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Abstract: Mesoscopic simulations of long polymer chains and soft matter systems are conducted
routinely in the literature in order to assess the long-lived relaxation processes manifested in these
systems. Coarse-grained chains are, however, prone to unphysical intercrossing due to their inherent
softness. This issue can be resolved by introducing long intermolecular bonds (the so-called slip-
springs) which restore these topological constraints. The separation vector of intermolecular bonds
can be determined by enforcing the commonly adopted minimum image convention (MIC). Because
these bonds are soft and long (ca 3–20 nm), subjecting the samples to extreme deformations can lead
to topology violations when enforcing the MIC. We propose the fixed image convention (FIC) for
determining the separation vectors of overextended bonds, which is more stable than the MIC and
applicable to extreme deformations. The FIC is simple to implement and, in general, more efficient
than the MIC. Side-by-side comparisons between the MIC and FIC demonstrate that, when using the
FIC, the topology remains intact even in situations with extreme particle displacement and nonaffine
deformation. The accuracy of these conventions is the same when applying affine deformation. The
article is accompanied by the corresponding code for implementing the FIC.

Keywords: minimum image; slip-spring; mesoscopic; Brownian dynamics; deformation

1. Introduction

Understanding the structure–property relations in polymers and soft matter systems
is key to designing advanced materials with tailor-made properties for applications in
biology [1], nanocomposites [2–5], rheology [6–8], and more. Polymeric materials exhibit
a rich spectrum of relaxation mechanisms, the longest of them spanning the millisecond
to second regime, depending on the chain molar mass. The latter phenomena can be
investigated with mesoscale simulation techniques such as Brownian dynamics [9] and
dissipative particle dynamics [10,11], which treat large collections of atoms as single coarse-
grained sites, in that manner drastically decreasing the degrees of freedom and affording
huge savings in computational time.

Coarse-grained polymer chains are, however, prone to unphysical intercrossing, thus
violating the network topology and yielding artificially faster dynamics and lower vis-
cosity. Much research has been devoted to restoring the proper viscoelastic properties of
coarse-grained polymers by enforcing the topological constraints in an artificial manner,
such as the TWENTANGLEMENT model [12], and the slip-link [13,14] and slip-spring
(SS) [15–17] models, all of them resting on the assumptions of reptation theory [18–20].
In the slip-spring model, the entanglements are modeled with entropic springs which
are generated/destroyed at the chain ends and are able to slide along the chain contours
during the course of the simulation, modeling in this way the mechanism of reptation. The
slip-spring model has been particularly successful for restoring the viscoelastic properties
of linear [8,17,21,22], star [23,24], and cross-linked [25–27] polymers, in bulk [8,17] and
interfacial [5,21,28] geometries under quiescent and nonequilibrium [8,16,29,30] conditions.
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A common boundary condition for investigating homogeneous samples is the periodic
boundary condition (PBC), where the domain is treated as infinite along the periodic
directions [9]. This is achieved by replicating the central box along these directions; these
replicas are called box images. It is convenient to allow the particles to diffuse outside the
central box in order to compute their transport properties. In doing so, the relative distance
between two particles i and j (which may lie in different box images) can be corrected by
enforcing a suitable convention such as the minimum image convention (MIC).

According to the MIC, each particle i interacts with the image of particle j that is closest
to it, in such a way that the absolute projections of their separation vector on the basis
vectors of the simulation box do not exceed half the corresponding edge lengths of the
box. The MIC is applicable to non-orthogonal boxes as well, after adjusting for the shear
displacement of the periodic images [9,31]. Care must be exercised, however, in the case of
particle pairs connected by soft springs; in a situation where the spring projection on one or
more of the coordinate axes exceeds half the box edge length along that axis, the separation
vector is redefined with respect to the (new) closest pair of images of the particles, resulting
in a violation of the system topology.

This issue can become especially prevalent in simulations of coarse-grained polymers
that have been subjected to extreme deformation, due to the inherent softness of the intra-
and intermolecular effective bonds (springs) involved. For example, the equilibrium length
of the intermolecular springs that are used to mimic the entanglements (slip-springs [15,16])
is ca 3–20 nm [32]. Subjecting the system to strong flows can overextend the aforemen-
tioned bonds significantly and lead to topology violations. In addition, the stability of
the simulation is severely affected during extensional flow experiments [33,34], due to the
decreased cross-section of the sample which leads to frequent instabilities and topology
violations. Another drawback of the MIC is that it entails considerable computational cost
due to the calculation of remainders [9], whereas choosing an optimal algorithm depends
on several factors such as the compiler optimization and processor architecture [35].

