
Citation: Sukandar, K.K.; Louismono,

A.L.; Volisa, M.; Kusdiantara, R.;

Fakhruddin, M.; Nuraini, N.;

Soewono, E. A Prospective Method

for Generating COVID-19 Dynamics.

Computation 2022, 10, 107. https://

doi.org/10.3390/computation10070107

Academic Editors: Simone Brogi and

Vincenzo Calderone

Received: 11 May 2022

Accepted: 17 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

A Prospective Method for Generating COVID-19 Dynamics
Kamal Khairudin Sukandar 1 , Andy Leonardo Louismono 1 , Metra Volisa 1 , Rudy Kusdiantara 1,2 ,
Muhammad Fakhruddin 3,* , Nuning Nuraini 1,2 and Edy Soewono 1,2

1 Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia;
kamalkhairudin@students.itb.ac.id (K.K.S.); andyleonardo@students.itb.ac.id (A.L.L.);
metravolisa@students.itb.ac.id (M.V.); rudy@math.itb.ac.id (R.K.); nuning@math.itb.ac.id (N.N.);
esoewono@itb.ac.id (E.S.)

2 Center of Mathematical Modeling and Simulation, Institut Teknologi Bandung, Bandung 40132, Indonesia
3 Department of Mathematics, Faculty of Military Mathematics and Natural Sciences, The Republic of

Indonesia Defense University, IPSC Area, Sentul, Bogor 16810, Indonesia
* Correspondence: muhammad.fakhruddin@idu.ac.id

Abstract: Generating dynamic operators are constructed here from the cumulative case function to re-
cover all state dynamics of a Susceptible–Exposed–Infectious–Recovered (SEIR) model for COVID-19
transmission. In this study, recorded and unrecorded EIRs and a time-dependent infection rate are
taken into account to accommodate immeasurable control and intervention processes. Generating
dynamic operators are built and implemented on the cumulative cases. All infection processes, which
are hidden in this cumulative function, can be recovered entirely by implementing the generating
operators. Direct implementation of the operators on the cumulative function gives all recorded
state dynamics. Further, the unrecorded daily infection rate is estimated from the ratio between IFR
and CFR. The remaining dynamics of unrecorded states are directly obtained from the generating
operators. The simulations are conducted using infection data provided by Worldometers from ten
selected countries. It is shown that the higher number of daily PCR tests contributed directly to
reducing the effective reproduction ratio. The simulations of all state dynamics, infection rates, and
effective reproduction ratios for several countries in the first and second waves of transmissions are
presented. This method directly measures daily transmission indicators, which can be effectively
used for the day-to-day control of the epidemic.

Keywords: COVID-19; SEIR models; dynamics generator; unrecorded infections; Richard’s curve

1. Introduction

The COVID-19 pandemic is an ongoing global disease caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus was reported to be first
identified in December 2019 in Wuhan, China [1]. It was suspected that the original
infection came from animals in the Wuhan Animal Market [2]. The number of cases grew
exponentially, with more evidence of newly infected people who had never been visiting the
market. This fact provided evidence that human-to-human transmission was the primary
source of the fast transmission [3]. Immediately, the cases spread throughout all provinces
in the country and even passed the borders through the neighboring countries. At the end
of January 2020, the government of Wuhan imposed a total lockdown, preventing people
from entering and leaving the city of Wuhan. The strict lockdown was also extended in
response to the rapid spread of the virus [4].

Effort to predict the progress of COVID-19 transmission was made using the early data
to obtain insight into infection characteristics. Zhang et al. used the stochastic model of the
SEIR (Susceptible–Exposed–Infected–Recovery) model and provided the forecasts on the
number of cases in several provinces in China, i.e., Shanghai, Beijing, Guangdong, Zhejiang,
Chongqing, and Hunan using [5]. It was estimated that the virus transmission would be
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significantly disappearing in those regions in March 2020. The compartmental model-based
predictions on COVID-19 figures were also conducted by Bertozzi et al. [6], who used the
generic SIR (Susceptible–Infected–Recovery) model. They studied the COVID-19 spread in
California and predicted the end of the first outbreak in August 2020. Not limited to that,
other work utilized the Richard’s Curve to yield the extrapolated figure of the infection
trajectories. The work conducted by Nuraini et al. predicted that the spread would reach
the peak in late March 2020 and soon decrease significantly until totally vanishing in April
2020 [7].

Learning from the experience of many countries during the first wave of transmission,
the detection of infected persons was a crucial aspect. The availability of a sufficient amount
of diagnostic tests was necessary. In the early phase of the pandemic, many developing
countries were struggling to provide the proper amount of specimens to detect COVID-19.
During the first wave transmission, as a non-manufacturer of Polymerase Chain Reaction
(PCR) Reagents for real-time COVID-19 detection and due to the limitations of world
supply, health authorities in Indonesia could not fulfill the daily PCR testing target as was
recommended by the WHO ([8,9]). The lack of testing capacity certainly implies the low
recorded cases as compared to total infections. Consequently, as many countries were
already able to contain the disease within two months, other countries, including Indonesia,
were still facing the outbreaks for a more extended period.

The complication of COVID-19 transmission is mainly related to the inability of the
authorities to record all infected people and people’s behavior toward the disease. It is a
challenge for epidemiologists to construct simple models that can accommodate the most
important phenomena. Compartmental models are very widely used in the construction of
the disease transmission [10]. The simplest compartmental model for direct transmission
is known as the SIR model, which contains susceptible (S), infectious (I), and recovered
(R) compartments. Ross already applied this model in the early 20th century [11]. SIR-
type models for COVID-19 transmission were used extensively in the early phase of
the pandemic. Typical observations in the early transmission focused on predicting the
outbreak’s peak and the disappearance of the disease by exploiting the daily COVID-19
data. Yang et al. predicted the epidemic’s future using the modified SEIR model linked with
artificial intelligence. For daily progress, Susanto et al. estimated the effective reproduction
ratio using the transmission data in Italy [12]. We have constructed, in Section 2, the basic
formulation of the generating operators for the simple SEIR dynamics, which are then
generalized to accommodate both recorded and unrecorded cases, as given in Section 3.
Using the cumulative infections data provided by Worldometers, the simulations are
conducted for country comparisons, i.e., Brazil, China, Germany, India, Indonesia, Islamic
Republic of Iran, Italy, Japan, Republic of Korea, and Singapore.

2. Generating Operator in a Simple SEIR Model

During the early transmission of COVID-19, there was pressure in each affecting
country to measure the daily reproduction ratio and predict the time when the outbreak
was slowing and disappearing. With limited data and information, the simple SEIR model
was used extensively. We formulate the concept of a generating operator to extract all states,
which was first introduced in [13].

2.1. Model Formulation

We start the SEIR transmission model of COVID-19 with susceptible compartment S,
exposed compartment under incubation period E, infected and infectious compartment I,
and recovered compartment R. The overall process of infections is shown in Figure 1.
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Figure 1. Flow diagram of the simple SEIR model.

The governing equations of the simple SEIR model are formulated as:

dS
dt

= π − a(t)
SI
N
− µS,

dE
dt

= a(t)
SI
N
− γE− µE,

dI
dt

= γE− η I − µI, (1)

dR
dt

= η I − µR,

where the parameters π, µ, γ, η, are the recruitment rate, the natural death rate, the inverse
of the incubation period, and the inverse of the recovery period, respectively. The infection
rate is given as a time-dependent parameter a(t) to accommodate the intervention process,
which is not measurable in the field. In this model, the total population is assumed constant,

i.e., N = S + E + I + R =
π

µ
. When it comes to the interaction process, we assume that the

population is well-mixed, which can be physically analogous to ‘well-stirred’ individuals
that force infected and susceptible to all-to-all interaction at all times. This assumption
simplifies the mathematics evolutionary processes, which makes the analytical solutions
possible [14].

