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Abstract: Over the course of the COVID-19 pandemic millions of deaths and hospitalizations have
been reported. Different SARS-CoV-2 variants of concern have been recognized during this pandemic
and some of these variants of concern have caused uncertainty and changes in the dynamics. The
Omicron variant has caused a large amount of infected cases in the US and worldwide. The average
number of deaths during the Omicron wave toll increased in comparison with previous SARS-CoV-2
waves. We studied the Omicron wave by using a highly nonlinear mathematical model for the COVID-
19 pandemic. The novel model includes individuals who are vaccinated and asymptomatic, which
influences the dynamics of SARS-CoV-2. Moreover, the model considers the waning of the immunity
and efficacy of the vaccine against the Omicron strain. This study uses the facts that the Omicron
strain has a higher transmissibility than the previous circulating SARS-CoV-2 strain but is less deadly.
Preliminary studies have found that Omicron has a lower case fatality rate compared to previous
circulating SARS-CoV-2 strains. The simulation results show that even if the Omicron strain is less
deadly it might cause more deaths, hospitalizations and infections. We provide a variety of scenarios
that help to obtain insight about the Omicron wave and its consequences. The proposed mathematical
model, in conjunction with the simulations, provides an explanation for a large Omicron wave under
various conditions related to vaccines and transmissibility. These results provide an awareness that
new SARS-CoV-2 variants can cause more deaths even if their fatality rate is lower.

Keywords: SARS-CoV-2 variant; Omicron wave; mathematical modeling; vaccination; scenarios;
simulations

1. Introduction

Over the course of the COVID-19 pandemic, at least 671 million confirmed cases and
6.83 million deaths have been reported (December 2022) [1]. These reported numbers
are in the lower bounds, since there are asymptomatic and under-reported cases [2–7].
During 2019, 2020, 2021 and 2022, different strains of the SARS-CoV-2 virus have been
found [8–13]. These strains have different characteristics related to contagiousness and
severity. Thus, some SARS-CoV-2 variants affect the count of infected cases, hospitaliza-
tions and deaths [14,15]. Vaccination programs against SARS-CoV-2 started at the very end
of 2019 and the beginning of 2020 in some countries [16–21]. For the year 2022, many coun-
tries have already implemented vaccination programs and some countries have also imple-
mented booster programs [4,22–24]. The evolution of SARS-CoV-2 is affected by various
factors that are difficult to quantify [25–28]. For instance, social behavior and vaccination sta-
tus are major factors that influence the COVID-19 pandemic [27,29–37]. New SARS-CoV-2
strains also play a major role in the evolution of the COVID-19 pandemic and have gener-
ated different spatial-temporal waves in different countries [12,38–44]. These waves are
mainly the product of different contagiousness of new SARS-CoV-2 strains and public
health interventions.
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The Omicron variant caused a new wave during 2022. The count of cases has been
very large and has exceeded previews waves. Omicron was first detected in South Africa
and Botswana in early November 2021, but using retrospective testing, it was found that
Omicron was also present in England, Nigeria and the United States during November
of 2021 [45–47]. Omicron has more than fifty mutations in comparison with the original
circulating SARS-CoV-2 [46]. The Omicron strain carries an unusually high number of
mutations, suggesting potential immune evasion [22]. A near-complete lack of neutralizing
activity has been reported against Omicron in polyclonal sera from individuals vaccinated
with two doses of the BNT162b2 COVID-19 vaccine and from convalescent individuals,
as well as resistance to different monoclonal antibodies in clinical use [22]. In [48], results
suggest that two doses of COVID-19 vaccines only offer modest protection against symp-
tomatic Omicron infection. In [24], the authors showed that Omicron exhibits significant
immune evasion compared to other strains. In addition, they found that the Omicron
spike exhibits reduced receptor binding and cell–cell fusion, but increased cell-to-cell
transmission [24].

Despite the fact that the Omicron strain has lower severity, it has caused a large number
of hospitalizations and the average daily number of deaths has been substantial [49]. Some
studies have reported a lower rate of hospitalization for the Omicron strain compared
with infections caused by the Delta strain [50]. It has been found that booster vaccination
and vaccination of individuals with a history of SARS-CoV-2 infection generated lower
antibody titers than those against the Delta strain [51,52].

One important aspect for studies predicting health outcomes related to this pandemic
is how deadly each of the SARS-CoV-2 strains are. There are two main ways to compute
how deadly a disease is. The first is the infection–fatality ratio (IFR), which is given by
the ratio of deaths to all infected individuals. The second is computing the case fatality
ratio (CFR), which is given by the ratio of deaths to confirmed cases. Estimating the IFR
is complex, since it requires knowing the total number of infected cases. Some studies
have estimated the CFR as being from less than 0.1% to over 25% [53]. For COVID-19, the
true level of transmission is frequently underestimated because a substantial proportion of
people with the infection are undetected, either because they are asymptomatic or are not
reported [53–55]. In places where testing is extensive, the estimation of CFR is more
robust [56]. Another aspect that affects health outcomes is the immunity level of the popu-
lation which is related to the herd immunity. The increase in population immunity makes it
more difficult to compare Omicron’s severity with previous circulating SARS-CoV-2 strains,
since previous exposure to SARS-CoV-2 strains is expected to prevent to some extent severe
outcomes from subsequent infection [57].

The main objective here is to obtain insight into the impact of the Omicron strain.
In particular, our aim is to propose a mathematical approach that helps to provide an
explanation of the large Omicron wave and the great number of deaths during this wave
despite its lower fatality rate. We propose a mathematical modeling framework to study
the Omicron wave and attain some additional insight into its evolution. Mathematical
models are fruitful and have been used to investigate a variety of scenarios related to
the behavior of the COVID-19 disease [6,58–74]. These models are used to study the
impact of a variety of health interventions on epidemics. With in silico simulations of the
mathematical models we can produce a variety of outcomes that are difficult to foresee
due to the nonlinearity and complexity of the epidemics [75–77]. In addition, in some cases
the mathematical analysis permits us to determine under what conditions the disease can
disappear. Previous studies have investigated the dynamics of the COVID-19 pandemic
under two SARS-CoV-2 variants, but some of them did not include vaccination and waning
since they were designed for the early pandemic [78–85]. Recently, some researchers have
studied the Omicron wave dynamics [86–89]. In [88], the authors analyzed a second wave
of COVID-19 and in particular on the Omicron variant pandemic data in India. In [86],
a stochastic and second-order model is proposed to deal with the Omicron wave. A
mathematical model considering age structure, vaccine, antiviral treatment and influx
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of the Omicron variant in Korea was developed in [87]. The authors in [58] proposed a
fractal–fractional age-structure model for the omicron SARS-CoV-2 variant and considered
two age groups. They found that there is a high infection and recovery rate of the Omicron
SARS-CoV-2 variant infection among the population under 50. In [90], a generalized SIR
model was used to simulate and predict the dynamics of Omicron waves in Ukraine and in
the whole world. Mathematical models also have bee used for within-host dynamics for
SARS-CoV-2 and in particular the Omicron variant [91,92]

Over this pandemic, many SARS-CoV-2 strains have appeared and these have different
characteristics [11,93–97]. Previous models have been used to investigate the influence of
new SARS-CoV-2 strains that have a higher probability of transmission [6,38,79,80,83,98–101].
In particular, some interesting studies have considered the mathematical modeling of new
SARS-CoV-2 strains and at the same time imperfect vaccination or waning [83,99,101]. Further-
more, some mathematical models have been proposed for studying SARS-CoV-2
waves [40,102,103]. The models have different underlying assumptions and, as any mathe-
matical model of an epidemic, they have advantages and limitations. A variety of work has
been carried out considering continuous and discrete models that have included vaccinated
subpopulations where people have less probability to get infected, proliferate the virus, or
die [78,81,101,104–108].

