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Abstract: Machine learning approaches can drastically decrease the computational time for the
predictions of spectroscopic properties in materials, while preserving the quality of the computational
approaches. We studied the performance of kernel-ridge regression (KRR) and gradient boosting
regressor (GBR) models trained on the isotropic shielding values, computed with density-functional
theory (DFT), in a series of different known zeolites containing out-of-frame metal cations or fluorine
anion and organic structure-directing cations. The smooth overlap of atomic position descriptors
were computed from the DFT-optimised Cartesian coordinates of each atoms in the zeolite crystal
cells. The use of these descriptors as inputs in both machine learning regression methods led to
the prediction of the DFT isotropic shielding values with mean errors within 0.6 ppm. The results
showed that the GBR model scales better than the KRR model.

Keywords: NMR; machine learning; zeolites

1. Introduction

Machine learning (ML) coupled with density functional theory (DFT) calculations
has been rapidly emerging for predictions of nuclear magnetic resonance (NMR) isotropic
shielding values [1–9]. The role of the experimental NMR investigations to recognise the lo-
cal atomic environment in chemical and biological systems has been established for decades.
Theoretical DFT calculations, using either the gauge-invariant atomic orbital (GIAO) or
gauge invariant-projector augmented wave (GIPAW), have been widely employed to im-
prove the NMR signal assignments and/or identify the local structural environment and
molecular interactions of the targeted nucleus [10,11]. The interest in the last few years in
developing and applying ML models for the prediction of NMR parameters thus originates
in the importance of the rapid achievement of accurate theoretical NMR parameters.

Hitherto, several ML models [12] have been built and applied for predicting NMR
isotropic shielding (σiso) or, respectively, the chemical shift (δ = σre f − σiso) of 1H, 13C,
13O, and 13N nuclei in small organic, aromatic molecules or molecular crystals [2,6,13–20].
These ML models comprise deep neural networks (DNNs) [15], convolutional neural net-
works (CNNs) [16], the IMPRESSION model based on kernel-ridge regression (KRR) [6,19,20],
linear-ridge regression [2], gradient boosting regression (GBR) [21,22], graph neural networks
(GNNs) [23,24], and the ∆-ML method [7]. Chemical shifts of proteins have been predicted
using random forest regression (RFR) [13,14,17,18]. Despite the strong decrease of the compu-
tational time to train the model and predict the NMR parameters, in comparison to the GIAO
and GIPAW calculations, most of the ML models yielded somewhat less accurate results
in comparison to the experimental data than the DFT σiso with PBE exchange–correlation
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functionals [7]. Significantly lesser is the amount of works devoted to NMR property calcula-
tions in silicates [1–3]. The ML precision in predicting 29Si and 17O chemical shifts in these
amorphous solids is found more accurate than in the organic compounds. For example,
the ML-predicted deviation from DFT-GIPAW calculations is obtained to be only 0.7 ppm for
29Si and 1.5 ppm for 17O in SiO2 glasses [2]. The supervised feed-forward neural network
representation yielded mean absolute errors (MAEs) of δiso < 1 ppm for 29Si in ZSM-11 and
a-cristobalite [1]. The same NN model also performed very well for the 17O quadrupolar cou-
pling constant predictions, giving MAEs (Cq(17O)) of 0.07 MHz in cristobalite and 0.06 MHz
in ZSM-11 zeolite.

One of the most significant tasks to take into account in the ML applications is
the choice of the descriptors, representing the local chemical environment of each atom
in the system. This choice is not trivial because it greatly depends on the shape of the molec-
ular system (simple organic molecules or crystalline materials) and on the considered data
set [17]. The most widely used descriptor for predicting the NMR properties in organic
molecules and materials is the smooth overlap of the atomic positions (SOAP) descriptor.
This descriptor can also be used as a kernel when it is coupled with the kernel-ridge regres-
sion methods. Indeed the SOAP descriptor has been already found very efficient to describe
the local chemical environment of a large range of chemical compounds, and in partic-
ular, it allows obtaining the accurate prediction of NMR properties [1,2]. Furthermore,
the symmetry functions are widely used for describing the chemical environment in the neu-
ral network representation [1]. Molecular descriptors and fragment descriptors [25] led
to predicting with a great accuracy the J-coupling constants in small organic molecules.
The ML combination with DFT is therefore a promising tool, and further validations are of
high interest.