A detailed description of parameters introduced in system (1) is given in Table 1.

Table 1. Descriptions of parameters given in system (1) and (24).

Parameters Definition Value Source

N Number of overall population adjusted [15]
π Natural recruitment rate adjusted [16]
µ Natural death rate 1

70×365 [16]
a(t) Infection rate estimated -
ω(t) Transition rate adjusted -
γ−1 Incubation period of COVID-19 1

6 [17]
η−1 Infection period of COVID-19 1

14 [18]

Note that those being labeled with ‘estimated’ in Table 1 will be evaluated using the
generating operator, while the others will be adjusted to specific regions. The transition
rate ω(t) exists in the generalized model, the values of which will be further explained in
the next section.

In the case of constant infection rate a(t) = a, the basic reproduction ratio R0, repre-
senting the average number of secondary infections caused by one infected person in the
early pandemic [19], is given as

R0 =

√
aγ

(γ + µ)(η + µ)
. (2)
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As time evolves, the basic reproduction ratio is no longer appropriate to measure the
progress of the transmission. The corresponding effective reproduction ratio, denoted with
R0E, is intended for tracking in the progress of transmission, which is given as:

R0E =

√
a(t)γ

(γ + µ)(η + µ)

S(t)
N

. (3)

The effective reproduction ratio is basically a basic reproduction ratio but with the
time-dependent transmission rate and additional term of S(t)/N. This formula is obtained
by implementing the NGM method without substituting the Disease Free Equilibrium [12].

In the following subsection, the state generating operator and a method for estimating
the transmission rate a(t) will be constructed. This construction gives a more adaptable
estimate to track the progress of transmission involving intervention in the field.

2.2. Cumulative Case Data for Constructing the Generating Operator

The inability of the timely and accurate collection of COVID-19 data in daily case
reports occurs in many countries. Discrepancies of confirmed official COVID-19 data were
reported from many countries, such as Bangladesh [20], India [21], and the USA ([22,23]).
The quality of the COVID-19 data certainly contributes to the consistency of the model and
the accuracy of prediction.

The fluctuation of the daily cases also contributes to the prediction bias due to errors
in data fitting. The choice of cumulative data for generating strategic indicators is mainly
due to the smooth profile of the data to allow accurate fitting. Detail transmission behavior
is kept within the cumulative case data, which can be recovered by identifying the proper
generating operator. The S-curve shape of the cumulative data is best fitted with (one of
them) Richard’s curve.

We start with data fitting of cumulative cases using the Generalized Linear Growth
Model (GLGM), widely known as Richard’s Curve ([24,25]). The model comprises four
parameters, denoted by Ci, i ∈ 1, 2, 3, 4. The value of C1 acts as the final epidemic size,
with limt→∞ K(t) = C1, whereas C3 represents the intrinsic growth rate. The higher this
value, the steeper the curve at the early outbreak. The other two values are C2 and C4,
which both act as the adjuster. While the former adjusts the lag phase of the curve, the latter
is strongly related to the adjustment of the initial value at t = 0 [26]. The general form of
Richard’s Curve is given by Equation (4) as follows:

K(t) = C1

(1 + C2 exp(−C3(t− C4)))
1

C2

. (4)

All the parameters that exist in the explicit formula of Richard’s Curve are extracted
by applying the optimization scheme to obtain the minimum deviation between the data
K̂(t) and the fitted formula K(t). The optimization problem on parameter estimation can
be written as

min
Ci∈D

N

∑
i=1

(
K(ti)− K̂(ti)

)2
, (5)

where D is the search domain of the parameters and N represents the length of cumula-
tive data.

The construction of the generating operator starts with the definition of the additional
compartment K(t), representing the cumulative cases at time t, which is given as follows.

K(t) = I(t) + R(t). (6)

Take the first derivative of K, then we have
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dK(t)
dt

=
dI(t)

dt
+

dR(t)
dt

= γE(t)− (η + µ)I(t)− (η I(t)− µR(t))

= γE(t)− µK(t). (7)

Solving for E(t), then we have

γE(t) =
dK(t)

dt
+ µK(t). (8)

From the result above, we can express E(t) as a function of K(t) as follows

E(t) =
1
γ

(
dK(t)

dt
+ µK(t)

)
. (9)

Further, by taking the derivative of E(t), the we obtain the daily new exposed

a(t)
SI
N

=
dE(t)

dt
+ (γ + µ)E =

1
γ

(
d2K(t)

dt2 + (γ + 2µ)
dK(t)

dt
+ µ(γ + µ)K(t)

)
. (10)

Let X (t) =

[
I(t)
R(t)

]
depicting the dynamics of active infections and total recovery

simultaneously. Thus, the third and fourth equation in system (1) can be rewritten as:

X ′(t) +AX (t) = F (t), (11)

where A =

[
η + µ 0
−η µ

]
and F (t) =

[
γE(t)

0

]
. With initial value X (0) =

[
I(0)
R(0)

]
, the solu-

tion of a system can be obtained by applied the integration factor.

X (t) = e−AtX (0) + e−At
∫ t

0
eAτF (s)dτ. (12)

Then, we have the solution for I(t) and R(t) as follows

I(t) = I(0)e−(η+µ)t + e−(η+µ)t
∫ t

0

(
dK(τ)

dτ
+ µK(τ)

)
e(η+µ)τdτ, (13)

R(t) = R(0)e−µt + ηe−µt
∫ t

0
I(τ)eµτdτ, (14)

where I(0) and R(0) is given by the data of initial active cases and total recovery. Substitut-
ing Equation (13) to Equation (14), the K(t)-related formula of R(t) is given by

R(t) = (R(0) + I(0)(1− e−ηt))e−µt +

ηe−µt
∫ t

0
e−ητ

∫ τ

0

(
dK(σ)

dσ
+ µK(σ)

)
e(η+µ)σdσdτ (15)

Assuming that the number of population, N, is constant, we have the dynamics of
susceptible individuals written as follows.

S(t) = N − E(t)− I(t)− R(t). (16)

Now, consider an equation of E in (1). We can find a(t) by manipulating the equation.
We have that

a(t) =

(
π − µS− dS

dt

)
N

SI
, (17)
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where S and I can be written as Equations (13) and (16), respectively. By that, the estimation
of all states, as well as the transmission rate, can be generated using the information of
cumulative infections. Summarizing the above construction, we formulate the generat-
ing operator

T =

[
T1

T2

]
: C1[0, ∞]× (C1[0, ∞])2 → C1[0, ∞]× (C1[0, ∞])2, (18)

Ti, i = 1, 2 for the SEIR dynamics is given as follows

T1 =
1
γ

(
d
dt

+ µ

)
(19)

T2 =
∫ t

0
eAs F̄(T1)ds, (20)

where
F̄ = (γT1, 0)T (21)

and A is given in (31). Hence, we have

T1(K(t)) = E(t) (22)

e−At(X0 + T2(K(t))) = X (t) = (I(t), R(t))T . (23)

Figure 2 this illustrates the flow of how this dynamics generator works on the estima-
tion of all state dynamics, including the time-dependent rate of transmission by means of
the empirical fit to Richard’s Curve.