In this study, we build a mathematical model for the Omicron wave situation. In-
dividuals who are asymptomatic and vaccinated are included in the model since they
influence the evolution of the Omicron wave [109–115]. In this study, we use the fact that
the Omicron strain has a higher transmissibility than the previously circulating SARS-CoV-2
strains and that the vaccine efficacy is lower for the Omicron strain [22,48]. In addition,
we take into account that preliminary studies have found that Omicron has a lower case
fatality rate compared to previous circulating SARS-CoV-2 strains. We perform in silico
simulations with a variety of scenarios to attain insight into the Omicron wave, its potential
consequences and to explain the Omicron wave situation. In this study, we perform a
brief stability analysis of the developed model and we also identify the basic reproduction
number R0 despite the fact that the in silico simulations are aimed more toward shorter
dynamics [116,117]. The reproduction number R0 is strongly connected to the effective
reproduction numberRt, and therefore is useful in obtaining insight into the behavior of
epidemics and pandemics. The motivation of this work is to provide additional knowledge-
based support to health authorities and the population in general. Scientific studies that
bring awareness of health issues are important to public health despite sometimes the
scientific tools used not being very complex [118]. In summary, we propose a mathemat-
ical approach to provide an explanation of a large Omicron wave arising under various
conditions as a function of vaccination status and transmissibility. These results provide
awareness that new SARS-CoV-2 variants can cause more deaths even if their fatality rates
are lower.

There are some certain previous studies and mathematical models related to the
Omicron wave [119–121]. In [121], the authors implemented a stochastic, discrete-time-,
individual-based transmission model of SARS-CoV-2 infection and COVID-19 disease. The
model considers an age-structured, small-world network. Using sensitivity analysis due
to many uncertainties they show that a new SARS-CoV-2 variant dominance is primarily
driven by its infectivity, which does not necessarily lead to an increased public health
burden. In [119], the authors used a model fitted to more than 2 years of epidemiological
data from England to project potential dynamics of SARS-CoV-2 infections and deaths in
England to December 2022. They considered several key uncertainties including behavioral
changes and waning immunity. They concluded that for the particular case of England and
under the assumption that no new variants emerge, SARS-CoV-2 transmission is expected
to decline. The authors concluded that the projections depend largely on assumptions
around waning immunity, social behavior and seasonality. Other interesting work related
to Omicron waves is presented in [120]. In this work, a generalized SEIR model assuming
gamma-distributed incubation and infectious periods is presented. The model includes
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susceptibility to Omicron. Their results suggest that even in those regions where the Delta
variant is controlled before the beginning of the Omicron wave a significant Omicron
wave can be expected. It is important to remark that for the particular case of England
the Omicron wave was smaller than the Delta wave. In our paper, we provide additional
insight regarding the Omicron wave.

This paper is organized as follows: In Section 2, we build the mathematical model for
the Omicron wave dynamics. Section 3 is devoted to the stability analysis of the model. In
Section 4, the numerical simulation results regarding the Omicron wave are presented, and
the final section is devoted to discussion and conclusions.

2. Mathematical Model for the Omicron Wave Dynamics

We constructed a mathematical model that relies on nonlinear differential equations.
The model includes the Omicron strain and one previous circulating strain of SARS-CoV-2.
The mathematical model uses the fact that Omicron is more contagious than the previously
circulating SARS-CoV-2 strain. The constructed model also encompass people who are
vaccinated and asymptomatic. Moreover, the model assumes the waning of immunity for
vaccinated and recovered individuals. All these are major components of the constructed
model and a novelty in comparison with other models. The developed model assumes that
the pre-existent circulating SARS-CoV-2 strain(s) has (have) lower contagiousness than the
Omicron strain. The constructed model can be extended to other circulating SARS-CoV-2
strains if similar conditions hold.

The model encompass individuals in the susceptible (Si(t)), symptomatic (Ii(t)),
asymptomatic (Ai(t)) and recovered (Ri(t)) groups for each SARS-CoV-2 strain. In addi-
tion, the model comprise three type of subclasses for vaccinated individuals. The first is
when susceptible individuals are vaccinated V(t), the second when individuals who have
recovered from strain 1 get vaccinated V1R, and the last arises when individuals who have
recovered from strain 2 get vaccinated V2R. The individuals in the last two subpopulations
have stronger immunity and protection against the SARS-CoV-2, as immunology studies
have suggested [57]. The model is depicted in Figure 1.

Figure 1. Diagram of the mathematical model (2) with classes and relevant parameters.

The flow of individuals from one subpopulation to another depends on the individual
COVID-19 disease status. The model bears in mind partial cross-immunity against the
other SARS-CoV-2 strain due to the adaptive immune response [75,122–124]. A susceptible
individual can get infected with either strain and progress to the symptomatic classes (with
either the previously circulating strain or Omicron) or to the asymptomatic classes (A1(t)
or A2(t)). The symptomatic and asymptomatic individuals stay in the infectious stage for a
certain time with mean 1/γ. The symptomatic and asymptomatic individuals then move to
the recovered classes (R1(t) or R2(t) respectively). Then, individuals in the recovered class
R1(t) can progress to the vaccinated class V1R(t) if they get vaccinated. However, they can
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also progress (with different probabilities) to infected subpopulations I1(t), I2(t), A1(t) or
A2(t), depending on which strain they get and the symptoms. Analogously, individuals
in the recovered class R2(t) can progress to the vaccinated class V2R(t) if they get vacci-
nated and to the infected subpopulations I1(t), I2(t), A1(t) or A2(t). Recovered individuals
cannot go back to the susceptible population due to partial cross immunity and adaptive
immune system that has memory [57,124–128]. Finally, symptomatic individuals can die
due to COVID-19, but the model assumes that people who are asymptomatic cannot. The
model, as any other epidemiological model, is obviously a simplification of reality. For
instance, the hospitalization subpopulation is not considered explicitly, nor are presymp-
tomatic individuals. It is important to remark that a large number of studies assume these
simplifications in order to focus on some particular stages and/or parameters.