In this work, we apply two simple state-of-the-art regression ML methods, namely
KRR and GBR, to predict σiso in a set of crystalline zeolite structures, selected from the Inter-
national Zeolite Association’s (IZA) structure database [26]. The zeolites are the crystalline
alumino-silicate porous materials with waste industrial applications as catalysts or molecu-
lar sieves. The three-dimensional zeolite structure is composed by tetrahedron units with Si
atoms in the centre and four oxygen atoms at the vertices, which can organise in a variety
of porous frameworks, with pores of sizes varying between 2 and 10 nm [27,28]. ML
methods coupled to DFT computations have already emerged for predicting mechanical
properties [29], nitrogen adsorption [30], molar volumes, and cohesive energies [31] in zeo-
lites. The success rate of these ML applications to zeolites vary according to the predicted
properties and the proposed ML approach [32]. Among the spectroscopy techniques, used
to study zeolite structures and chemical compositions, most of the NMR techniques can
today be routinely applied to the as-synthesised zeolitic materials. We therefore found it of
interest to examine and report in this work the performance of simple ML methods trained
on the computed DFT σiso values in a series of known zeolite structures.

2. Methods and Computational Details
2.1. Kernel-Ridge Regression

The first ML approach used by us is KRR [6], which consists of a combination of
the ridge regression and the kernel method. The KRR model is suitable for complex
continuous data, which cannot be described by a linear regression. Unlike the linear
regression, the kernel-ridge regression method offers larger flexibility by transforming
the input with a regression function.

Below, we briefly illustrate the KRR scheme. In the case of the ML linear regression
algorithm, the goal is to minimise a function Ω called the quadratic cost [33], which is
defined as

Ω(w) =
1
2

N

∑
i=1

(
Yi −wTXi

)2
, (1)

where Xi represents the vector of the input data, Yi are the scalar output data, N corresponds
to the dimension of the input data, and the vector w is the vector of weights that will be
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optimised during the training process. In the case of the ridge regression algorithm,
an additional term is implemented to the previous quadratic cost in order to prevent over-
fitting problems during the training stage by regularising its value. Hence, the form of
the quadratic cost becomes

Ω(w) =
1
2

N

∑
i=1

(
Yi −wTXi

)2
+

1
2

λ||w||22, (2)

where λ is a positive parameter that controls the value of the vector norm w. This step
is called L2-regularisation because of the use of the L2-norm of the vector w. In order
to determine the parameter λ, a cross-validation algorithm is widely used [34]. Thus,
by minimising the function Ω(w), it leads to a simple linear problem to be solved for the set
of weights as follows:

N

∑
i=1

(
Yi −wTXi

)
Xi = λXi. (3)

These optimised weights are thus obtained as

w =

(
λI +

N

∑
i=1

XiXT
i

)−1( N

∑
j=1

YjXj

)
, (4)

where I is the identity matrix.
This linear regression method is limited to problems that can be described as a linear

function; thus, to overcome this limit, a non-linear kernel function is introduced in order to
measure the similarity between two samples of a high-dimensional space. The most widely
used kernel function is the Gaussian kernel function. In the KRR method, the vector of the
input data, Xi, is substituted by the non-linear kernel function ϕ(Xi). Therefore, we can
rewrite the expression of the optimised weight parameters as a function of ϕ(Xi):

w =

(
λI +

N

∑
i=1

ϕ(Xi)ϕ(XT
i )

)−1( N

∑
j=1

Yj ϕ(Xj)

)

=
(

λI + ϕ(Xi)ϕ(XT
i )
)−1

ϕ(Xi)Yi

= ϕ(Xi)
(

ϕ(XT
i )ϕ(Xi) + λI

)−1
Yi.

(5)

By defining the coefficient αi =
(

ϕ(XT
i )ϕ(Xi) + λI

)−1
Yi, the optimised weights are

simply expressed as

w =
N

∑
i=1

αi ϕ(Xi). (6)

Therefore, during the training phase of the kernel-ridge regression, the aim is to
calculate αi, which are subsequently used to predict the output values. For the KRR
model, we used the code from the open repository [35]. The similarity of the input vectors
is determined based on the user-defined similarity function, e.g., kernel, in our case,
the difference between the SOAP vectors.