Figure 2. Diagram of the approach for estimating all state dynamics of the SEIR models using the
dynamics generator.

3. Generalized SEIR for Second Wave Transmission of COVID-19

Many countries suffered badly during the second wave of COVID-19, which came
unexpectedly after the period of relaxation at the end of the first wave ([27–29]). The phe-
nomena of hospitals filling up, beds becoming scarce, and death rates exploding became
constant daily news. Most countries implemented massive PCR testing as recommended
by the WHO to isolate the positive cases in the population. Naturally, the simple SEIR
model will not be realistic in representing the transmission.
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3.1. Model Construction

We generalize the model (1) to accommodate for the intervention effect of COVID-19.
The consequence of the COVID-19 testing capacity is also taken into account by distin-
guishing the recorded and unrecorded infections. It is assumed that the recorded infected
people will have the self-awareness to lessen the contact with others than those who are
not recorded. The mathematical model of the advanced SEIR is given as follows

dS
dt

= π − a(t)
SIn

N
− µS,

dE
dt

= a(t)
SIn

N
− γE− µE, (24)

dIn

dt
= (1−ω(t))γE− η In − µIn,

dIs

dt
= ω(t)γE− η Is − µIs,

dRn

dt
= η In − µRn,

dRs

dt
= η Is − µRs.

with the assumption of the constant total population, we have

dN
dt

= π − µN = 0, (25)

and N =
π

µ
.

The two compartments I and R are split into two, with indexes n and s, which stand
for unrecorded and recorded (and isolated for treatment), respectively. In the previous
assumptions, people in the Is compartment do not have a chance to infect the susceptible
individuals due to the isolation and hospitalization. In addition, people in the In can cause
infections by making contact with people in the S compartment. Depicted in Figure 3,
people will be either identified as an unrecorded or recorded infected person once they
leave the E compartment. Infected individuals will recover after a period of time and
become immune to the virus. No difference is assumed in the infection period, which
implies the same value for the recovery rate for both recorded and unrecorded infections.
More details about the parameters of the generalized model are given in Table 1.

Figure 3. Flow diagram of the generalized SEIR Model.

In the case of constant infection rate a(t) = a and transition rate ω(t) = ω, we have
the formulation of basic reproduction number given, as follows

R1 =

√
a(1−ω)γ

(γ + µ)(η + µ)
. (26)
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for zero transition rate, ω = 0, R1 reduces to R0. Following the same derivation in the
previous section, we construct the effective reproduction ratio

R1E =

√
a(t)(1−ω(t))γ
(η + µ)(γ + µ)

S(t)
N

. (27)

Following the similar construction in Section 2, we define a new cumulative compart-
ment as in (6)

K(t) = Is(t) + Rs(t) (28)

from the first derivative of K,

dK(t)
dt

=
dIs(t)

dt
+

dRs(t)
dt

= ω(t)γE(t)− µK(t). (29)

we obtain the daily new recorded cases ω(t)E(t), in the form

ω(t)E(t) =
1
γ

(
dK(t)

dt
+ µK(t)

)
. (30)

Let X(t) =


Is(t)
Rs(t)
In(t)
Rn(t)

 depict the dynamics of active infections and total recovery simul-

taneously. Thus, the fourth and sixth equations in system (24) can be rewritten as

X′(t) + AX(t) = F(t), (31)

where A =


η + µ 0 0 0
−η µ 0 0
0 0 η + µ 0
0 0 −η µ

 and F(t) =


ω(t)γE(t)

0
(1−ω(t))γE(t)

0

. With the initial value

X(0) =


Is(0)
Rs(0)
In(0)
Rn(0)

, the solution of a system can be obtained by applying the integration

factor as follows

X(t) = e−AtX(0) + e−At
∫ t

0
eAτF(τ)dτ. (32)

The explicit form of Is, Rs, In, and Rn can be given as:

Is(t) = Is(0)e−(µ+η)t + e−(µ+η)t
∫ t

0

(
dK(τ)

dτ
+ µK(τ)

)
e(µ+η)τdτ (33)

and

Rs(t) = Rs(0)e−µt + ηe−µt
∫ t

0
Is(τ)eµτdτ. (34)

In(t) = In(0)e−(µ+η)t + e−(µ+η)t
∫ t

0

(
1−ω(t)

ω(t)

)(
dK(τ)

dτ
+ µK(τ)

)
e(µ+η)τdτ (35)
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and

Rn(t) = Rn(0)e−µt + ηe−µt
∫ t

0
In(τ)eµτdτ. (36)

Assuming the number of population, N, is constant, then

S(t) = N − E(t)− In(t)− Is(t)− Rn(t)− Rs(t). (37)

from the first equation of S in (24), we can find a(t)

a(t) =

(
π − µS− dS

dt

)
N

SIn
, (38)

with S and In given as in the previous derivation.

Summarizing from the above derivation, we generalize the construction (18)

T =

[
T1

T2

]
: C1[0, ∞]× (C1[0, ∞])4 → C1[0, ∞]× (C1[0, ∞])4, (39)

with Ti, i = 1, 2 for the generalized SEIR dynamics as follows

T1 =
1
γ

(
d
dt

+ µ

)
(40)

T2 =
∫ t

0
eAsḠ(T1)ds, (41)

where

Ḡ =

(
T1, 0,

1−ω

ω
T1, 0

)T
(42)

and A is given in (31). The five states ω(t)E(t), Is, Rs, In, and Rn are produced by these
operators as follows

T1(K(t)) = ω(t)E(t) (43)

e−At(X0 + T2(K(t))) = X(t) = (Is(t), Rs(t), In(t), Rn(t))
T . (44)

3.2. Estimation of ω(t)

Referring to Figure 3, new infections are separated into recorded and unrecorded
cases. While the former will be immediately quarantined and treated and hence unable
to infect susceptible individuals, the latter remains unidentified and then will spread the
virus. From the daily new infected persons, γE(t), the portion ωγE(t) is recorded through
testing, which will enter the Is compartment. The rest of the portion, (1− ω)γE(t) will
remain unrecorded and enter the unrecorded In(t). By that, ω, 0 ≤ ω ≤ 1 depicts the share
of the recorded newly infected population against its total. This parameter represents the
ability of the “random” selection of the test target to capture the positive cases.

The capacity of some countries to cover all infections is strongly related to their ability
to provide the testing kits [30]. In the early pandemic, many countries struggled to fulfill the
demand for COVID-19 testing kits, resulting in the low value of ω. Nevertheless, in early
2021, several countries were able to conduct more massive daily testings [31], making the
figure of testing capacity change dramatically. In response, it is reasonable to set the value
of ω to vary over time (time-dependent) and hence denoted with ω(t). The dynamics of
ω(t) will be estimated using the Infection Fatality Ratio (IFR) and Case Fatality Ratio (CFR).

In epidemiology, a CFR is the proportion of deaths from a certain disease compared
to the total number of people diagnosed/confirmed with the disease for a particular



Computation 2022, 10, 107 10 of 22

period [32]. Similarly, the IFR also applies to infectious disease transmission to represent the
proportion of deaths among all infected individuals, including all recorded and unrecorded
subjects [33]. This quantity is closely related to the CFR but with additional accounts for
unapparent infections among healthy people. The observed CFR in time t is defined by the
total number of deaths, D(t), divided by the total number of confirmed cases at time t, K(t),
i.e., CFR(t) = D(t)

K(t) , whereas the IFR is defined based on the total number of infections.