The model allows us to analyze the dynamics of the Omicron wave taking into account
two SARS-CoV-2 strains. Studies have shown that exposure to small airborne particles
is equally, or even more, likely to lead to infection with SARS-CoV-2 as the more widely
recognized transmission via larger respiratory droplets and/or direct contact with infected
people or contaminated surfaces [129]. Thus, we can model the transmission of SARS-CoV-2
by mass action, i.e., a term βS I, where β is the SARS-CoV-2 transmission rate [117]. The
total population size is given by

N(t) = S(t) + I1(t) + A1(t) + I2(t) + A2(t) + R1(t) + R2(t)

+ V(t) + V1R(t) + V2R(t). (1)

The total population N(t) does not include the cumulative deaths but we can compute
them in the in silico simulations. The model is represented by the next differential equations

Ṡ(t) = Λ− (ν + d)S(t)− λ1(t)S(t)− λ2(t)S(t),

İ1(t) = (1− a1)λ1(t)
(

S(t) + (1− ε1)V(t) + (1− ε1R)V1R(t) + (1− ε21R)V2R(t)

+ (1− ε1)R1(t) + (1− ε21)R2(t)
)
− (d + d1 + γ)I1(t),

Ȧ1(t) = a1λ1(t)
(

S(t) + (1− ε1)V(t) + (1− ε1R)V1R(t) + (1− ε21R)V2R(t)

+ (1− ε1)R1(t) + (1− ε21)R2(t)
)
− (d + γ)A1(t),

İ2(t) = (1− a2)λ2(t)
(

S(t) + (1− ε2)V(t) + (1− ε2R)V2R(t) + (1− ε12R)V1R(t)

+ (1− ε2)R1(t) + (1− ε22)R2(t)
)
− (d + d2 + γ)I2(t),

Ȧ2(t) = a2λ2(t)
(

S(t) + (1− ε2)V(t) + (1− ε2R)V2R(t) + (1− ε12R)V1R(t)

+ (1− ε2)R1(t) + (1− ε22)R2(t)
)
− (d + γ)A2(t), (2)

Ṙ1(t) = γ(I1(t) + A1(t))− (d + νr)R1(t)− λ1(t)(1− ε1 )R1(t)− λ2(t)(1− ε2 )R1(t),

Ṙ2(t) = γ(I2(t) + A2(t))− (d + νr)R2(t)− λ2(t)(1− ε22)R2(t)− λ1(t)(1− ε21)R2(t),

V̇(t) = νS(t)− dV(t)− (1− ε1)λ1(t)V(t)− (1− ε2)λ2(t)V(t),
˙V1R(t) = νrR1(t)− dV1R(t)− (1− ε1R)λ1(t)V1R(t)− (1− ε12R)λ2(t)V1R(t),
˙V2R(t) = νrR2(t)− dV2R(t)− (1− ε2R)λ2(t)V2R(t)− (1− ε21R)λ1(t)V2R(t),

where λ1(t) = β I1 I1(t) + βA1 A1(t) and λ2(t) = β I2 I2(t) + βA2 A2(t) are the sources that
produce infections in the different at risk subpopulations. The model comprises ten de-
pendent variables, representing the different subpopulations. The parameters with their
respective meaning and numerical values are shown in Table 1.
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Table 1. Parameters for the Omicron wave mathematical model (2) with their respective meaning
and numerical values.

Parameter Symbol Value

Inflow rate λ 7.864180× 103 people/day [130]
Natural death rate d 0.00002378 1/day [130]
Infectious period γ−1 7 days [131]
Transmission rate βi varied β1 ≤ β2
Death rate (infected with previous circulating strains) d1 0.01 days−1 [106,132]
Death rate (infected with Omicron) d2 varied < 0.01 days−1 [49]
Vaccination rates ν, νR varied ν ≥ νR 1/day [130]
Proportion of asymptomatic ai 0.5 [133,134]

We will analyze some basic features of the model (2) in order to obtain a mathematical
framework for the stability analysis. Some conditions of the model (2) are The initial
conditions satisfy

S(0) > 0, I1(0) ≥ 0, A1(0) ≥ 0, I2(0) ≥ 0, A2(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0,

V(0) > 0, V1R(0) ≥ 0, V2R(0) ≥ 0. (3)

The parameters satisfy

Λ, β!2 , β I1 , βA2 , βA1 , α, γ, d, di, νr ∈ R+, and ai, εi, εiR, εij, εijR ∈ [0, 1]. (4)

Positivity

By the classical theory of ordinary differential equations [135,136], it deduces that the
system (2) is well-posed, and has a unique solution

Z(t) :=
(

S(t), I1(t), A1(t), I2(t), A2(t), R1(t), R2(t), V(t), V1R(t), V2R(t)
)

satisfying the initial conditions given by (3). The dependent variables of the system (2)
are subpopulations; therefore, we must show that if (3) holds, then the solutions of the
mathematical model (2) are positive ∀t > 0.

Theorem 1. Assume that (2) and (3) hold. Then the solution Z(t) of (2) is positive and uniformly
bounded ∀t > 0.

Proof. We define the following number

W = sup
{

ρ > 0
/
∀t ∈ [0, ρ], S(t) > 0, Ii(t) ≥ 0, Ai(t) ≥ 0, Ri(t) ≥ 0, V(t) > 0, V1R(t) ≥ 0, V2R(t) ≥ 0

}
,

for i = 1, 2. Suppose thatW < ∞. Since the solutions of the model (2) are continuous, it
follows that

S(W) = 0, or I2(W) = 0, or I1(W) = 0, or A2(W) = 0, or A1(W) = 0, or R1(W) = 0, or

R2(W) = 0, or V(W) = 0, or V1R(W) = 0, or V2R(W) = 0.

Thus, if S(W) = 0, is obtained before the other variables, one obtains

dS(W)

dt
= lim

t→W−
S(W)− S(t)
W − t

≤ 0.

Accordingly, from first the Equation of the model (2), one obtains that

Ṡ(W) = Λ− (ν + d)S(W)− λ1(W)S(W) + λ2(W)S(W)

= Λ > 0,
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which is a contradiction. Therefore, S(t) > 0, for all t ≥ 0. Now, similarly, if we assume
that V(W) = 0, occurs before any of the other variables are zero, one obtains

dV(W)

dt
= lim

t→W−
V(W)−V(t)
W − t

≤ 0,

and using the eighth Equation (2), another contradiction follows

V̇(W) = νS(W)− dV(W)− (1− ε1)λ1(t)V(W)− (1− ε2)λ2(t)V(W) > 0.

We can use a similar process for the other dependent variables to obtain to similar contra-
dictions. Therefore,W = +∞, and therefore

S(t) ≥ 0, I1(t) ≥ 0, A1(t) ≥ 0, I2(t) ≥ 0, A2(t) ≥ 0, R1(t) ≥ 0, R2(t) ≥ 0, V(t) ≥ 0,

V1R(t) ≥ 0, V2R(t) ≥ 0,

for t > 0. Next, using (2) one obtains

Ṅ(t) = Λ− dN(t)− d1 I1(t)− d2 I2(t) ≤ Λ− dN(t), (5)

and using Gronwall inequalities one obtains that

N(t) ≤ Λ
d
+

(
N(0)− Λ

d

)
e−d t, (6)

for t ≥ 0. Now, taking N(0) ≤ Λ
d

, then N(t) ≤ Λ
d

. On the other hand, from the first and
eighth Eqs. of system (2) it follows that

Ṡ(t) = Λ− (ν + d)S(t)− λ1(t)S(t)− λ2(t)S(t) ≤ Λ− (ν + d)S(t),

and

V̇(t) = νS(t)− dV(t)− (1− ε1)λ1(t)V(t)− (1− ε2)λ2(t)V(t) ≤ νS(t)− dV(t).

