative, one of the decision makers could give an uncertain evaluation,
but another could give a certain evaluation. The pre-proposed LV forms could not express uncertain
evaluation and certain evaluation simultaneously. In this study we will use a new linguistic evaluation
form which was defined as linguistic cubic variable (LCV) in Ye [13]. An LCV is composed of a certain
linguistic variable and an uncertain linguistic variable. An LCV can represent a group of linguistic
evaluations over an attribute. Thus, the multiple attribute group decision making (MAGDM) process
will be much simpler. We will introduce the development of LV below.

Since single-value linguistic variable was proposed, decision makers thought only one linguistic
variable could not accurately provide judgments in some uncertain environments. Xu [14] proposed
that decision makers could express their opinions with a linguistic interval. The interval linguistic
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variable was defined as an uncertain linguistic variable (ULV). They introduced a ULV hybrid
aggregation (ULHA) operator and a ULV ordered weighted averaging operator (ULOWA) for MADM
under an uncertain environment. Further, some other UL operators were introduced, such as UL hybrid
geometric mean operator (ULHGM) [15], UL ordered weighted averaging operator (IULOWA) [16],
UL Bonferroni mean operator (ULBM) [17], UL harmonic mean operator (ULHM) [18], and UL power
geometric operator (ULPG) [19]. Later, intuitionistic fuzzy sets and linguistic variables were integrated.
The concept of linguistic intuitionistic fuzzy numbers was proposed. Liu [20,21] and Li et al. [22]
introduced several linguistic intuitionistic MADM methods. Recently, a changeable uncertain linguistic
number was defined as a neutrosophic linguistic number (NLN). Some aggregation operators of NLNs
were developed to handle MADM problems with NLN information in References [23–25].

Linguistic variable forms, as introduced above, are either certain linguistic evaluations or
uncertain linguistic evaluations used to describe evaluation information in the same decision-making
problem simultaneously. However, in reality, uncertain linguistic evaluations and certain linguistic
evaluations may exist simultaneously. Thus, Ye [13] combined a linguistic variable with a cubic set [26]
and proposed a hybrid linguistic form. The hybrid linguistic form was defined as a linguistic cubic
variable (LCV). An uncertain linguistic variable and a certain linguistic variable composed an LCV.
Meanwhile Ye [13] developed an LCV weighted geometric averaging (LCVWGA) operator and an
LCV weighted arithmetic averaging (LCVWAA) operator and further developed a MADM method on
the basis of the LCVWGA operator or LCVWAA operator.

Information aggregation operators are effective and powerful tools to handle decision-making
problems. Researchers have developed various operators to aggregate evaluation information.
Dombi [27] firstly proposed Dombi T-conorm and T-norm operations in 1982. The operations are
developed into many information aggregations to deal with various application problems; for instance,
Dombi hesitant fuzzy information aggregation operators [5] for disaster assessment, or intuitionistic
fuzzy set Dombi Bonferroni mean operators [28] for MADM problems. Then, the advantage of the
Dombi operators contains flexibility due to its changeable operational parameter. Up to now, the Dombi
operations have not been extended to LCVs. Hence, aggregation operators based the Dombi operations
will be developed to handle LCV decision-making problems. So Dombi operational laws of LCVs
are proposed in this study. Then an LCV Dombi weighted arithmetic average (LCVDWAA) operator
and an LCV Dombi weighted geometric average (LCVDWGA) operator are presented. Further the
decision-making approach on basis of the LCVDWAA or LCVDWGA operator is developed for LCV
MADM problems.

The remainder of this paper is organized by following six sections. Some concepts of LCVs
are introduced in Section 2, and Section 3 defines several Dombi operations of LCVs. LCVDWAA
and LCVDWGA operators and some of their properties are presented in Section 4. The MADM
approach based on the LCVDWAA or LCVDWGA operator is introduced in Section 5. In Section 6,
two application examples are illustrated, and we discuss the validity, the influence of the operational
parameter, and the sensitivity of weights. Section 7 gives the conclusions and expectations of
the research.

2. Several Concepts of LCVs

Definition 1 [13]. Set L = {L0, L1, L2, . . . , LT} as a linguistic term set, in which T is even. A linguistic cubic
variable V is constructed by V = (L, LM), where L = [LG, LH ] is a ULV and LM is an LV for H ≥ G and LG,
LH, LM ∈ L. If G ≤M ≤ H, V = ([LG, LH ], LM) is an internal LCV. If M < G or M > H, V = ([LG, LH ], LM)

is an external LCV.

Definition 2 [13]. Set V = ([LG, LH ], LM) as an LCV in L = {L0, L1, L2, . . . , LT} for LG, LH, LM ∈ L. Then
the expected value of the LCV is calculated as below:

E(V) = (G + H + M)/3T f or E(V) ∈ [0, 1] . (1)
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Definition 3 [13]. Set V1 = ([LG1, LH1], LM1) and V2 = ([LG2, LH2], LM2) as two LCVs, their expected
values are E(V1) and E(V2), then their relations are as follows:

(a) If E(V1) � E(V2), then V1 � V2;
(b) If E(V1) ≺ E(V2), then V1 ≺ V2;
(c) If E(V1) = E(V2), then V1 = V2.