We propose an alternative convention for determining the separation vectors of molec-
ular bonds, which we call the fixed image convention (FIC). In FIC, the MIC is enforced
only once during the formation of the bond and the minimum separation vector is stored
in memory, in terms of a shift vector. In subsequent iterations, the separation vector is
calculated simply by adding a shift vector to the absolute separation vector. The FIC is
applicable to boxes with either constant or varying size (i.e., simulations in the isothermal-
isobaric ensemble). Note, however, that subjecting the system to affine deformation requires
deforming the shift vectors as well. Given that the distance between the images is fixed, the
system topology remains intact even for very large deformations. In general, this operation
is much faster than the usual MIC, especially when working with non-orthogonal boxes.

The article is structured as follows: Section 2.1 illustrates the coordinate system
used in this work, and Section 2.2 reports the formulation of the various conventions for
determining the separation vector. Section 3.1 compares the accuracy of the MIC and the FIC
under conditions of extreme displacement and affine/non-affine deformation. Section 3.2
assesses the stability of the conventions under random displacement and strong shear
deformation. Section 3.3 discusses the efficiency of the MIC and the FIC. Finally, Section 4
summarizes the main findings of the work. The code for conducting the comparisons
between the MIC and FIC is provided via a GitHub repository [36].

2. Methods
2.1. Coordinate System and Constraints

The edge vectors of a parallelepiped simulation box can be described according to
Equation (1):

l1 = (Lx, 0, 0)
l2 = (∆xy, Ly, 0)
l3 = (∆xz, ∆yz, Lz)

(1)
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with ∆xy, ∆xz, and ∆yz indicating the displacement of the y/z/z face along the x/x/y axis
of an originally orthogonal box with dimensions Lx, Ly, and Lz. In addition, the shearing
components can be constrained according to Equation (2):

− Lα

2
≤ ∆αβ ≤

Lα

2
(2)

Adding or subtracting multiples of the box edge vectors does not affect the magnitude
of the separation vectors when enforcing suitable minimum image conventions [9]. The
aforementioned restrictions impose no loss of generality; any set of arbitrary non-collinear
edge vectors can be rotated, inverted, and translated in order to conform to these constraints.
For convenience, we will refer to the configuration of a box with the vector:

L =
(

Lx, Ly, Lz, ∆xy, ∆xz, ∆yz
)

(3)

2.2. Conventions of Separation Vectors
2.2.1. Absolute Distance (AD)

Let ri, rj denote the absolute position of two particles i, j. By absolute, it is meant that
the particles may lie anywhere in the Cartesian domain regardless of the bounds of the box.
Their absolute separation vector is defined according to Equation (4).

rAD
ij = rj–ri (4)

2.2.2. Minimum Image Convention (MIC)

In orthogonal boxes, the calculation of the minimum separation vector can be per-
formed according to the MIC as follows:

FMIC
orth

(
rAD

ij , L
)
=


xAD

ij − Lxnint
(

xAD
ij /Lx

)
yAD

ij − Lynint
(

yAD
ij /Ly

)
zAD

ij − Lznint
(

zAD
ij /Lz

)
 (5)

with nint denoting the nearest integer rounding function, and FMIC
orth a vector-valued func-

tion which returns the minimum image of a vector rAD
ij subject to the dimensions of an

orthogonal periodic box, L.
In triclinic boxes, the minimum image vector is determined by applying the Lees–

Edwards boundary condition [31], which requires a prerequisite step. Initially, one has to
correct for the displacement of the periodic images [9]:

rcor
ij = Fcor

(
rAD

ij , L
)
=


xAD

ij − ∆xynint
(

yAD
ij /Ly

)
− ∆xznint

(
zAD

ij /Lz

)
yAD

ij − ∆yznint
(

zAD
ij /Lz

)
zAD

ij

 (6)