Taking the limit, we have that S(t) ≤ Λ
ν + d

and V(t) ≤ νΛ
d (ν + d)

as t → ∞. As a result,

θ ∈ [0, 1) implies that

0 < S(t) + θV(t) ≤ Λ[d + θν]

d (d + ν)
, as t→ ∞.

Therefore, we can consider the region

O=

(S, I1, A1, I2, A2, R1, R2, V, V1R, V2R) ∈ R10
+

∣∣∣∣∣∣∣∣∣∣
N(t) ≤ Λ

d
, S(t) ≤ Λ

d (ν + d)
,

0 < S(t) + θV(t) ≤ Λ[d + θν]

d (d + ν)
, θ ∈ [0, 1)

 (7)

which is positively invariant. Thus, the solutions of system (2) are bounded. Further-

more, if N(0) >
Λ
d

, then either the solution enters O for infinite time or N(t) → Λ
d

asymptotically.

3. Stability Analysis

In the qualitative analysis of the model solutions, it is common to determine the
stationary points that identify the disease-free and endemic equilibrium points. In this
case, in the model (2) there is a disease-free point (F∗1 ), which can be found by setting
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I1 = I2 = A1 = A2 = 0, and indicates that SARS-CoV-2 becomes extinct. Now, it is of great
importance to determine in epidemiological models the different parameters that delimit
the different states of a disease. One in particular is the basic reproduction number R0,
which measures the influence of introducing one infected individual into a total susceptible
population [76,137].

3.1. Disease-Free Equilibrium Point andR0

The disease-free equilibrium (F∗1 ) point of the model (2) is given by

F∗1 =
(

S0, I0
1 , A0

1, I0
2 , A0

2, R0
1, R0

2, V0, V0
1R, V0

2R

)
=

(
Λ

d + ν
, 0, 0, 0, 0, 0, 0, 0,

νΛ
d (d + ν)

, 0, 0
)

. (8)

In order to obtain an expression forR0 in the model (2), we use the next generation matrix
(NGM) method [116,137]. For this purpose, we determine the matrix F representing
the new infection cases and the matrix V represents the progression between classes. The
eigenvalue of the matrixFV−1 with largest absolute value is the basic reproduction number
R0. For further technicalities see [116,137]. Thus,

F =



(1− a1)BI1 (1− a1)BA1 0 0

a1BI1 a1BA1 0 0

0 0 (1− a2)BI2 (1− a2)BA2

0 0 a2BI2 a2BA2


, (9)

and

V =



d + d1 + γ 0 0 0

0 d + γ 0 0

0 0 d + d2 + γ 0

0 0 0 d + γ


. (10)

Then, one obtains

FV−1 =



(1− a1)BI1

d + d1 + γ

(1− a1)BA1

d + γ
0 0

a1BI1

d + d1 + γ

a1BA1

d + γ
0 0

0 0
(1− a2)BI2

d + d2 + γ

(1− a2)BA2

d + γ

0 0
a2BI2

d + d2 + γ

a2BA2

d + γ



,
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which is the NGM, and the positive eigenvalues are given by

R01 =
BA1 a1(d + d1 + γ) + BI1(1− a1)(d + γ)

(d + γ)(d + d1 + γ)
, (11)

R02 =
BA2 a2(d + d2 + γ) + BI2(1− a2)(d + γ)

(d + γ)(d + d2 + γ)
,

or

R01 =
BA1 a1

d + γ
+

BI1(1− a1)

d + d1 + γ
,

R02 =
BA2 a2

d + γ
+

BI2(1− a2)

d + d2 + γ
,

where

BI1 =
β I1 Λ
ν + d

(
1 +

(1− ε1)ν

d

)
, BA1 =

βA1 Λ
ν + d

(
1 +

(1− ε1)ν

d

)
,

BI2 =
β I2 Λ
ν + d

(
1 +

(1− ε2)ν

d

)
, BA2 =

βA2 Λ
ν + d

(
1 +

(1− ε2)ν

d

)
.

The parametersR01 andR02 are related to the two different SARS-CoV-2 strains, respec-
tively. Thus, one obtains the spectral radius of FV−1

R0 = max
{
R01 , R02

}
. (12)

The parameterR0 allows us to determine if an outbreak would occur. WhenR0 < 1, and
if the initial conditions of the model (2) are close enough to the equilibrium (F∗1 ), then no
outbreak would occur. However, when R0 > 1, an epidemic would occur. Thus, one
obtains the next theorem.

Theorem 2. When the basic reproduction numberR0 < 1 (R0 > 1), the disease-free equilibrium
point F∗1 of the model (2) and given in (8) is locally asymptotically stable (unstable).

Proof. The proof follows from applying Theorem 2 in [137].

Global Stability of Disease-Free Equilibrium Point

Analyzing the behavior of the solutions of an epidemiological model represented by
a system of differential equations such as (2) around the disease-free equilibrium point
is important because it determines what public health measures are necessary in order
to avoid endemic situations. Thus, we want to analyze whether the disease-free point
F∗1 is a global attractor, i.e., it must be proven that if R0 < 1, the disease becomes extinct
regardless of the initial conditions of the model (2). In other words, the point F∗1 is globally
asymptotically stable (GAS). In order to prove the global stability of F∗1 , we apply the
methodology used in [138]. The system (2) can be written as

Ẏ(t) = F(Y, Z), Ż(t) = I(Y, Z), I(Y, 0) = 0 ∈ R4, (13)

with Y = (S, V, R1, R2, VR1, VR2) which denotes the vector of uninfected compartments,
and Z = (I1, A1, I2, A2) is the vector of infected compartments. Moreover, F(Y, 0) is the
right-hand side of Ṡ(t), V̇(t), Ṙ1(t), Ṙ2(t), V̇R1(t), V̇R2(t), setting I1 = A1 = I2 = A2 = 0.
Thus, F∗1 is rewritten as Y0 =

(
S0, V0, 0

)
, 0 ∈ R4. The following result guarantees the GAS

of F∗1 .

Theorem 3. The point F∗1 given by (8) of system (2) is GAS in O if R0 ≤ 1, and if the next
conditions hold:
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• Condition 1 : Given Ẏ(t) = F(Y, 0), 0 ∈ R4, then Y0 is GAS.
• Condition 2 : I(Y, Z) = J Z − I̊(Y, Z), then I̊(Y, Z) ≥ 0 in O as t → ∞, and J =

DZ(I̊, 0) is an M−matrix, i.e., the off-diagonal elements are non-negative.