Formally, IFR = D̃
Ĩ , where D̃ and Ĩ denote the median of total deaths and estimated total

infections considered from the early pandemic until a certain specified time. The Ĩ will be
estimated by involving the data of total tests. The total number of infections is estimated
by assuming that each person is only tested once, and the distribution of infections among
the entire population is equal. The total infections, Ĩ , for each country follow the definition
introduced in [34], which is defined by dividing the total confirmed cases with the total
tests conducted and multiplying it with its population size, i.e.,

Ĩ =

(
K̃
T̃

)
· N (45)

where T̃ is the total tests performed until a certain specified time. Note that this method
estimates the constant value of IFR. This argument should confirm that this parameter
is a virus-related parameter, which assumes that no significant mutation affecting the
virulence will lead to a constant value of IFR [35]. The estimated constant CFR for related
diseases in some countries can be seen in [36].

Dividing the estimated IFR by the observed time-dependent CFR depicts the share of
infected individuals that were recorded. By that, the time-dependent reporting rate ω(t) is
defined as follows

ω(t) =
ˆIFR

CFR(t)
. (46)

the value of IFR is always less than that of CFR, resulting in the values 0 < ω(t) ≤ 1.
The greater the value ω(t), the more the infectious persons were isolated.

4. Numerical Simulations
4.1. Simple SEIR Model

In this section, the numerical simulations for Model (1) that resulted from implement-
ing the generating operator on the fitted cumulative function K are shown. COVID-19 data
are selected from ten countries representing different population sizes: Brazil, China, Ger-
many, India, Indonesia, Islamic Republic of Iran, Italy, Japan, Singapore, and South Korea.
The COVID-19 data are taken from the official website of Worldometer [37], consisting of
the daily number of active cases and total recovery. The data were taken during the early
transmission period ranges from late February until September 2021. In these simulations,
only the first 60 days after the initial transmission will be used and analyzed. The interval
for each country may vary depending on the initial transmission.

All biological parameters for the selected countries are chosen as the same. The natural
death rate, denoted by µ, was assumed to be µ = 1

70×365 , referring to the average human
life expectancy. As of December 2020, Our World in Data claimed that the life expectancy of
humans was about 70 years [16]. The remaining biological parameters are listed in Table 1.

4.1.1. Fitted Cumulative Data

The simulation began by estimating the closest GLGM dynamics to the provided data.
All the parameters were obtained by solving the optimization problem (5). The calculation
was conducted numerically using the built-in function in MATLAB. Notice that the global
minimizer is difficult to obtain using the numerical method. Thus, the initial guess was
varied following the Sobol sequence in 4-D so that the result would be close to the global
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minimizer. The estimated parameters for the ten observed countries are given in Table 2.
The second and third columns in the Table indicate the time interval of the data used in the
calculation. The interval varies among all countries depending on the initial transmission
of the virus. The last four columns provide the estimated Ci for each country. These values
depict the characteristics of the virus spread in each country and, hence, may differ from
one country to another, though it was the same virus that spreads. For instance, the data
fitting suggests that the value of C3 for India is significantly higher compared to that for
Indonesia. This result indicates that the spread of the virus in India is more significant
compared to that in Indonesia. This fact can be seen in Figure 4, where the graph for India
is much steeper than that for Indonesia.

Table 2. Parameter estimation of the cumulative dynamics using GLGM and the early pandemic data.

Country Start Date End Date C1 C2 C3 C4

Brazil 25 February 2020 25 April 2020 52,934 0.4448 0.1005 58.1919
China 22 January 2020 22 March 2020 77,469 1.4611 0.2683 17.9661

Germany 15 February 2020 15 April 2020 150,171 0.3334 0.1204 43.4199
India 15 February 2020 15 April 2020 29,061 0.4595 0.1104 60.8589

Indonesia 2 March 2020 1 May 2020 21,032 0.1043 0.0445 50.9905
Iran 19 February 2020 19 April 2020 80,453 1.3952 0.1428 45.6531
Italy 15 February 2020 15 April 2020 174,575 0.0264 0.0743 38.7238

Japan 15 February 2020 15 April 2020 12,102 4.1299 0.3758 52.4032
Singapore 15 February 2020 15 April 2020 9846 0.0001 0.1358 14.9104

South-Korea 15 February 2020 15 April 2020 10,298 12.0304 1.0719 70.0849

Figure 4 illustrates the estimated models of cumulative infections together with the
data for the first 60 days after the initial transmission. Overall, the general behavior of the
data was well-fitted by the rendered S-curve Richard’s model. For instance, in China and
South Korea, the cumulative infections started to ramp up rapidly in the early pandemic
yet began to decline within the first 60 days of transmission, giving us the perfect S-curve
models. The countries China, Germany, Iran, Italy, Japan, and South Korea underwent a
sharp increase in transmission and start to bend down before the end of the 60-day period.
For the rest of the countries, the total infections were stagnantly increasing and there was
no sign of sloping down within the first 60 days.
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Figure 4. Fitting results K̄ of cumulative data for several countries in the early pandemic. The red
dots represent the actual data, and the solid black lines represent the fitted model K̄.

With the direct substitution of K̄ on the right-hand side of (8), we obtain the estimate of
the daily new cases γE(t). Figure 5 illustrates the estimation of daily new cases compared to
the actual data for the ten observed countries. In general, the estimated dynamics resemble
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the real data of daily new cases. The model can also identify the peak time of the daily
new cases.
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Figure 5. Simulation results of daily new cases γT1(K̄) for several countries in the early pandemic.
Blue dots represent the actual data, and the solid black lines represent the simulation.

4.1.2. Simulation of SEIR Dynamics

Simulation of E, I and R are obtained directly from substituting K̂ into T1 and T2,
respectively. For the ten observed countries, the dynamics of EIR (Exposed–Infected–
Recovery) are given in Figure 6, omitting the S compartment form visualization due to its
scale problem.
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Figure 6. Simulation of estimated SEIR in several countries by implementing the generating operator.

Given in Figure 6, the number of exposed cases dropped significantly in China and
South Korea within the first 60 days, leaving no exposed cases in the late simulation.
The success of the two countries in controlling the disease was the result of mobility
restriction across the country [38], as well as the public participation in the implementation
of COVID-19 protocols [39]. In other countries, such as Brazil and Singapore, the virus
seems to not be rapidly spreading. However, the exposed cases gradually increased and
had no sign of significant decrease within two months. Although Model (1) does not
explicitly accommodate various interventions in the field, the time-dependent infection rate
a(t) could represent the daily measure of infection due to the unmeasurable intervention
and control.
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4.1.3. Dynamics of the Effective Reproduction Number

The basic reproduction numbers of the observed countries are given in Table 3 us-
ing Equation (2). Since the basic reproduction number calculation only applies to the
autonomous system, we drop the time dependency of the transmission rate. Thus, we use
the average number of the 60-day transmission rate. In comparison, the time-dependent
effective reproduction ratio is depicted in Figure 7 as a measure of the daily performance of
virus transmission. It is shown in Figure 7 that, except for China and South Korea, other
countries took much longer to reduce the effective reproduction ratio to below one.

Table 3. Estimated basic reproduction number R0 for the simple model.