2.2. Gradient Boosting Regression

The gradient boosting regression is a powerful regression firstly introduced by Freund
and Schapire [36,37] through an adaptive boosting algorithm. At the beginning, this
regression method was used for classification problems [38] and later on adapted for
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regression problems [21,22]. The aim of the gradient boosting regression method is to find
a function f ∗ that minimises the loss function Θ [39] defined as

f ∗(X, Y) = arg min EX,Y[Θ(Y, f (X))], (7)

where X is the vector of input variables, Y is the output variable, and EX,Y represents
the floor function applied for the vector X and the variable Y. In the boosted model,
the function f (X) is defined as a weighted linear combination of base learners by the fol-
lowing formula:

f (X) =
N

∑
i=1

αihi(X, βi), (8)

where αi are the real coefficients of the linear combination and βi are the parameters of
the base learners hi(X, βi). The minimisation of the loss function Θ is carried out via
an optimisation of the function f using the recursive relation

fm+1(X) = fm(X) + arg min
N

∑
i=1

Θ(Yi, fm(Xi + hm+1(Xi))). (9)

The here-used gradient boosting regression method enables us to create strongly learn-
ing trees from poorly learning trees [40]. This approach utilises boosting so that the trees
are created sequentially, as opposed to random forests, where the trees are generated
in parallel. Each new tree is created with an effort to reduce the prediction error learning
from the errors of the previous tree. The goal is to achieve the lowest possible error while
keeping the predicted values as accurate as possible. We used the Anaconda distribution
for Python 3.8.5, utilising the scikit-learn program package [40,41] with the GBR model,
where the random_state hyperparameter was set to 0 and the rest of the hyperparameters
were set to the default values.

2.3. SOAP Descriptors

Two data sets in comma-separated values (CSV) format were prepared using the DFT-
optimised Cartesian coordinates of the zeolites and the isotropic shielding value in ppm for
each atom in the zeolites. The first data set contains the Cartesian coordinates (x, y, and z)
of each zeolite, the calculated σiso, the name of the chemical element, and the name of
the zeolite (taken from the IZA). The second CSV file contains 3 × 3 tensors and the name
of the corresponding zeolite. We used the DScribe package [42] to convert our data to
smooth overlap of atomic positions (SOAP) descriptor vectors. Individual structures were
represented as Atoms class objects from the ASE package [43,44] with the use of 3 × 3
tensors. We began by creating a DScribe.SOAP object, for which the parameters such as
the number of basis functions, range, level l, and a list of all elements in our data were set.
Subsequently, the DScribe.SOAP.create function was used to create a SOAP vector for each
atom. The complete data set was split into a training and test set in a ratio of 8:2.

2.4. DFT Computational Details

A periodic DFT-based approach was used to carry out a full geometrical optimisation
(atomic positions and unit-cell parameters) of all the structures in the data set. The geomet-
rical optimisations were carried out with the Crystal17 program, based on atom-centred
Gaussian orbitals [45]. All-electron basis functions of double-ζ quality were used as follows:
6-31d1 for O, N, C, and H [46]; 85-11G* for Al [47] and Pople’s basis set (6–21G) with
polarisation for Si. The generalised gradient-corrected PBE approximation was used as
the exchange correlation (XC) functional, augmented by the empirical London dispersion
(D3) term with the Becke–Johnson damping function [48]. The optimised structural parame-
ters of zeolites with OSDA, obtained with the Crystal code and all-electron databases, were
found by us to agree well with the experimental bond distances and bond angles [49–51].
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For this reason, we applied the same computational protocol for the optimisation of the ze-
olite structures in this work.

Single-point energy calculations were carried out for these optimised geometries
in order to compute the isotropic shielding values of all the atoms in the zeolites. For this,
we used the open-source code QUANTUM ESPRESSO [52–54] with the GIPAW method
in combination with the ultrasoft pseudopotentials with GIPAW reconstruction [55,56],
from the USSP pseudopotential database [57]. The wave-function and charge density
energy cut-offs were set to 60 Ry and 720 Ry, respectively. A Monkhorst–Pack grid of
k-points [58] corresponding to a maximum spacing of 0.06 Å−1 in the reciprocal space was
used. The self-consistent field (SCF) energy convergence tolerance was set to 10−10.