Proof. For the Condition 1, we write Ẏ(t) = F(Y, 0), 0 ∈ R4 as

Ṡ(t) = Λ− (ν + d)S(t),

V̇(t) = νS(t)− dV(t),

Ṙ1(t) = −(d + νr)R1(t), (14)

Ṙ2(t) = −(d + νr)R2(t),
˙V1R(t) = νrR1(t)− dV1R(t),
˙V2R(t) = νrR2(t)− dV2R(t).

After some calculations using (14) one obtains

(S(t), V(t), R1(t), R2(t), dV1R(t), V2R(t))→
(

S0, V0, 0
)

as t→ ∞. (15)

On the other hand, for the Condition 2, from (9) and (10) we can obtain the matrix
J = F − V .

J =



(1− a1)BI1 − (d + d1 + γ) (1− a1)BA1 0 0

a1BI1 a1BA1 − (d + γ) 0 0

0 0 (1− a2)BI2 − (d + d2 + γ) (1− a2)BA2

0 0 a2BI2 a2BA2 − (d + γ)


,

and J is an M−matrix. Next, from (15) and in view of (7) yields

I̊(Y, Z) = J Z− I(Y, Z) =



{
Λ(d + (1− ε1)ν)

d(d + ν)
− (S + (1− ε1)V)

}
(1− a1)λ1 − (1− a1)λ1W1

{
Λ(d + (1− ε1)ν)

d(d + ν)
− (S + (1− ε1)V)

}
a1λ1 − a1λ1W1

{
Λ(d + (1− ε2)ν)

d(d + ν)
− (S + (1− ε2)V)

}
(1− a12)λ2 − (1− a2)λ2W2

{
Λ(d + (1− ε2)ν)

d(d + ν)
− (S + (1− ε2)V)

}
a2λ2 − a2λ2W2



≥ 0,

in Ω as t→ ∞, where

W1(t) = [(1− ε1R)V1R(t) + (1− ε21R)V2R(t) + (1− ε1)R1(t) + (1− ε21)R2(t)],

and

W2(t) = (1− ε2R)V2R(t) + (1− ε12R)V1R(t) + (1− ε2)R1(t) + (1− ε22)R2(t),

with W1(t), W2(t)→ 0, as t→ ∞. Thus, it is very clear that I̊(Y, Z) ≥ 0, with 0 ∈ R4.

The consequence of Theorem 3 from the epidemiological viewpoint is that COVID
will not become endemic as long asR0 < 1, regardless of the initial conditions.

3.2. Endemic Equilibrium Point

The behavior of the solutions of the model (2) whenR0 > 1 depends on the endemic
points. We can find these endemic points by simply setting the right-hand side of the
system (2) to zero and obtaining the algebraic solutions representing the endemic points as
a function of the parameters of the mathematical model (2).
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For the model (2), we want to determine the endemic points, which will be denoted by

E∗ = (S∗, A∗1 , I∗1 , A∗2 , I∗2 , R∗1 , R∗2 , V∗, V∗1R, V∗2R), (16)

and this vector is a solution of the following algebraic system:

0 = Λ− (ν + d)S∗ − λ∗1S∗ − λ∗2S∗, (17)

0 = (1− a1)λ
∗
1

(
S∗ + (1− ε1)V∗ + (1− ε1R)V∗1R + (1− ε21R)V∗2R + (1− ε1)R∗1

+ (1− ε21)R∗2
)
− (d + d1 + γ)I∗1 ,

0 = a1λ∗1

(
S∗ + (1− ε1)V∗ + (1− ε1R)V∗1R + (1− ε21R)V∗2R + (1− ε1)R∗1

+ (1− ε21)R∗2
)
− (d + γ)A∗1 ,

0 = (1− a2)λ
∗
2

(
S∗ + (1− ε2)V∗ + (1− ε2R)V∗2R + (1− ε12R)V∗1R + (1− ε2)R∗1

+ (1− ε22)R∗2
)
− (d + d2 + γ)I∗2 ,

0 = a2λ∗2

(
S∗ + (1− ε2)V∗ + (1− ε2R)V∗2R + (1− ε12R)V∗1R + (1− ε2)R∗1

+ (1− ε22)R∗2
)
− (d + γ)A∗2 ,

0 = γ(I∗1 + A∗1)− (d + νr)R∗1 − λ∗1(1− ε1 )R∗1 − λ∗2(1− ε2 )R∗1 ,

0 = γ(I∗2 + A∗2)− (d + νr)R∗2 − λ∗2(1− ε22)R∗2 − λ∗1(1− ε21)R∗2 ,

0 = νS∗ − dV∗ − (1− ε1)λ
∗
1V∗ − (1− ε2)λ

∗
2V∗,

0 = νrR∗1 − dV∗1R − (1− ε1R)λ
∗
1V∗1R − (1− ε12R)λ

∗
2V∗1R,

0 = νrR∗2 − dV∗2R − (1− ε2R)λ
∗
2V∗2R − (1− ε21R)λ

∗
1V∗2R,

where λ∗1 = β I1 I∗1 + βA1 A∗1 and λ∗2 = β I2 I∗2 + βA2 A∗2 . We can see from the first Eq. of the
system (17) that S∗ > 0. Moreover, Λ− (d + ν)S∗ > 0, that is, S∗ ∈ O. Using the second,
third, fourth and fifth Equation (17) we arrive to the next result,

I∗1 =
(1− a1)(d + γ)A∗1

a1(d + d1 + γ)
, I∗2 =

(1− a2)(d + γ)A∗2
a2(d + d2 + γ)

. (18)

Thus

λ∗1 =
dR01(d + γ)(ν + d)A∗1

a1Λ(d + (1− ε1)ν)
, λ∗2 =

dR02(d + γ)(ν + d)A∗2
a2Λ(d + (1− ε2)ν)

. (19)

Now, from the first Equation (17) it follows that

S∗ =
Λ

(ν + d)
(
1 + λ∗1 + λ∗2

) . (20)

Next, from the sixth and seventh Equation (17), and putting (18), it follows that

R∗1 =

γ

(
1 +

(1− a1)(d + γ)

a1(d + d1 + γ)

)
A∗1

(d + νr + λ∗1(1− ε1) + λ∗2(1− ε2))
, R∗2 =

γ

(
1 +

(1− a2)(d + γ)

a2(d + d2 + γ)

)
A∗2

(d + νr + λ∗1(1− ε22) + λ∗2(1− ε21))
(21)

In the same way, from the ninth and tenth Equation (17), one obtains

V∗1R =
νrR∗1

(d + λ∗1(1− ε1R) + λ∗2(1− ε12R))
, V∗2R =

νrR∗2
(d + λ∗1(1− ε2R) + λ∗2(1− ε21R))

, (22)
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and finally

V∗ =
S∗ν

d + (1− ε1)λ
∗
1 + (1− ε2)λ∗2

. (23)

Thus, there are three endemic equilibrium points that can be obtained from Equation (18).
Indeed, if A∗1 = 0 and A∗2 > 0, then one obtains from Equations (18)–(23) that λ∗1 = 0,
λ∗2 > 0, S∗ > 0, R∗1 = 0, R∗2 > 0, V∗1R = 0, V∗2R > 0, and V∗ > 0. Thus, the first endemic
point given by

E∗1 = (S∗, 0, 0, A∗2 , I∗2 , 0, R∗2 , V∗, 0, V∗2R), . (24)

Next, if A∗2 = 0 and A∗1 > 0, then one obtains from Equations (18)–(23) that λ∗2 = 0,
λ∗1 > 0, S∗ > 0, R∗2 = 0, R∗1 > 0, V∗2R = 0, V∗1R > 0, and V∗ > 0. Therefore, the second
endemic point is

E∗2 = (S∗, A∗1 , I∗1 , 0, 0, R∗1 , 0, V∗, V∗1R, 0). (25)

Finally, if A∗1 > 0 and A∗2 > 0 then we can obtain the third endemic point given by
Equations (18)–(23).