Country R0 Country R0

Brazil 3.79 Iran 3.63
China 2.65 Italy 3.39

Germany 1.22 Japan 1.28
India 3.81 Singapore 0.74

Indonesia 3.46 South-Korea 2.74
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Figure 7. Dynamics of the effective reproduction number (R0E) for several countries.

In general, the estimated models depict the behavior of the pandemic over time.
Furthermore, the estimated parameters can be used to conduct the prediction of how
the pandemic behaves in each country. The short-term prediction can be an option since
parameters would change over time as the new data are retrieved. Moreover, extension
beyond the period of observation could not be expected for the forecast [40].

4.2. Generalized SEIR Model

This section emphasizes the implementation of the operators described in Section 3
for the generalized SEIR model, which involves the recorded and unrecorded infections.
The cumulative data were taken from [37] during the 60-day second wave period of
transmission of each of the ten selected countries. The same parameters in Table 1 were
used for simulations, and the values of ω(t) were estimated using the information of IFR
and CFR.

4.2.1. Fitted Cumulative Data

The same construction of cumulative dynamics using GLGM as performed in Section 2.2
is used for the second wave period. Table 4 shows the selected time interval for each country
in which the second wave transmission is believed to occur, together with its estimated
parameters for the GLGM. Given in Figure 8, the figures for cumulative infections were
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significantly increasing in the observed time intervals, which indicate the resurgence of the
pandemic. In addition, it is shown that the rendered model fits the provided data well.

Table 4. Parameter estimation of the cumulative dynamics using GLGM for the second transmission.

Country Start Date End Date C1 C2 C3 C4

Brazil 19 February 2021 19 April 2021 5,303,359 0.0001 0.0407 29.5592
China 1 January 2021 1 March 2021 2803 0.3080 0.1394 16.0797

Germany 25 March 2021 25 May 2021 1,033,461 0.0001 0.0559 21.1068
India 1 April 2021 31 May 2021 18,662,604 0.1584 0.0615 29.2508

Indonesia 15 June 2021 14 August 2021 2,356,958 0.1620 0.0559 32.1398
Iran 26 March 2021 24 May 2021 1,144,360 0.0001 0.0572 23.8976
Italy 1 November 2021 31 December 2020 1,440,383 0.0001 0.0616 15.6811

Japan 23 July 2021 21 September 2021 880,483 0.5768 0.0899 27.9857
Singapore 7 July 2020 4 September 2020 11,938 0.4967 0.1125 18.7243

South-Korea 24 November 2020 23 January 2021 48,828 0.2316 0.0649 26.5325
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Figure 8. Fitting results K̄ of cumulative data for the second wave transmission.

Figure 9 shows good agreement between the simulations and the data of daily new
cases. All the depicted figures are considered to be the resurgence of cases after the first hit
ends, e.g., China [41], Germany [42], Italy [43], and India [44].
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Figure 9. Simulation results of daily new cases γT1(K̄) for the second wave transmission.
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4.2.2. Estimated ω(t)

The estimation of ω(t) starts with the estimation of both IFR and CFR(t). As stated
earlier in Section 3.2, the estimated value of IFR is assumed to be constant over time,
yet the CFR depends on time. The observed time-dependent CFR, which is defined as
CFR(t) = D(t)

K(t) , is evaluated by utilizing the data retrieved from Worldometer [37]. On the
other hand, the estimation of IFR is obtained by first estimating the number of total
infections using Equation (45), implementing the data of total tests performed by each
country that is publicly provided by OurWorldinData [31].

Figure 10 shows the estimation of IFR for the ten countries. Italy and Germany have
higher IFR values than other regions, while Singapore is considered the lowest. This result
shows that even though the simple formula was claimed to underestimate the true IFR [45],
the general pattern for the observed ten countries resulted in consistent results [34].
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Figure 10. Estimated IFR for the ten observed countries. The blue boxes represents the range from
the lower to upper quartiles, with the median (red line) was chosen to represent the single point
estimated IFR. The black add signs depicts its maximum and minimum values of the estimated IFR.

Utilizing the observed CFR(t) and estimated IFR given in Figure 10, the dynamics of
ω(t) in each country’s time interval are evaluated by dividing the observed CFR by the
estimated IFR. The dynamics of ω(t) for each country are depicted in Figure 11.

Overall, other than Indonesia and Japan, the share of those being reported against
the total number of infections increased. According to ([46,47]), the number of deaths
in Indonesia was rapidly increasing from April to May 2021, making the observed CFR
increase as well [48]. Since the estimated IFR remains constant, the dynamics ω(t) were
significantly declining. The increasing CFR indicates that the total deaths increase more
significantly than the total recorded infections. Assuming those total deaths are linearly
dependent on the total infections, then the increasing CFR also indicates the number of total
unapparent infected individuals. The unrecorded infections should be increasing once the
daily test decreases. Indonesia experienced a significant decline in daily testing in August
2021, from about 160,000 to only 100,000 specimens a day, confirming the substantial drop
in transition rate ω(t) in this country. The same argument holds for explaining the slight
decline in the transition rate for Japan in the late simulation. Figure 11a,b shows how the
daily test in both countries experienced a significant decline in mid-August 2021 and May
2021, respectively. For the rest of the countries, the daily test delivered to the population is
relatively increasing, making no significant increase in the unapparent infected individuals
and decreasing the observed CFR.
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Figure 11. (a) Dynamics of estimated ω(t), 60 days after the initial second wave emerged; (b) the
daily test experienced a significant drop in Indonesia and Japan during the simulation interval (in the
red-shaded area).

4.2.3. Dynamics of the Generalized SEIR Model

Given the estimation of ω(t) and the provided cumulative data, the number of ex-
posed populations at time-t can be estimated by means of the generating operators for
the advanced model, namely T1. In addition, the other unobservable compartments are
obtained by implementing T2, resulting in an estimation of unrecorded active cases and the
total recovered. The numerical simulation comparing the figures of infected people being
recorded or not is depicted in Figure 12. In general, the number of unapparent cases is
estimated to be way higher compared to that of being identified. These results are strongly
related to the calculated values of ω(t) for each country, which are identified as very low
(around 10%), on average. On the other hand, the opposite results are found in Germany
and Italy, which is a result of the relatively higher share of recorded infections.
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Figure 12. Dynamics of exposed and infected individuals: both recorded and unrecorded cases.
Some recorded cases may not be visible due to the higher figures of exposed and unrecorded
infected individuals.

The performance of ω(t) is related to the ratio between the recorded and unrecorded
recovery. Figure 13 shows that other than China and Germany, the proportions of un-
recorded recovery are much higher than the recorded recovery. This finding is consistent
with the fact that the lower the values of ω(t) for certain countries, the higher the share of
unrecorded total recovery.
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Figure 13. Estimated dynamics of total recovery resulted from both recorded and unrecorded cases.

Finally, the estimated effective reproductive ratio is shown in Figure 14. It is shown
that in the case of second-wave transmission, the effective reproductive ratios decreased to
a level one much faster than those in the first-wave transmission. This evidence justifies
that the role of massive testing played a significant role in controlling the transmission.
Since early 2020, the evaluation of the effective reproductive ratio played a vital role in
regulating proper interventions related to COVID-19. Germany, Italy and other European
countries have been using the calculation of RE f f since the early pandemic [49], which was
also followed by other countries such as Indonesia [50] and India [51].
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Figure 14. Effective reproduction number of countries, 60 days from the initial second wave of
COVID-19 first identified.