Subsequently, the minimum separation vector is retrieved by inputting rcor
ij to Equation (5):

rMIC
ij = FMIC

(
rAD

ij , L
)
= FMIC

orth

(
rcor

ij , L
)

(7)

2.2.3. Fixed Image Convention (FIC)

The FIC entails storing the difference between the minimum and the absolute separa-
tion vectors during the formation of the bond, in terms of the shift vector:

rshift
ij = FMIC

(
rAD

ij , L
)
− rAD

ij (8)

In the subsequent iterations, the separation vector is calculated simply by adding the
absolute separation vector and the (constant) shift vector:

rFIC
ij = rAD

ij + rshift
ij (9)
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Deforming the box entails some additional operations. Let F be a linear transformer
describing the mapping between a reference (vref) and a transformed (v) vector:

v = F · vref (10)

with “ref” denoting the vectorial quantity before the deformation; details regarding the
analytical calculation of F are reported in the Appendix A. Applying F to a parallelepiped
transforms its edge vectors according to Equation (11).

[l1 l2 l3] =
[
F · lref

1 F · lref
2 F · lref

3

]
(11)

Depending on the application [37], the coordinates of the constituent particles may(
ri = F · rref

i
)

or may not
(
ri = rref

i
)

be transformed according to F. According to the type
of applied deformation, we have the following cases:

• Affine deformation: the transformation is applied to both the box and the constituent
particles. In this case, the shift vectors are transformed accordingly:

rshift
ij = F · rshift,ref

ij (12)

• Nonaffine deformation: the transformation is applied only to the box, and the shift
vectors remain unaffected:

rshift
ij = rshift,ref

ij (13)

Finally, in order to restart a simulation with the FIC, the shift vectors should be
exported to the hard drive alongside the other properties of the simulation (box dimensions,
coordinates, etc.) and be read during the restart procedure.

3. Results
3.1. Comparisons between MIC and FIC

We will first assess the accuracy of the MIC and FIC for the six representative scenarios
(scn) that are depicted in Table 1. In each case, we apply a linear transformer to the box
and/or the constituent particles which is related to the (nonsymmetrical) engineering strain
tensor as follows:

ε
.
=

∂

∂vref

(
v− vref

)
= F− I (14)

Depending on whether the deformation has been applied to the box and/or the particle
coordinates, we have the following cases: displacement (box, coord) = (F, T), nonaffine
deformation (box, coord) = (T, F), and affine deformation (box, coord) = (T, T), with box and
coord denoting Booleans.

Table 1. Parameters of scenarios A–F. The columns under the operation header denote the components
of the maximum applied strain tensor (Equation (14)) and whether the transformation has been
applied to the box and/or the particle positions. The columns under the reference/deformed header
correspond to the dimensions of the box and the magnitude of the separation vectors before/after
the deformation *.

scn Operation Reference Deformed
εyy εxy box coord Lref

y ∆ref
xy rAD,ref

ij rMIC,ref
ij rFIC,ref

ij Ly ∆xy rAD
ij rMIC

ij rFIC
ij

A 1 0 F T 10 0 12.5 2.5 2.5 10 0 25 5 15
B 1 0 F T 10 4 12.5 4.71 4.71 10 4 25 5.38 15.52
C 1 0 T F 10 0 12.5 2.5 2.5 20 0 12.5 7.5 2.5
D 1 0 T T 10 0 12.5 2.5 2.5 20 0 25 5 5
E 0 1 T F 10 0 12.5 2.5 2.5 10 5 12.5 2.5 2.5
F 0 1 T T 10 0 12.5 2.5 2.5 10 5 17.67 3.53 3.53

* In all cases: εxx = εyx = 0; Lref
x = Lref

y = Lx = 10; rref
i = ri = (0, 0), rref

j = rAD,ref
ij = (0, 12.5).
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In all cases, the particle i resides at the origin of the box; hence, it remains unaffected.
The particle j has been placed in the first image of the box along the y-axis, mimicking in
this manner the formation of a bond between two chains which reside in different periodic
images. For simplicity, the calculations have been conducted in 2D; calculations in 3D yield
similar qualitative findings.

3.1.1. Particle Displacement in Rigid Boxes

First, we will examine the effect of (over)extending an intermolecular bond connect-
ing particles which lie in different periodic images of orthogonal boxes as a function of
displacement.