Thus, the steady states are one of the endemic equilibrium points depending on the
numerical values of R02 and R01 . For instance, if R02 > R01 > 1 then both SARS-CoV-2
strains survive in the population. This is due to the fact that the mathematical model (2)
does not consider full immunity either from vaccination or natural immunity [62,80]. Re-
cent studies suggest that this is true for the COVID-19 pandemic situation [22,139–143].
We did not perform further stability analysis related to periodic solutions, backward bifur-
cations and global stability since the aim of this study is the short dynamics of the Omicron
wave and obtaining further insight into it.

4. Simulations for the Omicron Wave

We performed in silico simulations of the Omicron wave model (2) for a variety
of scenarios (in fact, infinitely many) in order to obtain insight into the Omicron wave
situation and additional potential consequences of the Omircon strain on the dynamics
of this pandemic. We varied the vaccine’s efficacy against the Omicron strain in order to
consider, as some articles have mentioned, that the efficacy of the vaccine is lower against
the Omicron strain [22,48]. We also varied the transmissibility and severity of the Omicron
strain since it has been revealed that both factors significantly differ in comparison to the
previous circulating SARS-CoV-2 strains [22,24,48]. The in silico simulations allow us to
explain, at least partially, the Omicron wave period. We focus here on the qualitative results
of the in silico simulations since there are uncertainties that make it very difficult to have
accurate forecasts as time has proven over the COVID-19 waves.

The dependence of the transmission rate on the natural daily variability in human
behavior makes estimation of the transmission rate very difficult. Sensitivity analysis is one
means researchers often use to approach the uncertainties in the COVID-19 pandemic. The
numerical simulations presented in the present study show different potential situations in
order to remark on the distinct possibilities regarding the transmission rates. For instance,
when the Omicron variant arose, the scientific community did not know if it was more
transmissible or deadly than the previous strain. The simulations also have the aim of
corroborating the theoretical results in addition to potential explanations of what happened
in the real world. The simulations allow us to present different scenarios regarding the
real values of transmission rate and case fatality rate. This provides additional insight
regarding the COVID-19 pandemic dynamics and future scenarios for new variants.

All numerical simulations were carried out in Python 3.8. Ordinary differential equa-
tions were solved using the scipy.odeint routine. The simulations were performed with
a PC (Intel(R) Core(TM) i7-7820HQ CPU, 2.90 GHz) with 64 Mb RAM. Table 1 shows
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the numerical values of the parameters that were used for the in silico simulations. For
some parameters, we used a wide range of values in order to consider a larger number of
scenarios and potentially extreme cases that might arise due to uncertainty in the parame-
ters. For the initial subpopulations, we took the values from the particular situation of the
USA just before the start of the Omicron wave period [1]. Based on previous works, the
Omicron wave started around mid-November [45]. The values of the initial conditions can
be extracted from different data sources. Like the CDC, we considered the possibility that
for every symptomatic infected case there would be one asymptomatic case, even though
there is some uncertainty for this [1,4,133]. We chose the situation of the USA since the
reported data are more reliable than in other countries and the population is large enough
to observe the main effects on the Omicron wave dynamics. In the numerical simulated
scenarios, there is an effective reproduction numberRt that decreases as the susceptible
subpopulation decreases [80,144]. During the in silico simulations, we assumed that the
parameters are time-invariant, despite that in reality some parameters might vary over
time. Introducing time-varying parameters is a difficult task although some modelers have
attempted it [101]. For the percentage of asymptomatic cases we considered 50%, which is
a situation proposed by the CDC [133]. Making reasonable changes to this percentage does
not affect the qualitative conclusions of this study.

4.1. Efficacy of the Vaccine against the Omicron Strain

The Omicron strain has been detected in many countries [145]. Preliminary data related to
the efficacies of current vaccines against the Omicron strain are available. It has been revealed
that these efficacies are different in comparison with other SARS-CoV-2 strains. In [145], the
authors analyzed 133,437 PCR test results and found that during the proxy Omicron period
the vaccine efficacy against hospitalization was 70%, which is much lower than the 93%
efficacy for the comparator period. In [52], the authors carried out a narrative review from
32 scientific articles supporting the idea that Omicron evades antibodies induced by primary
vaccination or by SARS-CoV-2 infection. We use this information in order to set the efficacies
of the vaccines for the numerical simulations. Based on several scientific articles, we assume
that the current vaccines have less efficacy against the Omicron strain [24,51,128,146–148]. On
the other hand, it has been revealed that the Omicron pseudovirus infects cells more efficiently
than other SARS-CoV-2 strains [128]. Furthermore, those who received two doses of vaccine
have lower neutralizing activity against Omicron [22].

Table 2 shows the different efficacies of the vaccines for a variety of status related to
COVID-19. Some of these efficacies are high if the individuals already had the disease in
good agreement with previous studies [149,150]. Due to a short time study of less than
one year, the model does not consider a particular subpopulation for the cases where
individuals contracted the disease twice, which is very unlikely. However, the model can
also be used as an approximation for longer times, since it considers that once individuals
have been infected with SARS-CoV-2, the likelihood to get infected again is lower due
to memory cells and adaptive immunity [151–153]. The model considers implicitly the
waning of the effectiveness of the vaccine as well as natural immunity since vaccinated and
recovered people can get infected but with lower probability [153–155].

Table 2. Values of the assumed efficacies for the SARS-CoV-2 vaccines used in the in silico simulations.

Parameter From To Value

ε1 V I1, A1 [0.8,0.95]
ε1 R1 I1, A1 [0.8,0.95]
ε2 V I2, A2 [0.37,0.6]
ε1R V1R I1, A1 [0.98,0.99]
ε12R V1R I2, A2 [0.95,0.98]
ε22 R2 I2, A2 [0.9,0.95]
ε21 R2 I1, A1 [0.37,0.6]
ε21R V2R I1, A1 [0.98,0.99]
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4.2. Numerical Simulations towards Steady States

We present three in silico simulations of the model (2) in order to provide additional
support to the theoretical results and observe the long-term behavior. For these scenarios
we used initial conditions where the number of infected cases is very small since we
just want to compare with the theoretical results and sinceR0 is defined for almost fully
susceptible populations [116,137]. We varied the transmissibility of circulating SARS-CoV-2
strains and we considered that the Omicron strain has a higher likelihood to be transmitted
than the previously circulating strain. This allows us to foresee the long-term qualitative
effects of the Omicron wave.