4.3. More about the Effective Reproduction Number

Specifically, in the second transmission, it is intriguing to learn how the countries’
intervention-related parameters, i.e., ω(t) and a(t), evolve over time. Depicted in Figure 15
is the countries’ profile situated in the contour plot, which is representing the effective

reproduction number but omitting the term S(t)/N, i.e.,

√
a(1−ω)γ

(µ + γ)(µ + η)
. This formula

is nothing but the effective reproduction number, which has not taken the dynamics of the
susceptible populations into account. On day 1 of the second transmission, it is indicated
that all countries experienced significant transmission of COVID-19 with a relatively low
transition rate ω. As time evolved, all countries simultaneously moved to the left with
lower reproduction numbers, and we ended up with five countries that were assigned with
reproduction numbers higher than one at day 60. To be compared with that depicted in
Figure 14, there were only two countries that had effective reproduction numbers higher
than one at day 60. Since the reproduction numbers depicted in Figure 15 are omitting
the role of S(t)/N, there are three countries that had a significant effect of susceptible
population size on suppressing the effective reproduction number, i.e., Indonesia, Japan,
and Brazil. In other words, the three mentioned countries have passed below one in regards
to R1E because of the significant deviation of S(t) compared to N. Since the dynamics of S
at every time point are dependent on all other variables, this indicates that the unrecorded
infections and recovery have had a significant effect on these countries. Acknowledging
that these three are densely populated countries, the high estimated number of unrecorded
infections and recovery has resulted in an R1E of below one at day 60.
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Figure 15. Evolution of the reproduction number in the 60-day simulation of the second transmission.
The solid black lines are the level sets of R0 taken from (27) for constant ω and a. The evolution starts
from circle-shaped graphs and ends with triangular-shaped graphs.

Lastly, the depiction of transmission given in Figure 15 also gives us insight into how
countries handle the second wave. Germany and Italy are two European countries with
high total tests. As time evolves, the snippets move to the left with a higher transition
rate ω. On the 60th day, it is clear that these two countries are separated from the rest of
the countries due to their high testing capacity. The snippets move to the left for China,
Singapore, and Iran, with the transition rate leveling off. These results are expected to
confirm the fact that the number of tests conducted was not high, but the large-scale
intervention could be more effective [52]. The rest of the countries are dominated by the
densely populated countries that were not really strict with lockdown and COVID-19
testing [53]. However, the fact that the estimated unrecorded infections and recovery are
relatively high causes the R1E to pass below one even though the transition rate remains
low or the transmission rate remains high.

5. Conclusions

This study proposes a new approach to obtain the explicit solutions for each state’s
dynamics in the SEIR models, or the so-called dynamics generator. There are three crucial
components in the construction of the dynamics generator; cumulative data, Richard’s
Curve, and the proposed compartmental models. The idea of this approach is to fit the
cumulative empirical data to Richard’s Curve (K) and then define the relations between
K and other state dynamics in the SEIR models. Using basic knowledge of linear algebra
and calculus, the generator can be constructed to generate all state dynamics in terms of
K. In other words, we have constructed a method that generates all state dynamics by
means of the empirical data of cumulative cases. Cumulative recorded data was chosen
due to its monotonic profile, which has the advantage of choosing a satisfactory fitted
cumulative function.

In terms of the compartmental models, we have demonstrated the derivation of the
dynamics generator for both simple and advanced models. The constructed dynamics
generator produces all state dynamics of the SEIR model, including the figures of the
hidden infections using the advanced model. One of the perks of using this approach is to
also evaluate the time-dependent rate of transmission, which summarizes all individuals
or governmental interventions.

Specifically for the advanced model, we estimated the rate of unrecorded cases using
the Case Fatality Rate (CFR) and the estimated Infections Fatality Rate (IFR), which is con-
structed from the daily Polymerase Chain Reaction (PCR) test. The remaining unrecorded
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states are then generated directly from the dynamics generator. It is shown that the increase
in the number of daily PCR tests significantly reduces the effective reproduction ratio and
quickly lowers the ratio to a controllable level. This method gives an important indicator
that could be used for daily control of the epidemic, even though it is hard to measure the
effect of specific interventions such as mask covering.

Eventually, we have seen that the approach is well-used to generate all state dynamics
of the SEIR models, given the cumulative data in a particular period that follows the general
S-curve. Once the data does not follow the general S-curve, such as a double S-curved-like
data, the standard Richard’s Curve will no longer be relevant. Hence, this study highlights
room for improvement by considering other explicit functions other than Richard’s Curve
that can be relevant for the non-S-curved empirical data.

Author Contributions: Conceptualization, E.S. and N.N.; methodology, E.S., K.K.S., A.L.L., M.V. and
M.F.; software, K.K.S., A.L.L., M.V., R.K. and M.F.; validation, E.S., N.N., K.K.S. and M.F.; formal
analysis, K.K.S., A.L.L. and M.V.; investigation, K.K.S., A.L.L. and M.V.; resources, E.S. and N.N.;
data curation, K.K.S., A.L.L., M.V. and R.K.; writing—original draft preparation, K.K.S., A.L.L. and
M.V.; writing—review and editing, E.S., M.F., R.K. and N.N.; visualization, K.K.S., A.L.L. and M.V.;
supervision, E.S. and N.N.; project administration, E.S., N.N. and M.F.; funding acquisition, E.S. All
authors have read and agreed to the published version of the manuscript.

Funding: Part of the research by E.S. is funded by the Indonesian RistekBrin Competitive Grant No.
120I/IT1.C02/TA.00/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The initial data were openly accessible at: https://www.worldometers.
info/coronavirus/#countries (accessed on 1 June 2021).

Conflicts of Interest: The authors declare there is no conflict of interest.

References
1. Novel Coronavirus (2019-nCoV)—Situation Report 1. Available online: https://www.who.int/docs/default-source/

coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf (accessed on 5 April 2021).
2. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020,

26, 450–452. [CrossRef]
3. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected

with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]
4. Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [CrossRef]
5. Zhang, Y.; You, C.; Cai, Z.; Sun, J.; Hu, W.; Zhou, X.H. Prediction of the COVID-19 outbreak in China based on a new stochastic

dynamic model. Sci. Rep. 2020, 10, 21522 . [CrossRef]
6. Bertozzi, A.; Franco, E.; Mohler, G.; Short, M.; Sledge, D. The challenges of modeling and forecasting the spread of COVID-19.

Proc. Natl. Acad. Sci. USA 2020, 117, 16732–26738. [CrossRef]
7. Nuraini, N.; Khairudin, K.; Apri, M. Modeling simulation of COVID-19 in Indonesia based on early endemic data. Commun.

Biomath. Sci. 2020, 3, 1–8. [CrossRef]
8. Sucahya, P.K. Barriers to COVID-19 RT-PCR Testing in Indonesia: A Health Policy Perspective. J. Indones. Health Policy Adm.

2020, 5, 36–42 . [CrossRef]
9. Indonesia’s Lab Problems Persist, Testing Rate Remains Below 1%. Available online: https://www.thejakartapost.com/news/20

20/10/22/ri-lab-problems-persist-testing-rate-remains-below-1.html (accessed on 2 May 2021).
10. Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI

prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165. [CrossRef]
11. Ross, R. An application of the theory of probabilities to the study of a priori pathometry—Part I. Proc. R. Soc. Lond. Ser. A Contain.

Pap. A Math. Phys. Character 1916, 92, 204–230.
12. Susanto, H.; Tjahjono, V.; Hasan, A.; Kasim, M.; Nuraini, N.; Putri, E.; Kusdiantara, R.; Kurniawan, H. How many can you infect?