Figure 1a,b illustrate results from scenario A (see Table 1) where the particle j has
been displaced with respect to particle i along the y-axis. In particular, Figure 1a illustrates
snapshots of the particle positions and the separation vectors rMIC

ij and rFIC
ij connecting

particle i with the image of particle j, hereafter referred to as j′. Figure 1b depicts the
magnitude of the separation vectors (rMIC

ij , rFIC
ij , and rAD

ij ) as a function of the displacement
in box units, i.e., ∆y/Ly = εyy. For more details, please refer to the caption of Figure 1.
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Figure 1. (a,c) Snapshots of the box edges and particle positions (i, red; j, blue; j′, grey) during the
deformation at strain increments of 0.2. The grey bead depicts the image (j′) of j that is bonded to
particle i according to the MIC (top) or FIC (bottom). (b,d) Magnitude of the separation vectors
according to the AD (dashes), MIC (dots), and FIC (solid). Panels (a,b) and (c,d) correspond to
scenarios A and B in Table 1, respectively.

For small displacements (
∣∣∆y
∣∣ < 0.5Ly), the separation vectors according to the MIC

and FIC are the same. For larger displacements (
∣∣∆y
∣∣ ≥ 0.5Ly), the MIC becomes unstable

since rMIC
ij changes sign; i.e., the image of the particle in Figure 1a (MIC) hops to the −y

image of the box. Instances such as this should be avoided during the course of practical
simulations, since they violate the system topology. The FIC, on the other hand, yields the
desired behavior, i.e., the separation vector increases proportionally with displacement.

Figure 1c,d depict the same evaluations but for a box that has been sheared along the
x-axis (scenario B in Table 1). The behavior of the MIC and FIC is qualitatively the same as
in the previous case; rMIC

ij swaps signs and the image of the particle hops from the −x to the

−y box image when
∣∣∆y
∣∣ ≥ 0.5Ly, whereas rFIC

ij increases steadily with the displacement.
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3.1.2. Affine and Nonaffine Deformation (Varying Box Size)

In the following, we will examine the accuracy of the MIC and FIC during affine and
nonaffine deformation experiments.

Figure 2 illustrates results from elongation experiments according to the parameters
of scenarios C (panels a, b) and D (panels c, d) in Table 1; panels a, c illustrate snapshots
of the system, and panels b, d show the magnitude of the separation vectors during the
deformation according to the AD, MIC, and FIC.
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Figure 2. As with Figure 1, but for scenarios C (a,b) and D (c,d) in Table 1.

According to Figure 2a,b, enforcing the FIC under nonaffine deformation conditions
leaves the separation vector unchanged. Given that the relative positions of the particles are
unchanged, it makes sense that the separation vector should remain the same. In contrast,
enforcing the MIC results in some interesting behavior: rMIC

ij decreases with increasing
strain until Ly = rj, after which it increases indefinitely. Regardless, however, deforming the
box while keeping the coordinates of the particles unchanged is not a well-defined process;
thus, depending on the application, one may choose to apply either the MIC or the FIC.

Figure 2c,d present results from the same experiment, but with the difference that the
particle coordinates are transformed along with the box (scn D in Table 1). In this situation,
the MIC and FIC yield identical results. The projections of the separation vector change
proportionally with the box dimensions; hence, they cannot become larger than half of the
edge vectors of the box and swap box images.

Figure 3 illustrates results from the shearing deformations according to scenarios E
(panels a, b) and F (panels c, d) in Table 1. Note that at εxy = 0.5, ∆xy flips sign according
to the constraint in Equation (2). Similarly, with the nonaffine elongation experiments,
enforcing the FIC leaves the separation vector unchanged, whereas the MIC results in
complicated behavior. Under affine shear deformation conditions, the MIC and FIC result
in identical behavior (Figure 3c,d).