3. Results and Discussion
3.1. Data Set and DFT Isotropic Shielding

To ensure a heterogeneity of the atomic environments giving rise to different DFT σiso
values, we considered zeolites containing Al, Na, and Li cations, as well as MFI-type zeolites,
containing the organic structure-directing agents (OSDAs), which are the tetrapropylammo-
nium (TPA) and tripropylethylammonium (TPEA) cations. Among the MFI-OSDA types of
structures, we considered five pure silica structures (silicalite-1), labelled as MFI-TPA and
MFI-TPEA in Table S1 in the Supporting Information (SI) Section. The four MFI-ETPA struc-
tures present the location of the TPEA ethyl chain either in the direct or zig-zag channels.
In silicalite-1 zeolites, the fluorine anion is the charge-compensating ion. The remaining
MFI-OSDA zeolites are those with the TPA cation and one Al3+, which substitutes at
each of the 24 non-equivalent Si-sites of the asymmetric unit. The initial structures of
the pure inorganic zeolites were the crystallographic information files (CIFs) that were
collected from the IZA database. We built the MFI-OSDA structures from the available
crystallographic data for TPA (ETPA) [59] and ZSM-5-TPA [60] zeolites. These structures
were optimised in our previous studies [61,62] using the same level of DFT theory. We thus
constructed a more heterogeneous data set that contains Si, Al, N, C, H, Li, and F atomic
environments. The geometries and DFT σiso values of all atoms were used in the ML
training and prediction calculations.

To access roughly the quality of the DFT σiso results, we correlated them with the
experimental chemical shifts of 29Si, which are available in the IZA database. The zeolites
for which δ29Si were collected are labelled by an asterisk in Table S1.

The linear fitting between the DFT and experimental data, illustrated in Figure 1,
demonstrates that the PBE-D3 results followed reasonably well the overall experimental
trend for the selected zeolites. It is worth noting that the experimental NMR data were
recorded under different experimental conditions [26] and often for non-ideal zeolite
structures that might contain defects, such as silanols, water, hydroxides, and in- or out-
framework cations. Taking into account these factors and the linear fitting R2 coefficient of
0.9995, as well as the root-mean-squared error (RMSE) of 2.44 ppm of the DFT values with
respect to the fitted values against the experimental isotropic shieldings, we concluded
a rather good correlation between the computed and experimental results.

The distributions of the calculated DFT isotropic shieldings of 29Si, 17O, 27Al, 13C, and
1H are reported in Figure 2. The majority of the Si atoms have DFT σiso(29Si) in the range
422–426 ppm, as follows from the maximum number of the chemical environments in this
interval. Nevertheless, the predominant number of σiso(29Si) is obtained in a 400–440 ppm
interval, and there are few Si-sites, for which σiso(29Si) < 350 ppm. The other nuclei, largely
presented in the zeolites, are 17O and 1H. The peakin the oxygen atoms’ distribution
indicates that the largest number of oxygen sites has σiso(17O) values at around 196 ppm.
The σiso(17O) values span a large interval between 150 and 250 ppm with several outliers
outside this region. The isotropic shieldings of hydrogen sites are between 22 and 29 ppm,
and the distribution of 13C is characterised by two distinguished peaksat around 100 and
150 ppm. The hydrogen and carbon sites belong to OSDAs in MFI and ZSM-5 zeolite types.
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In the studied structures, the number of Al3+ cations is significantly smaller, and their
σiso(27Al) are spread in the 450–550 ppm interval.

Figure 1. Comparison between DFT isotropic shielding and experimental chemical shift (both in ppm)
alongside the linear fitting of the data (blue line).

Figure 2. Distribution of the number of oxygen (O), silicon (Si), aluminium (Al), carbon (C), and
hydrogen (H) atomic environments in zeolites, according to their isotropic shielding. The histograms
are obtained with an interval of 2.0 ppm for C, O, Al, Si, and 1.0 ppm for H in the count of the number
of atomic environment.