3. Some Dombi Operations of LCVs

Dombi T-conorm operation and T-norm operation between two real numbers will be introduced
in this section. Then some Dombi operations of LCVs will be proposed.

Definition 4 [27]. Let Y and X be any two real numbers. If (Y, X) ∈ [0, 1] × [0, 1], the Dombi T-norm and
Dombi T-conorm between them are defined as Equations (2) and (3):

D(Y, X) =
1

1 +
{(

1−Y
Y

)ρ
+
(

1−X
X

)ρ} 1
ρ

, (2)

DC(Y, X) = 1− 1

1 +
{(

Y
1−Y

)ρ
+
(

X
1−X

)ρ} 1
ρ

. (3)

If ρ > 0, the above equations satisfy D(Y, X) ∈ [0, 1] and Dc(Y, X) ∈ [0, 1].
According to the above Dombi operations, the following Dombi operational laws of LCVs

are defined.

Definition 5. Let V1 = ([LG1, LH1], LM1) and V2 = ([LG2, LH2], LM2) be two LCVs, where (G1, H1, M1, G2,
H2, M2) ∈ [0, T], ρ > 0, then their Dombi operations are proposed as follows:

V1 ⊕V2 = ([LG1, LH1], LM1)⊕ ([LG2, LH2], LM2)

=


LT×(1− 1

1+{(
G1
T

1− G1
T

)

ρ

+(
G2
T

1− G2
T

)

ρ

}

1
ρ
), LT×(1− 1

1+{(
H1
T

1− H1
T

)

ρ

+(
H2
T

1− H2
T

)

ρ

}

1
ρ
)

,LT×(1− 1

1+{(
M1
T

1−M1
T

)

ρ

+(
M2
T

1−M2
T

)

ρ

}

1
ρ
)



=


 LT− T

1+{( G1
T−G1 )

ρ
+( G2

T−G2 )
ρ
}

1
ρ

, L
T− T

1+{( H1
T−H1 )

ρ
+( H2

T−H2 )
ρ}

1
ρ

,
L

T− T

1+{( M1
T−M1 )

ρ
+( M2

1−T−M2 )
ρ}

1
ρ

;

(4)

V1 ⊗V2 = ([LG1, LH1], LM1)⊗ ([LG2, LH2], LM2)

=




L T

1+{(
1− G1

T
G1
T

)

ρ

+(
1− G2

T
G2
T

)

ρ

}

1
ρ

, L T

1+{(
1− H1

T
H1
T

)

ρ

+(
1− H2

T
H2
T

)

ρ

}

1
ρ


, L T

1+{(
1−M1

T
M1
T

)

ρ

+(
1−M2

T
M2
T

)

ρ

}

1
ρ


=


 L T

1+{( T−G1
G1 )

ρ
+( T−G2

G2 )
ρ
}

1
ρ

, L T

1+{( T−H1
H1 )

ρ
+( T−H2

H2 )
ρ}

1
ρ

 , L T

1+{( T−M1
M1 )

ρ
+( T−M2

M2 )
ρ}

1
ρ

;

(5)
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KV1 = K([LG1, LH1], LM1)

=




L
T− T

1+{K(
G1
T

1− G1
T

)

ρ

}

1
ρ

, L
T− T

1+{K(
H1
T

1− H1
T

)

ρ

}

1
ρ


, L

T− T

1+{K(
M1
T

1−M1
T

)

ρ

}

1
ρ


=


 L

T− T

1+{K( G1
T−G1 )

ρ
}

1
ρ

, L
T− T

1+{K( H1
T−H1 )

ρ}
1
ρ

 , L
T− T

1+{K( M1
T−M1 )

ρ}
1
ρ

;

(6)

V1
K =

([
LK

G1, LK
H1
]
, LK

M1
)

=

 L T

1+{K( 1−G1/T
G1/T )

ρ
}

1/ρ
, L T

1+{K( 1−H1/T
H1/T )

ρ
}

1/ρ

 , L T

1+{K( 1−M1/T
M1/T )

ρ
}

1/ρ


=

 L T

1+{K( T−G1
G1 )

ρ
}

1/ρ
, L T

1+{K( T−H1
H1 )

ρ}
1/ρ

 , L T

1+{K( T−M1
M1 )

ρ}
1/ρ

.

(7)

Due to functions (G1/T, H1/T, M1/T, G2/T, H2/T, M2/T) ∈ [0, 1], they satisfy the parameter
requirements of Dombi operations. If p > 0, (Y, X) ∈ [0, 1] × [0, 1], then D(Y, X) ∈ [0, 1] and Dc(Y,
X) ∈ [0, 1]. Thus we can get T*Dc(Y, X) ∈ [0, T] and T*D(Y, X) ∈ [0, T]. Obviously the results
of Equations (4)–(7) are also LCVs according to the Dombi operations as in Equations (2) and (3).
In Equations (4)–(7), we presented Dombi operations of LCVs in the first step and simplified the
equations in the second step.