3.2. Stability

In this section, we will assess the performance of the MIC and FIC against bead-spring
molecular mechanics models under conditions of extreme deformation.
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Figure 4a (left) depicts a periodic face-centered cubic (FCC) lattice made by 5 × 5 × 5,
four-particle unit cells with lattice constant, acell = 10 Å. Each particle interacts with its
12 nearest neighbors (nbond = 3000 total interactions) via a harmonic potential of the form:

Eb(r) = kb(r− rb)
2 (15)

where kb = 10−5 kJ/(molÅ2), and rb = acell/
√

2 is the first neighbor distance. The particles
at the periodic boundaries interact with their nearest images subject to the MIC or the FIC;
thus, the energy of this reference state is zero.
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5 × 5 × 5 unit cells, by enforcing the MIC (top row) or the FIC (bottom row). Steps refer to iterations of
the conjugate gradient algorithm. (b) Evolution of the normalized energy during the minimization.
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The particle coordinates are randomized and the configuration is subjected to an
energy minimization via a conjugate gradient algorithm [38,39] that has been implemented
in the EMSiPoN code [8,17,25,28] (see Appendix B). The evolution of the normalized energy
during the course of the minimization is illustrated in Figure 4b. The FIC yields a higher
energy at the start of the optimization (Figure 4b, step = 0) because it describes the topology
of the overextended bonds properly. The initial energy is lower when enforcing the MIC
because the topology is violated since the separation vectors are redefined with respect
to the (new) nearest image particles. Due to these topology violations, the MIC performs
rather poorly, and the system cannot return to its initial state. In contrast, the FIC keeps the
topology intact, and the system is able to return to its initial state after the minimization.

Figure 5a (panel εxy = 0) depicts a periodic 5 × 5 square lattice with alat = 2 Å. Each
particle interacts with its four closest neighbors (nbond = 50) according to Equation (15) with
kb = 1 kJ/mol and rb = alat. The lattice is gradually sheared along the x-axis for εxy up to 5;
the evolution of the normalized energy during this operation is shown in Figure 5b.
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formations. Subjecting the system to affine deformation (i.e., applying the linear trans-

Figure 5. (a) Illustration of a shear deformation experiment of a periodic square lattice with alat = 2 Å
for shear strain up to εxy = 5. The transparent particles correspond to the first layer of the image
particles in the +x image of the box. The green lines indicate the formation of new bonds with
the transparent layer of image particles when enforcing the MIC. For clarity, the constraint to
∆xy according to Equation (2) has not been applied to these visualizations and the box is sheared
continuously. (b) Evolution of the normalized energy during the shear experiment.

For shear deformations up to εxy = 2.5, the energy increases parabolically, regardless of
the image convention. After this threshold, the ends of the vector rMIC

ij attach to the image
particles in the +x box image; see green bonds in Figure 5a. As a result, the energy starts to
decrease with increasing strain, whereas at εxy = 5, the system returns to its initial (unde-
formed) state. When enforcing the FIC, on the other hand, the energy increases indefinitely
with increasing strain, indicating that the extreme shear displacement is described properly.

3.3. Efficiency

The implementation of the MIC entails increased computational cost due to the calcu-
lation of the remainders in Equation (5); the computational time increases further when
working with nonorthogonal boxes (see Equation (6)) due to the correction for shear
displacement. Several algorithms have been proposed in the literature for enforcing the
MIC [9,35]. Choosing an optimal algorithm depends on several factors such as the processor
architecture and the compiler optimizations [35].

The FIC is generally cheaper since it requires adding a shift vector to the absolute
separation vector. The shift vectors are computed only once during the formation of the
bond and are stored in memory. The additional burden on system memory scales as O(n);
it is negligible considering the modern computer architectures. It is worth mentioning
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that, in cases where the system is subjected to affine deformation, the shift vectors must be
transformed according to Equation (12), thus increasing the cost of the operation slightly.

4. Conclusions

We have developed the fixed image convention (FIC) for determining the separation
vectors of the intra- and intermolecular (effective) bonds in particle simulations. The accu-
racy of the FIC has been assessed in terms of conducting comparisons with the commonly
adopted minimum image convention (MIC). The experiments for particle displacement
and nonaffine deformation demonstrate that, when the projections of the separation vectors
exceed half of the box projections, the minimum image separation vector swaps periodic
images, and in this manner, the topology of the system is violated. The FIC, on the other
hand, keeps the topology of the system intact, even at extreme deformations. Subjecting the
system to affine deformation (i.e., applying the linear transformer to both the box vectors
and particle coordinates) yields the same (stable) behavior, regardless of the convention.
Given that in the FIC the separation vectors between the images are fixed, the system
is able to return to its initial (undeformed) state regardless of how it is deformed. The
computational cost for enforcing the FIC is generally lower than that of the MIC. The FIC is
generic and applicable to several types of particle-based simulations and bonding schemes.
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Appendix A. Analytic Expression of the Deformation Gradient