3.2. KRR and GBR Models to Predict NMR Isotropic Shielding

In this section, we discuss the performance of the KRR and GBR models. The zeolite
data set, discussed above, was split into training (first 80%) and validating sets (last 20%) of
zeolites. As discussed in the Methods section, we used the training set to build the SOAP
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descriptors. First, we considered all atoms in the zeolite structures that represent a total
of 14,513 atomic environments in the KRR and GBR models. In the second part, only
the silicon atoms, with their Cartesian coordinates and σiso(29Si) values, were collected
in a smaller data set. The choice of Si atoms is because σiso(29Si) experimental data are most
often considered as fingerprints of the local structure around Si-sites and can account for
the presence of silanols, oxygen, or silicon vacancies or other defect types. The number
of Si-atomic environments in this smaller data set was reduced to 3756, and among them,
3004 were used as training data and 752 as validation data.

The distribution of the differences between σiso, computed with DFT and those pre-
dicted from the KRR and GBR models, is presented in Figures 3 and 4, respectively, whereas
the correlations between the predicted vs. the DFT values are reported in Figures S1 and S2.
In the KRR model, the regularisation hyperparameter α was set to 0.1. Here, only one
outlier value is identified in the results from the KRR application. The predicted out-
lier σiso = 487.7 ppm is down-shifted by about 26 ppm with respect to the “true” DFT
σiso = 513.82 ppm. This outlier is in the silimanite structure with the Cartesian coordinates
equal to 2.67, 1.46, and 1.10 Å. The application of both the KRR and GBR models on the
smaller set containing only the Si atomic environments and their σiso(29Si) values in the in-
terval 380–450 ppm yielded again an excellent correlation between the predicted vs. DFT
computed data, as follows from the plot in Figures 5 and S3 (KRR) and Figures 6 and S4
(GBR). We obtained only one remarkable outlier σiso(29Si) value when using the KRR model.
This outlier is now in the ITW zeolite. Its predicted σiso(29Si) value of 431.51 ppm is up-
shifted with respect to the computed with DFT σiso(29Si) = 419.99 ppm. The coordinates
of the outlier Si atom are: x = −1.31, −1.24, −2.72 Å. No outliers were identified when
applying the GBR model.

Figure 3. Distribution of the differences between the isotropic shielding values computed with DFT
and those predicted with the ML-KRR method. All atomic environments are considered. The his-
tograms are obtained with an interval of 0.1 ppm in the count of the number of atomic environments.
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Figure 4. Distribution of the differences between the isotropic shielding values computed with DFT
and those predicted with the ML-GBR method. All atomic environments are considered. The his-
tograms are obtained with an interval of 0.1 ppm in the count of the number of atomic environments.

Figure 5. Distribution of the differences between the isotropic shielding values computed with
DFT and those predicted with the ML-KRR method. Only silicon atomic environments are con-
sidered. The histograms are obtained with an interval of 0.1 ppm in the count of the number of
atomic environments.
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Figure 6. Distribution of the differences between the isotropic shielding values computed with
DFT and those predicted with the ML-GBR method. Only silicon atomic environments are con-
sidered. The histograms are obtained with an interval of 0.05 ppm in the count of the number of
atomic environments.

The mean-squared error (MSE), root-mean-squared error (RMSE), standard deviation
error (STD), and the mean absolute error (MAE), as well as the R2 coefficients are compared
in Table 1. These results confirm the very good performance of both ML models leading
to the R2 coefficients of 0.997 (KRR, all atoms in the data set) and 0.999 for the other
three sets of predictions. The MAE, RMSE, and MSE results are <0.6 ppm. The most
notable differences between the performance of KRR and GBR models are the training and
prediction time, also reported in Table 1. The GBR model appears to be faster by two orders
of magnitude than the KRR model. Therefore, we concluded that the GBR model scales
better than the KRR model.

Table 1. Training and prediction time, mean absolute error (MAE), root-mean-squared error (RMSE),
mean-squared error (MSE), absolute and square standard deviation errors (STD AE and STD SE), and
the R2 coefficient of the KRR and GBR model predictions together with the average of both predicted
values (AVG). The data shown are only for the Si atoms (Si) and all atoms (All) in the zeolite.