Simple (and naive) methods of estimating the reproduction number. Commun. Biomath. Sci. 2020, 3, 28–36. [CrossRef]
13. Soewono, E. On the analysis of COVID-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster. Commun. Biomath. Sci.

2020, 3, 9–18. [CrossRef]
14. Azque-Herrerias, F.; Munuzuri-Perez, V.; Galla, T. Stirring does not make populations well mixed. Sci. Rep. 2018, 8, 4068.

[CrossRef]

https://www.worldometers.info/coronavirus/#countries
https://www.worldometers.info/coronavirus/#countries
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf
http://doi.org/10.1038/s41591-020-0820-9
http://dx.doi.org/10.1016/S0140-6736(20)30183-5
http://dx.doi.org/10.1007/s12098-020-03263-6
http://dx.doi.org/10.1038/s41598-020-76630-0
http://dx.doi.org/10.1073/pnas.2006520117
http://dx.doi.org/10.5614/cbms.2020.3.1.1
http://dx.doi.org/10.7454/ihpa.v5i2.3888
https://www.thejakartapost.com/news/2020/10/22/ri-lab-problems-persist-testing-rate-remains-below-1.html
https://www.thejakartapost.com/news/2020/10/22/ri-lab-problems-persist-testing-rate-remains-below-1.html
http://dx.doi.org/10.21037/jtd.2020.02.64
http://dx.doi.org/10.5614/cbms.2020.3.1.4
http://dx.doi.org/10.5614/cbms.2020.3.1.2
http://dx.doi.org/10.1038/s41598-018-22062-w


Computation 2022, 10, 107 21 of 22

15. World Population by Countries. Available online: https://www.worldometers.info/world-population/#density (accessed on
9 July 2021).

16. Human Life Expectancy. Available online: https://www.worldometers.info/world-population/indonesia-population/ (accessed
on 7 March 2021).

17. Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation
period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern.
Med. 2020, 172, 577–582. [CrossRef]

18. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Available online: https://www.who.int/
news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on
6 April 2021).

19. Diekmann, O.; Heesterbeek, J.; Roberts, M.G. The construction of next-generation matrices for compartmental epidemic models.
J. R. Soc. Interface 2010, 7, 873–885. [CrossRef]

20. Ahamad, M.G.; Tanin, F.; Talukder, B.; Ahmed, M.U. Officially Confirmed COVID-19 and Unreported COVID-19—Like Illness
Death Counts: An Assessment of Reporting Discrepancy in Bangladesh. Am. J. Trop. Med. Hyg. 2021, 104, 546. [CrossRef]

21. Vasudevan, V.; Gnanasekaran, A.; Sankar, V.; Vasudevan, S.A.; Zou, J. Disparity in the quality of COVID-19 data reporting across
India. BMC Public Health 2021, 21, 1211. [CrossRef]

22. Woolf, S.H.; Chapman, D.A.; Sabo, R.T.; Weinberger, D.M.; Hill, L. Excess deaths from COVID-19 and other causes, March-April
2020. J. Am. Med. Assoc. 2020, 324, 510–513. [CrossRef]

23. Ioannidis, J.P.; Cripps, S.; Tanner, M.A. Forecasting for COVID-19 has failed. Int. J. Forecast. 2020, 38, 423–438 . [CrossRef]
24. Richards, F. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [CrossRef]
25. Lei, Y.; Zhang, S. Features and partial derivatives of Bertalanffy-Richards growth model in forestry. Nonlinear Anal. Model. Control

2004, 9, 65–73. [CrossRef]
26. Lee, S.Y.; Lei, B.; Mallick, B. Estimation of COVID-19 spread curves integrating global data and borrowing information. PLoS

ONE 2020, 15, e0236860. [CrossRef]
27. Germany Is Poised to Tighten Lockdown as COVID-19 Cases Surge Again. Available online: https://www.wsj.com/livecoverage/

covid-2021-03-22/card/h7nDLKXUj1H0yZJsgeoI (accessed on 2 August 2021).
28. S. Korea Sees Rise in Cases after Relaxing Social Distancing Rules. Available online: http://www.koreaherald.com/view.php?

ud=20201102000137 (accessed on 4 July 2021).
29. ‘The Perfect Storm’: Lax Social Distancing Fuelled a Coronavirus Variant’s Brazilian Surge. Available online: https://www.

nature.com/articles/d41586-021-01480-3 (accessed on 4 July 2021).
30. Fiore, V.G.; DeFelice, N.; Glicksberg, B.S.; Perl, O.; Shuster, A.; Kulkarni, K.; O’Brien, M.; Pisauro, M.A.; Chung, D.; Gu, X.

Containment of COVID-19: Simulating the impact of different policies and testing capacities for contact tracing, testing, and
isolation. PLoS ONE 2021, 16, e0247614. [CrossRef]

31. Daily COVID-19 Tests. Available online: https://ourworldindata.org/grapher/daily-COVID-19-tests-smoothed-7-day (accessed
on 7 September 2021).

32. Case Fatality Rate. Available online: https://www.britannica.com/science/case-fatality-rate (accessed on 23 August 2021).
33. Streeck, H.; Schulte, B.; Kümmerer, B.M.; Richter, E.; Höller, T.; Fuhrmann, C.; Bartok, E.; Dolscheid-Pommerich, R.; Berger, M.;

Wessendorf, L.; et al. Infection fatality rate of SARS-CoV2 in a super-spreading event in Germany. Nat. Commun. 2020, 11, 5829.
[CrossRef]

34. Teppone, M. One Year of COVID-19 Pandemic: Case Fatality Ratio and Infection Fatality Ratio. A Systematic Analysis of 219
Countries and Territories. Preprints 2021, 1–13. [CrossRef]

35. Ioannidis, J.P. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull. World Health Organ. 2021, 99, 19.
[CrossRef]

36. Mallapaty, S. How deadly is the coronavirus? Scientists are close to an answer. Nature 2020, 582, 467–469. [CrossRef]
37. Reported Cases and Deaths by Country or Territory. Available online: https://www.worldometers.info/coronavirus/#countries

(accessed on 21 March 2021).
38. Kraemer, M.U.; Yang, C.H.; Gutierrez, B.; Wu, C.H.; Klein, B.; Pigott, D.M.; Open COVID-19 Data Working Group; du Plessis, L.;

Faria, N.R.; Li, R.; et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020,
368, 493–497. [CrossRef]

39. Choi, S.; Ki, M. Estimating the reproductive number and the outbreak size of COVID-19 in Korea. Epidemiol. Health 2020,
42, e2020011. [CrossRef]

40. Chowell, G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty,
identifiability, and forecasts. Infect. Dis. Model. 2017, 2, 379–398. [CrossRef]

41. China Reports Most New COVID-19 Cases Since January amid Delta Surge. Available online: https://www.reuters.com/world/
china/china-reports-96-new-coronavirus-cases-aug-3-vs-90-day-ago-2021-08-04/ (accessed on 5 August 2021).

42. Coronavirus Digest: Germany Cases Surge to New Record. Available online: https://www.dw.com/en/coronavirus-digest-
germany-cases-surge-to-new-record/a-55292392 (accessed on 5 August 2021).