Example 1. Let V1 and V2 be two LCVs in the linguistic term set L = {Li|i∈ [0, 8]}. Assume that V1 =

([L4, L6], L5), V2 = ([L2, L7], L2), k = 0.5, and ρ = 1. According to Equations (4)–(7), the results are calculated
respectively as follows:

V1 ⊕V2 = ([L4, L6], L5)⊕ ([L2, L7], L2)

=


 L8− 8

1+{( 4
8−4 )

1
+( 2

8−2 )
1}

1
1

, L8− 8

1+{( 6
8−6 )

1
+( 7

8−7 )
1}

1
1

 ,
L8− 8

1+{( 5
8−5 )

1
+( 2

8−2 )
1}

1
1


= ([L4.5714, L7.2727], L5.3333);

V1 ⊗V2 = ([L4, L6], L5)⊗ ([L2, L7], L2)

=


 L 8

1+{( 8−4
4 )

1
+( 8−2

2 )
1}

1
1

, L 8

1+{( 8−6
6 )

1
+( 8−7

7 )
ρ}

1
1

 , L 8

1+{( 8−5
5 )

1
+( 8−2

2 )
1}

1
1


= ([L1.6, L5.4193], L1.7391);

KV1 = K([L4, L6], L5)

=


 L

8− 8

1+{0.5( 4
8−4 )

1}
1
1

, L
8− 8

1+{0.5( 6
8−6 )

1}
1
1

 , L
8− 8

1+{0.5( 5
8−5 )

1}
1
1


= ([L2.6667, L4.8], L3.6363);
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V1
K =

([
LK

4 , LK
6
]
, LK

5
)

=

 L 8

1+{0.5( 8−4
4 )

1}
1/1

, L 8

1+{0.5( 8−6
6 )

1}
1/1

 , L 8

1+{0.5( 8−5
5 )

1}
1/1


= ([L5.3333, L6.8571], L6.1538).

4. Dombi Weighted Aggregation Operators of LCVs

4.1. Dombi Weighted Arithmetic Average Operator of LCVs

Definition 6. Let V = {V1, V2, V3, . . . , Vn} be an LCV set, then the Dombi weighted arithmetic average
operator of LCVS can be defined as follows:

LCVDWAA(V1, V2, . . . , Vn) =
n
⊕

i=1
wiVi (8)

where the weight vector wi satisfies
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1].

The following Theorem 1 can be induced and proved according to Definitions 4 and 6.

Theorem 1. Let Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n) be a set of LCVs and the corresponding weight vector

is w = (w1, w2, . . . , wn), where
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1], then we can calculate Equation (8) on basis of the

predefined operational laws and get the following formula:

LCVDWAA(V1, V2, . . . , Vn)

=




LT− T

1+{
i=n
∑

i=1
wi(

Gi
T−Gi )

ρ
}

1/ρ
, L

T− T

1+{
i=n
∑

i=1
wi(

Hi
T−Hi )

ρ
}

1/ρ


, L

T− T

1+{
i=n
∑

i=1
wi(

Mi
T−Mi )

ρ
}

1/ρ

.
(9)

Proof:

(1) If n = 2, by the Equations (4) and (6) we can get:

LCVDWAA(V1, V2) = w1V1 ⊕ w2V2

=


 L

T− T

1+{w1(
G1

T−G1 )
ρ
}

1
ρ

, L
T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ

 , L
T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ

⊕

 L

T− T

1+{w2(
G2

T−G2 )
ρ
}

1
ρ

, L
T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ

 , L
T− T

1+{w2( M2
T−M2 )

ρ}
1
ρ
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=





LT− T

1+{(

T− T

1+{w1(
G1

T−G1 )
ρ
}

1
ρ

T−(T− T

1+{w1(
G1

T−G1 )
ρ
}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
G2

T−G2 )
ρ
}

1
ρ

T−(T− T

1+{w2(
G2

T−G2 )
ρ
}

1
ρ
)
)

ρ

}

1
ρ

,

LT− T

1+{(

T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ

T−(T− T

1+{w1(
H1

T−H1 )
ρ}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ

T−(T− T

1+{w2(
H2

T−H2 )
ρ}

1
ρ
)
)

ρ

}

1
ρ


,

LT− T

1+{(

T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ

T−(T− T

1+{w1(
M1

T−M1 )
ρ}

1
ρ
)
)

ρ

+(

T− T

1+{w2(
M2

T−M2 )
ρ}

1
ρ

T−(T− T

1+{w2(
M2

T−M2 )
ρ}

1
ρ
)
)

ρ

}

1
ρ


=


 LT− T

1+{w1 (
G1

T−G1 )
ρ
+w2 (

G2
T−G2 )

ρ
}

1/ρ
, L

T− T

1+{w1 (
H1

T−H1 )
ρ
+w2 (

H2
T−H2 )

ρ}
1/ρ

 , L
T− T

1+{w1(
M1

T−M1 )
ρ
+w2(

M2
T−M2 )

ρ}
1/ρ



=




LT− T

1+{
i=2
∑

i=1
wi(

Gi
T−Gi )

ρ
}

1/ρ
, L

T− T

1+{
i=2
∑

i=1
wi(

Hi
T−Hi )

ρ
}

1/ρ


, L

T− T

1+{
i=2
∑

i=1
wi(

Mi
T−Mi )

ρ
}

1/ρ

.