In the general case, the deformation gradient F satisfies the following equations:

v1 = Fvref
1

v2 = Fvref
2

v3 = Fvref
3

(A1)

with [v1, v2, v3] and [vref
1 , vref

2 , vref
3 ] being two sets with non-collinear vectors. In matrix

representation, Equation (A1) can be expressed as follows:

x1
y1
z1
x2
y2
z2
x3
y3
z3


=



xref
1 yref

1 zref
1 0 0 0 0 0 0

0 0 0 xref
1 yref

1 zref
1 0 0 0

0 0 0 0 0 0 xref
1 yref

1 zref
1

xref
2 yref

2 zref
2 0 0 0 0 0 0

0 0 0 xref
2 yref

2 zref
2 0 0 0

0 0 0 0 0 0 xref
2 yref

2 zref
2

xref
3 yref

3 zref
3 0 0 0 0 0 0

0 0 0 xref
3 yref

3 zref
3 0 0 0

0 0 0 0 0 0 xref
3 yref

3 zref
3





Fxx
Fxy
Fxz
Fyx
Fyy
Fyz
Fzx
Fzy
Fzz


(A2)

https://github.com/ArisSgouros/FixImag.git
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or
R = MF

′
(A3)

with F
′

being a vectorial representation of F. Solving F
′

entails inversing the matrix M:

F
′
= M−1R (A4)

In terms of the restricted coordinate system presented in Section 2.1 (y1 = z1 = z2 =xref
1

= zref
1 = zref

2 = 0), the components of the deformation gradient can be obtained analytically
according to Equation (A5).

F =

Fxx Fxy Fxz
0 Fyy Fyz
0 0 Fzz

 =


x1

xref
1

x2−xref
2 Fxx

yref
2

x3−xref
3 Fxx−yref

3 Fxy

zref
3

0 y2
yref

1

y3−yref
3 Fyy

zref
3

0 0 z3
zref

1

 (A5)

Appendix B. Implementation of a Conjugate Gradient Algorithm

Given an objective function A(r) with known gradient gk = ∇A(r) = −f(r), the first
can be minimized iteratively as:

rk+1 = rk + αkdk (A6)

where dk is the search direction, and αk is the (scalar) step size. At the first step, dk is set
to −gk.

At each iteration, ak is optimized via a three-stage linear search keeping dk, rk constant:

1. Bracket minimum between two larger values;
2. Optimize ak via inverse parabolic interpolation;
3. In case (ii) fails, switch to the golden-section optimization.

To speed up the linear search, the initial guess of ak is updated in the following manner:

ak+1 = alearnak + (1− alearn)ak−1 (A7)

with alearn ∈ [0, 1] being a learning rate. Note that the force is not calculated during the
aforementioned linear search.

Upon completion of the linear search, in case of convergence, the process is terminated.
The conditions for convergence are the following:

• The absolute difference between the current (Enext) and previous (Eprev) energy is
below a tolerance value: ∣∣Enext − Eprev

∣∣ < ∆Etol (A8)

• A maximum minimization step (kmax) has been exceeded.

k > kmax (A9)

If the convergence has not been achieved, we proceed and compute the new forces
based on the new configuration rk+1:

−gk+1 = f(rk+1) (A10)

The search direction is then updated according to the following rule:

d0 = −g0 , if k= 0
dk+1 = −gk+1 + βkdk , if k > 0

(A11)
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βk is the conjugate gradient parameter and can be calculated either from the Fletcher–
Reeves formula [38]:

βFR
k =

gT
k+1gk+1

gT
k gk

(A12)

or from the Polak–Ribière formula [39]:

βPR
k =

gT
k+1
(
gk+1 − gk

)
gT

k gk
(A13)

The aforementioned process is repeated from the start until convergence.
In the minimizations reported in Figure 4, the parameters of the optimization are the

following: ∆Etol = 10−15 kJ/mol, kmax = 40, ak_init = 0.5, alearn = 0.5.
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