Figure 2 displays the evolution of the symptomatic subpopulations I1(t) and I2(t).
We chose the transmission rate such that R01 < 1 and R02 < 1. Both symptomatic (the
asymptomatic cases were also treated but are not shown) subpopulations approach the
disease-free steady state F∗1 . In order to obtain manageable and useful graphs for the
steady states we use a large natural death rate for faster dynamics only in this subsection.
Figure 3 displays the long-term behavior when R02 > 1 > R01 and the initial infected
subpopulations are small. Note that the Omicron strain becomes the prevalent one and the
previous circulating one vanishes. In Figure 4 we consider the case where the initial number
of infected people with the previously circulating strain is large in order to resemble reality
when Omicron was introduced. It can be seen that despite having a large vaccination rate,
the system (2) still approaches the endemic steady state E∗1 due to the higher transmissibility
of the Omicron strain. Figure 5 depicts the case whereR02 > R01 > 1 and it can be seen that
the previously circulating strains and the Omicron strain become endemic. The explanation
for this is due to the fact that people who got either of the SARS-CoV-2 strains can get the
other strain. After this long-term dynamics results, the next subsection is devoted to the
transient dynamics of the Omicron wave.

Figure 2. In silico simulation of the Omicron wave model (2) when R02 ≈ 0.95 > R01 ≈ 0.82. The
previously circulating and Omicron strains disappear, while the system approaches the point F∗1 . We
use a large natural death rate for faster dynamics.

Figure 3. In silicosimulations of the Omicron wave model (2) when R02 ≈ 1.04 > R01 ≈ 0.9. The
Omicron strain becomes prevalent and the system approaches the point E∗1 .
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Figure 4. In silico of the Omicron wave model (2) whenR02 ≈ 1.04 > R01 ≈ 0.9. The Omicron strain
becomes prevalent and the system approaches the endemic steady state E∗1 despite the fact that the
initial prevalence of the non-Omicron strain has a very large prevalence.

Figure 5. In silico simulations of the Omicron wave model (2) when R02 ≈ 1.5 > R01 ≈ 1.4. The
previously circulating and Omicron strains become prevalent and the system approaches the endemic
steady state E∗.

4.3. Numerical Simulations to Assess Critical Outcomes

For the in silico simulations we considered various efficacies of the vaccine against
the Omicron strain, transmissibility and severity of the Omicron strain. In the analysis, we
focus on the qualitative results and the effects of the aforementioned factors.

Figure 6 displays the paths of each of the subpopulations and some cumulative
numbers. This is a particular case where we can see the evolution of the Omicron wave
for one scenario. This is not a suitable way to understand the effects of the Omicron strain
since there is no comparison with other scenarios. Thus, the next simulations consider
variations of the vaccine’s efficacy against Omicron and also Omicron infectivity.

Figure 6. In silico simulation of the Omicron wave model (2) when R02 ≈ 0.95 > R01 ≈ 0.87. The
two strains vanish and the system approaches the disease-free equilibrium point F∗1 .
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Figure 7 displays different outcomes regarding the final cumulative infected popula-
tion with each strain. It can be seen that when the Omicron infectivity rate increases, the
final cumulative number of people infected with Omicron increases, but the final cumu-
lative number of people infected with the previously circulating strain decreases. This is
due to a competition for the susceptible people among the strains. The model does not
consider co-infection. Furthermore, the final cumulative number of infected people with the
previously circulating SARS-CoV-2 strain increases if the vaccine’s efficacy against Omicron
increases. The opposite situation occurs for the final cumulative number of infected people
with Omicron. However, the changes to final cumulative numbers for people infected with
Omicron are much larger, which partially explains the large number of infected cases that
have been recorded for the Omicron wave.

Figure 8 displays the final cumulative number of deaths when we vary the vaccine’s
efficacy against the Omicron strain and the infectivity of the Omicron strain. As can be
observed, the final cumulative number of deaths increases as Omicron’s infectivity increases
despite assuming the same case fatality rate. This is a major result to bring awareness to,
given that even if the Omicron strain is less deadly the final cumulative deaths can increase
as has indeed occurred [1,49]. We also performed in silico simulations assuming standard
incidence in the model (2) and the results are qualitatively similar.

Figure 7. In silico simulation of the Omicron wave model (2). The outcomes regarding the final
cumulative infected people for each strain. As the Omicron infectivity rate increases, the final
cumulative number of people infected with Omicron increases but the final cumulative number of
people infected with the previously circulating strain decreases.

Figure 8. In silico simulation of the Omicron wave model (2). The outcomes regarding total deaths. As
the Omicron infectivity rate increases, the final total number of deaths increases. As can be observed,
the number of deaths increases despite assuming the same case fatality rate for the two strains.

4.4. Comparison of the Omicron Wave with the Non-Omicron Situation

Finally, we present additional in silico simulations to compare the non-Omicron with the
Omicron situation. In the analysis we focus on the qualitative results related to infected people
and total number of deaths since these are the crucial health outcomes of the pandemic.



Computation 2023, 11, 36 17 of 26

Figure 9 displays the infected subpopulations over a period of six months. The total
number of infected people is larger under the Omicron wave in comparison with the
situation where no Omicron is introduced, as reflected in reality. Notice that initially the
number of people infected with Omicron is much smaller, also as reflected in the real world.

Figure 10 displays the number of deaths over a period of six months assuming a
smaller death rate for people infected with Omicron (25% of previous circulating strain).
The total number of deaths is larger under the Omicron wave in comparison with the
situation with no Omicron despite a large number of the population being vaccinated and
a relative acceptable vaccine efficacy. These results are in good agreement with the results
that have occurred during the Omicron wave [1,49].

Figure 9. In silico simulation of the Omicron wave model (2) when R01 ≈ 0.81, R02 ≈ 1.74 and
vaccine efficacy against Omicron is approximately 79%. More infected cases during the Omicron wave,
despite a large number of the population being vaccinated and a relative acceptable vaccine efficacy.

Figure 10. In silico simulation of the Omicron wave mathematical model (2) when R01 ≈ 0.81,
R02 ≈ 1.74 and vaccine efficacy against Omicron is approximately 79%. More deaths during the
Omicron wave, despite a lower case fatality rate for Omicron, large number of population vaccinated
and a relative acceptable vaccine efficacy.

4.5. Discussion of Numerical Simulation Results

The numerical simulation results presented here agree with those obtained in previous
work related to the Omicron wave. For instance, in [121] the authors found that a new SARS-
CoV-2 variant’s (for example, Omicron) dominance is primarily driven by its infectivity,
which does not always lead to an increased public health burden. This has been shown in
our work through the theoretical results and the numerical simulations. In [119], the authors
considered several key uncertainties and concluded that in the particular case of England
and under the assumption that no new variants emerge, SARS-CoV-2 transmission is
expected to decline. This also agrees with our results, since the basic effective reproductive
number depends on the transmission rates. The authors mentioned that the projections
depend largely on assumptions around waning immunity, social behavior and seasonality.
In our work, we presented sensitivity analysis to assess the effects of uncertainty of some
factors related to the Omicron variant and the results agree with the aforementioned
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work. It is important to remark that during the Omicron wave, people from each region
have different levels of immunity protection. This was investigated in in [120]. Their
results suggested that even in those regions where the Delta variant is controlled before
the beginning of the Omicron wave a significant Omicron wave can be expected. This
has been shown in our study and under some mathematical conditions that we have
found. Thus, all these results provide additional insight into the understanding of new
SARS-CoV-2 variants.