(2) Assume n = k, the result is as follows:

LCVDWAA(V1, V2, . . . , Vk) =
k
⊕

i=1
wiVi

=




LT− T

1+{
i=k
∑

i=1
wi(

Gi
T−Gi )

ρ
}

1/ρ
, L

T− T

1+{
i=k
∑

i=1
wi(

Hi
T−Hi )

ρ
}

1/ρ


, L

T− T

1+{
i=k
∑

i=1
wi(

Mi
T−Mi )

ρ
}

1/ρ

.

(3) If n = k + 1, we have:

LCVDWAA(V1, V2, . . . , Vk, Vk+1) = LCVDWAA(V1, V2, . . . , Vk)⊕ wk+1Vk+1

=




LT− T

1+{
i=k
∑

i=1
wi(

Gi
T−Gi )

ρ
}

1/ρ
, L

T− T

1+{
i=k
∑

i=1
wi(

Hi
T−Hi )

ρ
}

1/ρ


, L

T− T

1+{
i=k
∑

i=1
wi(

Mi
T−Mi )

ρ
}

1/ρ


⊕




L
T− T

1+{wk+1(
Gk+1

T−Gk+1
)
ρ
}

1
ρ

, L
T− T

1+{wk+1(
Hk+1

T−Hk+1
)
ρ
}

1
ρ


, L

T− T

1+{wk+1(
Mk+1

T−Mk+1
)
ρ
}

1
ρ


=




LT− T

1+{
i=k+1

∑
i=1

wi(
Gi

T−Gi )
ρ
}

1/ρ
, L

T− T

1+{
i=k+1

∑
i=1

wi(
Hi

T−Hi )
ρ
}

1/ρ


, L

T− T

1+{
i=k+1

∑
i=1

wi(
Mi

T−Mi )
ρ
}

1/ρ

.

Thus, we have proved that Equation (9) is correct for any n. The properties of the LCVDWAA
operator are as follows:

(1) Idempotency: If there is LCVs collection Vi = ([LGi, LHi], LMi) for Vi = V (i = 1, 2, . . . , n) then
LCVDWAA (V1, V2, . . . , Vn) = V.

(2) Commutativity: Assume that the LCV set (V’
1, V’2, V’3, . . . , V’n) is any permutation of (V1, V2,

. . . , Vn). Then, there is LCVDWAA (V’
1, V’

2, . . . , V’
n) = LCVDWAA (V1, V2, . . . , Vn).
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(3) Boundedness: If there is LCVs collection Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n)
Vmin = ([Lmin

i
(Gi), Lmin

i
(Hi)], Lmin

i
(Mi)), Vmax = ([Lmax

i
(Gi), Lmax

i
(Hi)], Lmax

i
(Mi)). Then, Vmin ≤

LCVDWAA(V1, V2, . . . , Vn) ≤ Vmax. 2

Proof:

(1) Let Vi = ([LGi, LHi], LMi) = ([LG, LH ], LM), then we can get the result:

LCVDWAA(V1, V2, . . . , Vn)

=




LT− T

1+{
i=n
∑

i=1
wi(

Gi
T−Gi )

ρ
}

1/ρ
, L

T− T

1+{
i=n
∑

i=1
wi(

Hi
T−Hi )

ρ
}

1/ρ


, L

T− T

1+{
i=n
∑

i=1
wi(

Mi
T−Mi )

ρ
}

1/ρ



=




LT− T

1+{( G
T−G )

ρ
i=n

∑
i=1

wi}

1/ρ
, L

T− T

1+{( H
T−H )

ρ i=n
∑

i=1
wi}

1/ρ


, L

T− T

1+{( M
T−M )

ρ i=n
∑

i=1
wi}

1/ρ



=




LT− T

1+{( G
T−G )

ρ
}

1/ρ
, L

T− T

1+{( H
T−H )

ρ
}

1/ρ


, L

T− T

1+{( M
T−M )

ρ
}

1/ρ


= ([LG, LH ], LM) = V.

(2) The proof is obvious.
(3) Since min

i
(Gi) ≤ Gi ≤ max

i
(Gi), min

i
(Hi) ≤ Hi ≤ max

i
(Hi), min

i
(Mi) ≤ Mi ≤ max

i
(Mi). Then

the following inequalities can be induced as:

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Gi)

T−min
i
(Gi)

)ρ}1/ρ = min
i
(Gi) ≤T − T

1+
{

i=n
∑

i=1
wi( Gi

T−Gi )
ρ
}1/ρ ≤max

i
(Gi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Gi)

T−max
i

(Gi)

)ρ}1/ρ

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Hi)

T−min
i
(Hi)

)ρ}1/ρ = min
i
(Hi) ≤T − T

1+
{

i=n
∑

i=1
wi( Hi

T−Hi )
ρ
}1/ρ ≤max

i
(Hi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Hi)

T−max
i

(Hi)

)ρ}1/ρ

T − T

1+

{
i=n
∑

i=1
wi

(
min

i
(Mi)

T−min
i
(Mi)

)ρ}1/ρ = min
i
(Mi) ≤T − T

1+
{

i=n
∑

i=1
wi( Mi

T−Mi )
ρ
}1/ρ ≤max

i
(Mi) = T − T

1+

{
i=n
∑

i=1
wi

(
max

i
(Mi)

T−max
i

(Mi)

)ρ}1/ρ

Hence, Vmin ≤ LCVDWAA(V1, V2, . . . , Vn ) ≤ Vmax holds. 2

4.2. Dombi Weighted Geometric Average Operator of LCVs

Definition 7. Let V = {V1, V2, . . . , Vn} be an LCV set, then the Dombi weighted geometric average operator
of the LCVS can be defined as:

LCVDWGA(V1, V2, . . . , Vn) =
n
⊗

i=1
wiVi (10)

where the weight vector wi satisfies
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1].