Machine Learning Models

Parameters KRR (All) GBR (All) AVG (All) KRR (Si) GBR (Si) AVG (Si)

Training time (s) 3796.4 49.0 - 136.7 12.2 -
Prediction time (s) 1900.8 0.6 - 74.2 0.02 -

MAE (ppm) 0.023 0.226 0.116 0.037 0.057 0.046
STD AE (ppm) 0.524 0.538 0.236 0.490 0.054 0.246

MSE (ppm) 0.275 0.341 0.069 0.241 0.006 0.062
STD SE (ppm) 12.669 8.158 1.285 5.304 0.011 1.341
RMSE (ppm) 0.524 0.584 0.262 0.491 0.008 0.250

R2 0.999 0.999 - 0.999 0.997 -

A combination of the KRR and GBR models might remove outliers and reduce the er-
rors. A simple estimation of the combination between both regression approaches was car-
ried out by assuming equal weight coefficients (0.5), that is taking the mean of the predicted
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isotropic shielding values by the KRR and GBR ML models. The resulting distributions of
the differences between the mean of the predicted and DFT values, as well as the correlation
plots between the predicted vs. DFT isotropic shielding data are plotted in Figures S5–S8.
The average of both ML models approached the quality of the GBR predictions. The outlier,
identified in the reduced set of silicon atoms, equals 425.78 ppm; thus, it is predicted to
be closer to DFT σiso(29Si = 419.99 ppm). The combination of both regression methods led
to a significant decrease of the STD errors, MSE, and RMSE (Table 1) in comparison to
the respective errors found from the application of each ML model. It therefore follows that
the combination of regression methods might be a useful approach toward the removal of
errors of a single regression model.

Discussing the quality of the predicted σiso results with respect to those computed
with DFT is not trivial in the case of the zeolite structures. As noted above, the rigorous
comparison of the computed σiso(29Si) and the experimental chemical shift data, collected
from the IZA database (see Figure 1), is not straightforward. Despite this fact, consid-
ering that the RMS error of the linear fit of DFT σiso(29Si) vs. the experimental δiso(29Si)
results (Figure 1) amounts to 2.44 ppm, we concluded that the predicted values with RMSE
in the range 0.008–0.5 ppm do not worsen the quality of the DFT method used by us.
This suggests a very promising application of both the KRR and GBR models, not only to
predict the σiso of 29Si, but also for the other nuclei in the the zeolite data set, because out-
liers were not identified among these nuclei. However, we note the limited number or
heterogeneity of C, H, F, and Li atomic environments. It is therefore not surprising that
outliers were not established among those atoms. On the other hand, the number of oxygen
environments is four-times the number of Si environments in the all-atom data set. The ex-
cellent correlation between the predicted vs. DFT-computed values can be therefore also
concluded for σiso(17O). The combination of SOAP descriptors with simple ML regression
models appears to lead to a promising predictive capability of NMR isotropic shielding of
29Si and 17O in the zeolites, which is in line with previous work using SOAP descriptors
and regression methods for predictions of NMR parameters in the organic solids [4] and
silicates [1,2].

4. Conclusions

In this paper, we studied the capability of two simple machine learning regression
models, KRR and GBR, to predict the σiso values in a series of known zeolites. The DFT
calculations with periodic boundary conditions were carried out to fully optimise the crys-
tallographic zeolite structures, collected from the IZA database and the MFI-OSDA types
of zeolites, and to compute the σiso values for each atom in the data set. In addition to
the inorganic zeolite framework, composed by Si, O, and Al atoms, the data set contains
various out-frame cations, such as Li+, F−, and TPA and TPEA molecular cations.

The quality of the DFT σiso(29Si) was found to be reasonably good compared to the
available experimental δiso(29Si) in the IZA database. The SOAP descriptors, obtained from
the optimised Cartesian coordinates of each atom in the DFT-based data set, were used as
inputs in both machine learning regression models. Both the KRR and GBR approaches
predicted isotropic shieldings with mean errors smaller than 1 ppm. The comparison
between the training and predictions time gave a preference to the GBR, found to scale
better than the KRR model. These results are promising for more extensive ML applications
based on simple regression in combination with DFT calculations in order to accelerate
the calculations of NMR parameters in various zeolitic materials.
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