43. Lai, A.; Bergna, A.; Menzo, S.; Zehender, G.; Caucci, S.; Ghisetti, V.; Rizzo, F.; Maggi, F.; Cerutti, F.; Giurato, G.; et al. Circulating
SARS-CoV-2 Variants in Italy, October 2020–March 2021. Virol. J. 2021, 18, 168. [CrossRef]

https://www.worldometers.info/world-population/#density
https://www.worldometers.info/world-population/indonesia-population/
http://dx.doi.org/10.7326/M20-0504
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
http://dx.doi.org/10.1098/rsif.2009.0386
http://dx.doi.org/10.4269/ajtmh.20-1205
http://dx.doi.org/10.1186/s12889-021-11054-7
http://dx.doi.org/10.1001/jama.2020.11787
http://dx.doi.org/10.1016/j.ijforecast.2020.08.004
http://dx.doi.org/10.1093/jxb/10.2.290
http://dx.doi.org/10.15388/NA.2004.9.1.15171
http://dx.doi.org/10.1371/journal.pone.0236860
https://www.wsj.com/livecoverage/covid-2021-03-22/card/h7nDLKXUj1H0yZJsgeoI
https://www.wsj.com/livecoverage/covid-2021-03-22/card/h7nDLKXUj1H0yZJsgeoI
http://www.koreaherald.com/view.php?ud=20201102000137
http://www.koreaherald.com/view.php?ud=20201102000137
https://www.nature.com/articles/d41586-021-01480-3
https://www.nature.com/articles/d41586-021-01480-3
http://dx.doi.org/10.1371/journal.pone.0247614
https://ourworldindata.org/grapher/daily-COVID-19-tests-smoothed-7-day
https://www.britannica.com/science/case-fatality-rate
http://dx.doi.org/10.1038/s41467-020-19509-y
http://dx.doi.org/10.20944/preprints202107.0185.v1
http://dx.doi.org/10.2471/BLT.20.265892
http://dx.doi.org/10.1038/d41586-020-01738-2
https://www.worldometers.info/coronavirus/#countries
http://dx.doi.org/10.1126/science.abb4218
http://dx.doi.org/10.4178/epih.e2020011
http://dx.doi.org/10.1016/j.idm.2017.08.001
https://www.reuters.com/world/china/china-reports-96-new-coronavirus-cases-aug-3-vs-90-day-ago-2021-08-04/
https://www.reuters.com/world/china/china-reports-96-new-coronavirus-cases-aug-3-vs-90-day-ago-2021-08-04/
https://www.dw.com/en/coronavirus-digest-germany-cases-surge-to-new-record/a-55292392
https://www.dw.com/en/coronavirus-digest-germany-cases-surge-to-new-record/a-55292392
http://dx.doi.org/10.1186/s12985-021-01638-5


Computation 2022, 10, 107 22 of 22

44. Visaria, A.; Dharamdasani, T. The complex causes of India’s 2021 COVID-19 surge. Lancet 2021, 397, 2464. [CrossRef]
45. Luo, G.; Zhang, X.; Zheng, H.; He, D. Infection fatality ratio and case fatality ratio of COVID-19. Int. J. Infect. Dis. 2021, 113, 43–46.

[CrossRef] [PubMed]
46. Epidemiologist Urges Evaluation as Indonesia’s COVID-19 Deaths Increase. Available online: https://www.ugm.ac.id/en/

news/21140-epidemiologist-urges-evaluation-as-indonesia-s-COVID-19-deaths-increase (accessed on 5 August 2021).
47. COVID-19 in Southeast Asia: All Eyes on Indonesia. Available online: https://theconversation.com/COVID-19-in-southeast-

asia-all-eyes-on-indonesia-164244 (accessed on 10 August 2021).
48. Novel Coronavirus (2019-nCoV)—Situation Report 60. Available online: https://cdn.who.int/media/docs/default-source/

searo/indonesia/covid19/external-situation-report-60_23-june-2021.pdf?sfvrsn=15d6c3ad_5 (accessed on 1 July 2021).
49. Germany: Infection R-Rate Still Above 1, but Restrictions Still Lifted. Available online: https://www.dw.com/en/germany-

infection-r-rate-still-above-1-but-restrictions-still-lifted/a-53383279 (accessed on 14 June 2022).
50. Indonesia’s R0, Explained. Available online: https://www.thejakartapost.com/news/2020/06/01/indonesias-r0-explained.html

(accessed on 14 June 2022).
51. India’s Omicron Surge Explained: Reproduction Number up, Doubling Time down. Available online: https://www.business-

standard.com/article/current-affairs/india-s-omicron-surge-explained-reproduction-number-up-doubling-time-down-1220
10900082_1.html (accessed on 14 June 2022).

52. Liu, S.; Ermolieva, T.; Cao, G.; Chen, G.; Zheng, X. Analyzing the effectiveness of COVID-19 lockdown policies using the
time-dependent reproduction number and the regression discontinuity framework: Comparison between countries. Eng. Proc.
2021, 5, 8.

53. Andriani, H. Effectiveness of large-scale social restrictions (PSBB) toward the new normal era during COVID-19 outbreak: A
mini policy review. J. Indones. Health Policy Adm. 2020, 5, 61–65.

http://dx.doi.org/10.1016/S0140-6736(21)01219-8
http://dx.doi.org/10.1016/j.ijid.2021.10.004
http://www.ncbi.nlm.nih.gov/pubmed/34628024
https://www.ugm.ac.id/en/news/21140-epidemiologist-urges-evaluation-as-indonesia-s-COVID-19-deaths-increase
https://www.ugm.ac.id/en/news/21140-epidemiologist-urges-evaluation-as-indonesia-s-COVID-19-deaths-increase
https://theconversation.com/COVID-19-in-southeast-asia-all-eyes-on-indonesia-164244
https://theconversation.com/COVID-19-in-southeast-asia-all-eyes-on-indonesia-164244
https://cdn.who.int/media/docs/default-source/searo/indonesia/covid19/external-situation-report-60_23-june-2021.pdf?sfvrsn=15d6c3ad_5
https://cdn.who.int/media/docs/default-source/searo/indonesia/covid19/external-situation-report-60_23-june-2021.pdf?sfvrsn=15d6c3ad_5
https://www.dw.com/en/germany-infection-r-rate-still-above-1-but-restrictions-still-lifted/a-53383279
https://www.dw.com/en/germany-infection-r-rate-still-above-1-but-restrictions-still-lifted/a-53383279
https://www.thejakartapost.com/news/2020/06/01/indonesias-r0-explained.html
https://www.business-standard.com/article/current-affairs/india-s-omicron-surge-explained-reproduction-number-up-doubling-time-down-122010900082_1.html
https://www.business-standard.com/article/current-affairs/india-s-omicron-surge-explained-reproduction-number-up-doubling-time-down-122010900082_1.html
https://www.business-standard.com/article/current-affairs/india-s-omicron-surge-explained-reproduction-number-up-doubling-time-down-122010900082_1.html

	Introduction
	Generating Operator in a Simple SEIR Model
	Model Formulation
	Cumulative Case Data for Constructing the Generating Operator

	Generalized SEIR for Second Wave Transmission of COVID-19
	Model Construction
	Estimation of (t)

	Numerical Simulations
	Simple SEIR Model
	Fitted Cumulative Data
	Simulation of SEIR Dynamics
	Dynamics of the Effective Reproduction Number

	Generalized SEIR Model
	Fitted Cumulative Data
	Estimated (t)
	Dynamics of the Generalized SEIR Model

	More about the Effective Reproduction Number

	Conclusions
	References