According to Definitions 5 and 7, the following theorem can be induced and proved.
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Theorem 2. Let Vi = ([LGi, LHi], LMi) (i = 1, 2, . . . , n) be a set of LCVs and the corresponding weight vector

is w = (w1, w2, . . . , wn), where
i=n
∑

i=1
wi = 1 and wi ∈ [0, 1], we can calculate Equation (10) on basis of the

predefined operational laws and have:

LCVDWGA(V1, V2, . . . , Vn) =




L T

1+{
i=n
∑

i=1
wi(

T−Gi
Gi )

ρ
}

1/ρ
, L T

1+{
i=n
∑

i=1
wi(

T−Hi
Hi )

ρ
}

1/ρ




, L T

1+{
i=n
∑

i=1
wi(

T−Mi
Mi )

ρ
}

1/ρ

. (11)

Theorem 2 is the same proof as Theorem 1. Hence, we do not prove it repeatedly.
The LCVDWGA operator also has Properties (1)–(3) as follows:

(1) Idempotency: If there is LCVs collection Vi = ([LGi, LHi], LMi) for Vi = V (i = 1, 2, . . . , n). Then
LCVDWGA (V1, V2, . . . , Vn) = V.

(2) Commutativity: If the LCV set (V’
1, V’2, . . . , V’n) is any permutation of (V1, V2, . . . , Vn). Then,

there is LCVDWGA (V’
1, V’

2, . . . , V’
n) = LCVDWGA (V1, V2, . . . , Vn).

(3) Boundedness: If there is LCVs collection Vi = ([LGi, LHi], LMi) (i = 1,2, . . . , n) Vmin =

([Lmin
i

(Gi), Lmin
i

(Hi)], Lmin
i

(Mi)), Vmax = ([Lmax
i

(Gi), Lmax
i

(Hi)], Lmax
i

(Mi)). Then, Vmin ≤
LCVDWGA(V1, V2, . . . , Vn) ≤ Vmax.

The proofs of the above properties are omitted which are similar with the properties of the
LCVDWAA operator.

5. MADM Method on Basis of the LCVDWAA or LCVDWGA Operator

If a MADM problem is described by LCV information, V = {V1, V2, . . . , Vm} and P =

{P1, P2, . . . , Pn} are the sets of alternatives and attributes, respectively. w = {w1, w2, . . . , wn} is the
set of weight, where wj is corresponding to the importance of attribute Pj with wj ∈ [0, 1] and
∑n

j=1 wj = 1. The LCV Vij is the evaluation of the alternatives Vi(i = 1, 2, . . . , m) over the attributes
Pj(j = 1, 2, . . . , n). Each LCV includes uncertain linguistic argument and certain linguistic argument.
Thus, all the LCVs given by decision makers are constructed as an LCV decision matrix V = (Vij)m×n,
where Vij = (

[
LGij, LHij

]
, LMij) is an LCV (i =1, 2, . . . , m; j = 1, 2, . . . , n) and LGij, LHij, LMij is from the

linguistic term set L = {Lk|k ∈ [0, T]} with even number T.
On basis of the LCVDWAA or LCVWDGA operator, the steps of MADM method are as follows.
Step 1. According to Equation (9) or Equation (11), we can get the collective LCV of each alterative

Vi = LCVDWAA(Vi1, Vi2, . . . , Vin) or Vi = LCVDWGA(Vi1, Vi2, . . . , Vin) (i = 1, 2, . . . , m).
Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, . . . , m) are

calculated according to Equation (1).
Step 3. According to the expected values of E(Vi)(i = 1, 2, . . . ., m), we give the rank order of all

the alternatives. The best alternative Vi(i = 1, 2, . . . ., m) is with the greatest value of E(Vi).

6. Illustrative Examples and Discussions

Two application examples are illustrated below, then we discuss the validity of this proposed
MADM approach and the influence of the operational parameter.

6.1. Illustrative Examples

Example 2 [13]. A company needs to hire a soft engineer. There are four candidates (alternatives) V1, V2, V3,
and V4. The decision makers will further evaluate them over four attributes. The four attributes are soft skills,
past experience, personality, and self-confidence, in order. The corresponding weight vector of the attributes is w
= (0.35, 0.25, 0.2, 0.2). The decision makers evaluate the four candidates by using the linguistic cubic values,
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which are obtained from the linguistic term set L = {Li|i ∈ [0, 8]}, where L = {L0 = extremely poor, L1 = very
poor, L2 = poor, L3 = slightly poor, L4 = fair, L5 = slightly good, L6 = good, L7 = very good, L8 = extremely good}.
The linguistic cubic decision matrix V is described as follows:

V = (Vij)4×4 =


([L4, L6], L5) ([L4, L6], L4) ([L4, L7], L6) ([L5, L6], L6)