Previous studies have modeled the Omicron wave [119–121]. In [121], the authors
implemented a stochastic, discrete-time- and individual-based transmission model of
SARS-CoV-2 infection and COVID-19 disease. The model considers an age-structured,
small-world network. Using sensitivity analysis, they show that a new SARS-CoV-2 variant
dominance is primarily driven by its infectivity, which does not necessarily lead to an
increased public health burden. In [119] the authors used a model fitted to more than
2 years of epidemiological data from England to project potential dynamics of SARS-CoV-2
infections and deaths to December 2022. They considered several key uncertainties includ-
ing behavioral change and waning immunity. They concluded that for the particular case
of England and under the assumption that no new variants emerge, SARS-CoV-2 transmis-
sion is expected to decline. The authors concluded that the projections depend largely on
assumptions of waning immunity, social behavior and seasonality. Other interesting work
related to Omicron waves is presented in [120]. In this work, a generalized SEIR model
assuming gamma-distributed incubation and infectious periods is presented. The model
includes susceptibility to Omicron. Their results suggest that even in those regions where
the Delta variant is controlled before the beginning of the Omicron wave a significant
Omicron wave can be expected. For the particular case of England, the Omicron wave was
smaller than the Delta wave. In our paper, we provide additional insight regarding the
Omicron wave.

5. Conclusions

Mathematical models are fruitful for the study of various epidemics and infectious
diseases. The models allow us to learn about the evolution of epidemics and also to
grasp the potential effects of public health control strategies on the epidemics. Forecasting
epidemics is frequently a complex task. Mathematical models are able to provide results
that sometimes are difficult to anticipate without mathematical tools.

We constructed a mathematical model to investigate the evolution of the Omicron
wave. The Omicron strain has caused a new wave with a large amount of infected cases and
deaths worldwide. In some countries, the average number of deaths during this Omicron
wave has only slightly increased in comparison with previous circulating SARS-CoV-2
waves. We used a mathematical model to study and approximate the Omicron wave
situation in the USA, but it can be extended to other countries. This study uses the facts that
the Omicron strain exhibits a higher intrinsic transmissibility than the previously circulating
SARS-CoV-2 strain but is less deadly. The numerical simulation results show that despite
the fact that the Omicron strain is less deadly it can nevertheless cause more deaths and
hospitalizations. This result is of paramount importance for public health, since many
people might think that since the Omicron strain is less deadly then the number of deaths
will be fewer during the Omicron wave. The spread of the Omicron strain depends on
several factors, which vary according to the region; therefore, the Omicron wave situation
can be different in other countries or regions. In summary, we used a mathematical model in
conjunction with numerical simulations to provide an explanation of a large Omicron wave
under various conditions related to the variant’s transmissibility. These results provide
awareness that new SARS-CoV-2 variants can cause more deaths even if their fatality rate
is lower. In fact, we can mention that in the USA the peak of number of deaths during the
Omicron wave was comparable to that during the Delta wave despite the fact that during
the former wave people already had immunity protection due to vaccination programs [1].
In addition, in Brazil and Colombia, the numbers of infected cases were larger than those
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during the Delta wave. These facts point out the different potential outcomes of new
SARS-CoV-2 variants with different transmissibility and fatality rates.

From a mathematical analysis viewpoint, we studied first the local stability using the
well-known NGM method. We computed the basic reproduction numberR0 and found
that it is the largest of the two parameters R01 and R02 . This theoretical result reveals
that the COVID-19 pandemic can become extinct if R0 < 1. This is achievable if the
vaccination rate is increased (this implies that people are willing to get vaccinated) and/or
the transmission rate is decreased such that R0 < 1. We also performed global stability
analysis for the disease-free steady state. The numerical simulations provided additional
support to the theoretical analysis and showed qualitative effects of the Omicron strain
on the US population. This study is more designed for a relatively short time horizon.
However, we provide long-term mathematical analysis to obtain a better picture of the
dynamics. Interesting and deeper mathematical analysis can be be carried out regarding
the endemic states, global stability, periodic solutions and bifurcations.

We provided a variety of scenarios that help to obtain insight into the Omicron wave
and its consequences. The numerical simulations showed the Omicron wave outcomes
under different conditions related to the vaccines and transmissibility. The results show
that the final cumulative number of infected people can be greater with respect to previous
waves despite a large number of people being vaccinated. These results are in good
agreement with what has occurred during the Omicron wave. For instance, this happened
in Brazil and Colombia [1,49].

The results presented here help to support public health policies and, most impor-
tantly, to bring awareness to people about the Omicron strain or future highly contagious
SARS-CoV-2 strains. At this time, China is suffering one of the largest waves in spite of the
fact that in the past they were able to control the spread of SARS-CoV-2. As in any math-
ematical model, we need to be aware of the limitations in order to understand potential
misunderstandings or mistaken conclusions. For instance, the constructed mathematical
model assumes homogeneous mixing and constant proportional vaccination rates which
obviously is not the case in the real world. One way to better approximate reality would be
to describe the vaccination using real data which would give a more complex model since
it would then become non-autonomous (see [105]). In addition, more detailed models can
include age structure and seasonality. However, despite the usual limitations of mathemati-
cal models, this study provides useful means of explaining and obtaining deeper insight
about the Omicron wave. As shown by the simulations, the appearance of the Omicron
strain or highly contagious SARS-CoV-2 strains changes the dynamics of the pandemic and
can increase the number of deaths despite a lower mortality rate.

As in any mathematical model of the real world there are limitations in the results
and conclusions. The proposed model is just an approximation of the reality during the
Omicron wave. During this wave several SARS-CoV-2 variants were circulating. The
model assumes the existence of just two main variants. The model assumes a constant
transmission rate for each of the Delta and Omicron variants, but the reality is that these
rates change continuously depending on many complex factors. The proposed model does
not consider explicitly people hesitant to be vaccinated. The model does not consider the
spatial effects of the diffusion of SARS-CoV-2. This has been a common weakness of many
models. The model considers only one vaccinated population without any distinction
between the number of doses received by individuals. The model does not include human
behavioral changes, but considers a variety of transmission rates in the sensitivity analysis.

Finally, we would like to point out that the results presented here are helpful to
obtain further insight into the Omicron wave and the effect of new highly transmissible
strains and new vaccines. Various graphical illustrations show the impact of vaccines and
transmissibility on the Omicron wave. From the results, it can be seen that the COVID-19
pandemic can be eliminated under some circumstances and following the recommendations
of the World Health Organization (WHO).
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