([L3, L5], L4) ([L5, L7], L6) ([L4, L6], L4) ([L6, L7], L6)

([L4, L7], L5) ([L6, L7], L7) ([L5, L7], L5) ([L5, L7], L7)

([L6, L7], L7) ([L5, L7], L6) ([L4, L6], L5) ([L5, L6], L5)



Now we employ the LCVDWAA operator to solve this MADM problem.
Step 1. According to Equation (9) for ρ = 1 and T = 8, we can get the following collective LCVs for

four alternatives:

V1 = LCVDWAA(V11, V12, . . . , V14)

=




LT− T

1+{
i=4
∑

i=1
wi(

G1i
T−G1i

)
ρ
}

1/ρ
, L

T− T

1+{
i=4
∑

i=1
wi(

H1i
T−H1i

)
ρ
}

1/ρ


, L

T− T

1+{
i=4
∑

i=1
wi(

M1i
T−M1i

)
ρ
}

1/ρ


=


 L8− 8

1+
i=4
∑

i=1
wi(

G1i
T−G1i

)

, L
8− 8

1+
i=4
∑

i=1
wi(

H1i
T−H1i

)

 , L
8− 8

1+
i=4
∑

i=1
wi(

M1i
T−M1i

)


= ([L4.2500, L6.3333], L5.3626)

= ([LG1, LH1], LM1),

V2 = LCVDWAA(V21, V22, . . . , V24) = ([L4.7033, L6.5000], L5.2414),
V3 = LCVDWAA(V31, V32, . . . , V34) = ([L5.1084, L7.0000], L6.4211), and
V4 = LCVDWAA(V41, V42, . . . , V44) = ([L5.3333, L6.7500], L6.3562).
Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, 3, 4) are

calculated according to Equation (1). The results are as follows:

E(V1) = (G1 + H1 + M1)/3T = 0.6644, E(V2) = (G2 + H2 + M2)/3T = 0.6852,
E(V3) = (G3 + H3 + M3)/3T = 0.7721, E(V4) = (G4 + H4 + M4)/3T = 0.7683.

Step 3. According to the above expected values and the rank principle, the rank order of the four
candidates is V3 � V4 � V2 � V1.

Alternatively, we use LCVDWGA operator for this MADM problem with the same decision steps.
Step 1. We aggregate the LCVs for four candidates according to Equation (11) for ρ = 1 and T = 8.

V1 = LCVDWGA(V11, V12, . . . , V14)

=




L T

1+{
i=4
∑

i=1
wi(

T−G1i
G1i )

ρ
}

1/ρ
, L T

1+{
i=4
∑

i=1
wi(

T−H1i
H1i )

ρ
}

1/ρ




, L T

1+{
i=4
∑

i=1
wi(

T−M1i
M1i )

ρ
}

1/ρ


=


 L 8

1+
i=4
∑

i=1
wi(

T−G1i
G1i )

, L 8

1+
i=4
∑

i=1
wi(

T−H1i
H1i )


 , L 8

1+
i=4
∑

i=1
wi(

T−M1i
M1i )


= ([L4.1677, L6.1765], L5.0209)

V2 = LCVDWGA(V21, V22, . . . , V24) = ([L4.0000, L5.9659], L4.7059),
V3 = LCVDWGA(V31, V32, . . . , V34) = ([L4.7809, L7.0000], L5.7377), and
V4 = LCVDWGA(V41, V42, . . . , V44) = ([L5.0420, L6.5625], L5.8252).
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Step 2. The expected values E(Vi)(i = 1, 2, . . . ., m) of each collective LCV Vi(i = 1, 2, 3, 4) are
calculated according to Equation (1). The results are as follows:

E(V1) = 0.6402, E(V2) = 0.6113, E(V3) = 0.7299, E(V4) = 0.7262.
Step 3. According to the above expected values and the rank principle, the rank order of the four

candidates is V3 � V4 � V1 � V2.
By following the same steps above, we apply the LCVDWAA operator and LCVDWGA operator

to Example 2 with parameter ρ from 1 to 100, the ranking results are shown as following Tables 1 and 2.

Table 1. Ranking orders of the LCVDWAA 1 operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1) 2, E(V2) 3, E(V3) 4, E(V4) 5 Ranking Order The Best Candidate

1 0.6644, 0.6852, 0.7721, 0.7683 V3 � V4 � V2 � V1 V3
2 0.6766, 0.7139, 0.7875, 0.7843 V3 � V4 � V2 � V1 V3
3 0.6876, 0.7332, 0.7978, 0.7954 V3 � V4 � V2 � V1 V3
4 0.6969, 0.7459, 0.8049, 0.8031 V3 � V4 � V2 � V1 V3
5 0.7045, 0.7545, 0.8099, 0.8085 V3 � V4 � V2 � V1 V3

10 0.7253, 0.7731, 0.8214, 0.8207 V3 � V4 � V2 � V1 V3
15 0.7336, 0.7794, 0.8254, 0.8250 V3 � V4 � V2 � V1 V3
20 0.7377, 0.7825, 0.8274, 0.8271 V3 � V4 � V2 � V1 V3
30 0.7419, 0.7856, 0.8294, 0.8292 V3 � V4 � V2 � V1 V3
50 0.7451, 0.7881, 0.8310, 0.8309 V3 � V4 � V2 � V1 V3
100 0.7476, 0.7899, 0.8322, 0.8321 V3 � V4 � V2 � V1 V3

1 LCVDWAA = linguistic cubic variable Dombi weighted arithmetic average; 2 E(V1) = expected value of V1; 3 E(V2)
= expected value of V2; 4 E(V3) = expected value of V3; 5 E(V4) = expected value of V4.

Table 2. Ranking orders of the LCVDWGA 1 operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3), E(V4) Ranking Order The Best Candidate

1 0.6402, 0.6113, 0.7299, 0.7262 V3 � V4 � V1 � V2 V3
2 0.6300, 0.5827, 0.7143, 0.7076 V3 � V4 � V1 � V2 V3
3 0.6219, 0.5633, 0.7039, 0.6929 V3 � V4 � V1 � V2 V3
4 0.6155, 0.5503, 0.6968, 0.6816 V3 � V4 � V1 � V2 V3
5 0.6106, 0.5414, 0.6918, 0.6730 V3 � V4 � V1 � V2 V3

10 0.5980, 0.5213, 0.6800, 0.6509 V3 � V4 � V1 � V2 V3
15 0.5932, 0.5143, 0.6756, 0.6424 V3 � V4 � V1 � V2 V3
20 0.5907, 0.5107, 0.6734, 0.6381 V3 � V4 � V1 � V2 V3
30 0.5883, 0.5071, 0.6711, 0.6337 V3 � V4 � V1 � V2 V3
50 0.5863, 0.5043, 0.6693, 0.6303 V3 � V4 � V1 � V2 V3
100 0.5848, 0.5021, 0.6680, 0.6276 V3 � V4 � V1 � V2 V3

1 LCVDWGA = linguistic cubic variable Dombi weighted geometric average.

Example 3. Customers want to buy an air-conditioner; they choose three brands as alternatives V1, V2, V3.
Further, they need to evaluate the three alternatives from three attributes which are as follows: (i) P1 is cooling
effect; (ii) P2 is heating effect; and (iii) P3 is appearance design. Their importance lies in the weight vector w =
(1/2,1/3,1/6). The customers give their evaluations over the three attributes by the linguistic cubic values Vij
based on the uniform linguistic term set L as Example 2. The LCVs provided by the customers constitute the
decision matrix V.

V = (Vij)3×3 =

 ([L2, L7], L3) ([L4, L7], L2) ([L2, L7], L1)

([L2, L7], L5) ([L2, L7], L3) ([L2, L7], L3)

([L2, L5], L5) ([L1, L6], L4) ([L2, L5], L2)


By using the same steps, we apply the LCVDWAA operator or LCVDWGA operator to this

MADM problem. The ranking results based on the LCVDWAA operator with parameters ρ from 1 to 5
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are shown in the Table 3. Similarly, the ranking orders on basis of the LCVDWGA operator are shown
in Table 4.

Table 3. Ranking orders of the LCVDWAA operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3) Ranking Order The Best Alterative

1 0.5117, 0.5795, 0.4804 V2 � V1 � V3 V2
2 0.5280, 0.5932, 0.4927 V2 � V1 � V3 V2
3 0.5404, 6005, 0.5016 V2 � V1 � V3 V2
4 0.5490, 0.6052, 0.5084 V2 � V1 � V3 V2
5 0.5551, 0.6085, 0.5135 V2 � V1 � V3 V2

10 0.5688, 0.6165, 0.5267 V2 � V1 � V3 V2
15 0.5736, 0.6193, 0.5317 V2 � V1 � V3 V2
20 0.5761, 0.6208, 0.5342 V2 � V1 � V3 V2
30 0.5785, 0.6222, 0.5367 V2 � V1 � V3 V2
50 0.5804, 0.6233, 0.5387 V2 � V1 � V3 V2
100 0.5819, 0.6242, 0.5402 V2 � V1 � V3 V2

Table 4. Ranking orders of the LCVDWGA operator, ρ ∈ [1–5,10,15,20,30,50,100].

ρ E(V1), E(V2), E(V3) Ranking Order The Best Alterative

1 0.4750, 0.4826, 0.4393 V2 � V1 � V3 V2
2 0.4598, 0.4353, 0.4144 V1 � V2 � V3 V1
3 0.4488, 0.4078, 0.3946 V1 � V2 � V3 V1
4 0.4414, 0.3907, 0.3810 V1 � V2 � V3 V1
5 0.4364, 0.3796, 0.3718 V1 � V2 � V3 V1

10 0.4262, 0.3563, 0.3523 V1 � V2 � V3 V1
15 0.4229, 0.3486, 0.3459 V1 � V2 � V3 V1
20 0.4213, 0.3447, 0.3427 V1 � V2 � V3 V1
30 0.4197, 0.3409, 0.3395 V1 � V2 � V3 V1
50 0.4185, 0.3379, 0.3370 V1 � V2 � V3 V1
100 0.4176, 0.3356, 0.3352 V1 � V2 � V3 V1

6.2. Discussion

6.2.1. Validity of the Method

Ye [13] firstly proposed the concept of LCVs, and then used the LCVWAA operator and LCVWGA
operator to handle the MADM problem of Example 2. As shown in Table 5, the ranking orders using the
LCVDWAA operator and LCVDWGA operator with parameters ρ from 1 to 100 are the same as those
using the LCVWAA operator [13] and LCVWGA operator [13], respectively. In Example 3, the ranking
results based on the LCVDWAA operator are the same as those based on the LCVWAA operator [13]
when parameter ρ ranges from 1 to 100. Then, the ranking orders based on the LCVDWGA operator
are the same as those based on the LCVWGA operator [13] when parameter ρ is equal to 1.

Table 5. Ranking results of different aggregation operators with different parameters.

Example MADM 1 Method Ranking Order The Best Alterative

2

LCVDWAA (ρ = 1 to 100) V3 � V4 � V2 � V1 V3
LCVWAA 2 [13] V3 � V4 � V2 � V1 V3

LCVDWGA (ρ = 1 to 100) V3 � V4 � V1 � V2 V3
LCVWGA 3 [13] V3 � V4 � V1 � V2 V3

3
LCVDWAA (ρ = 1 to 100) V2 � V1 � V3 V2

LCVWAA [13] V2 � V1 � V3 V2
LCVDWGA (ρ = 1)

LCVDWGA (ρ = 2 to 100)
LCVWGA [13]

V2 � V1 � V3
V1 � V2 � V3
V2 � V1 � V3

V2
V1
V2

1 MADM = multiple attribute decision making; 2 LCVWAA = linguistic cubic variable weighted arithmetic average;
3 LCVWGA = linguistic cubic variable weighted geometric average.
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6.2.2. The Influence of the Parameter ρ

As shown in Table 5, parameter value of ρ has no effect on the ranking results in Example 2.
In Example 3, the ranking results are not sensitive to parameters ρ for the LCVDWAA operator.
However, corresponding to the LCVDWGA operator, the ranking results are more sensitive to
parameter ρ. When ρ = 1, the ranking orders of the LCVDWGA operator are the same as those
of the LCVWAA [13], LCVWGA [13], and LCVDWAA operators (ρ = 1 to 100), and the best alternative
is V2. While the ranking orders of the LCVDWGA operator are obviously changed when ρ is from 2 to
100, the best alternative is V1. From Tables 1–4, we can see that parameter value of ρ is greater and the
expected values of E(Vi) are greater in the LCVDWAA operator. While in the LCVDWGA operator the
value of parameter ρ is greater and the expected values of E(Vi) are smaller.

In any case, by using LCVDWAA or LCVDWGA operator to aggregate decision-making
information, the presented approach is valid to handle MADM problems with LCV information.
Especially the LCVDWGA operator is more flexible in actual applications.

6.2.3. The Sensitivity Analysis of Weights

In order to demonstrate the sensitivity of weights, we change the weights of the attributes in
Examples 2 and 3. W = (0.25, 0.25, 0.25, 0.25) and w = (1/3, 1/3, 1/3) are used as the weight vectors
in Examples 2 and 3, respectively. Then we apply LCVDWAA operator and LCVDWGA operator to
the two applications again and change the parameter value of ρ from 1 to 100. The ranking results
of Example 2 are shown in Figure 1 and the ranking results of Example 3 are shown in Figure 2.
The curves of collective expected values E(Vi) were shown in Figures 1 and 2. The curves clearly
show that LCVDWAA and LCVDWGA have different effects on the expected value. Additionally,
we find that the ranking results are identical with Table 5 when the weights are changed. Especially
as Figure 2b shows, the best alternative is V2 when ρ is equal to 1, while the best alternative is V1

when ρ ranges from 2 to 100. It fits perfectly with Table 5. Thus, we can think that the LCVDWAA and
LCVDWGA are not sensitive to the changes of weights.
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7. Conclusions

The concept of LCV was proposed by Ye [13] recently. There are few studies on LCV information
aggregation operators and MADM methods about LCV information problems. In this paper, the Dombi
operations were extended to an LCV environment. We proposed an LCVDWAA operator and an
LCVDWGA operator, then discussed their properties. Further, based on the LCVDWAA or LCVDWGA
operator, a MADM method was developed. Finally, the proposed approach was applied to two
application examples. This MADM method is very simple. There is only one decision-making
matrix with LCVs information in a MAGDM problem. The results demonstrated this approach is
feasible and valid as the method proposed in Ye [13]. Compared with the method proposed in Ye [13],
this approach not only can handle decision-making problems effectively, but also can affect the ranking
order based on the LCVDWAA or LCVDWGA operator by the changeable parameter ρ. In an actual
decision-making process, we can specify various parameter values based on the decision makers’
preferences and requirements. However, the flexibility of the LCVDWAA or LCVDWGA operator was
not fully reflected in the two examples. In order to observe the sensitivity of weights, we changed
the weight vectors of the two examples and changed parameter values from 1 to 100. We found that the
results were not changed when the weight was averaged. Although the operators were not sensitive
to the changes of weights, there were some changes in the ranking results when we changed the
weight vectors to extreme cases in the study. Thus, the ranking results are determined by weights
and parameter values together for the same decision-making matrix. In future work, we can continue
to develop more flexible aggregation operators of LCVs and use them to solve MADM problems in
various fields.
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