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Abstract: In this paper, we develop a deterministic mathematical epidemic model for tuberculosis
outbreaks in order to study the disease’s impact in a given population. We develop a qualitative
analysis of the model by showing that the solution of the model is positive and bounded. The global
stability analysis of the model uses Lyapunov functions and the threshold quantity of the model,
which is the basic reproduction number is estimated. The existence and uniqueness analysis for
Caputo fractional tuberculosis outbreak model is presented by transforming the deterministic model
to a Caputo sense model. The deterministic model is used to predict real data from Uganda and
Rwanda to see how well our model captured the dynamics of the disease in the countries considered.
Furthermore, the sensitivity analysis of the parameters according to R0 was considered in this study.
The normalised forward sensitivity index is used to determine the most sensitive variables that are
important for infection control. We simulate the Caputo fractional tuberculosis outbreak model using
the Adams–Bashforth–Moulton approach to investigate the impact of treatment and vaccine rates, as
well as the disease trajectory. Overall, our findings imply that increasing vaccination and especially
treatment availability for infected people can reduce the prevalence and burden of tuberculosis on
the human population.

Keywords: Caputo fractional derivative; tuberculosis epidemic model; reproduction number;
sensitivity analysis; numerical scheme

1. Introduction

Mycobacterium tuberculosis (TB), often known as Tubercle Bacilli, is the bacterium that
causes the infectious, contagious disease called tuberculosis (TB), which most frequently
affects the lungs. When an infected person coughs or sneezes, the bacilli that live in their
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infected host’s lungs spread to other people. Sometimes, because the immune system can
keep a person from becoming sick, not everyone who contracts the TB bacteria becomes
sick. For this reason, medical professionals distinguish between an active TB infection
(ATBI) and a latent TB infection (LTBI). For LTBI, one has a TB infection but the bacteria in
the body are dormant and do not produce any symptoms. Latent tuberculosis, also known
as dormant tuberculosis, is not contagious. When latent TB becomes active, treatment
is crucial. An active TB infection, often known as TB disease, causes illness and can be
transmitted to other people. Transmission might occur shortly after TB bacterial infection or
years later. A lengthy course of treatment comprising numerous antibiotics will be necessary
for those who have active symptoms. After HIV/AIDS, tuberculosis (TB) remains one of
the world’s most lethal infectious diseases.

The African Region will account for more than 36% of TB deaths in 2022, according
to the World Health Organization (WHO) [1–4]. Ethiopia, Rwanda, Kenya, Tanzania,
and Uganda are among the 30 nations with the highest MDR-TB burden at the moment.
According to the WHO, Kenya and Ethiopia are among the 30 countries with the highest
rates of tuberculosis (TB) in the world. Also, according to [5], East Africa countries with high
tuberculosis cases are Uganda, Kenya, and Tanzania. This is because more of their citizens
are moving across borders, as reported by news [6]. Kenya is seventh in Africa and has the
fifteenth-highest load globally [2]. Although it affects all age groups, the most productive
age range of 15 to 44 years suffers the most from it. The concurrent HIV epidemics are
the main cause of Kenya’s widespread TB sickness, according to the media [7]. Using
data from Tigania West Sub County Hospital, [1,8] evaluated the effect of HIV/AIDS on
TB infections using numerical simulation. According to the numerical simulation, HIV
infection accelerates the transition from exposed to infectious or active TB. The two illnesses
have a synergistic relationship in which one illness infection speeds up the progression
of the other. The East Africa Regional Program is a nine-month effort financed by USAID
East Africa within the five-year Challenge TB project. Ethiopia, Kenya, Rwanda, Somalia,
Tanzania, and Uganda are the six key nations in the region where the program concentrates
its efforts. The program’s objectives include developing demonstration/learning sites
where best practices can be produced and disseminated for adoption and implementation,
as well as initiatives that go beyond the borders of specific nations. Many MDR-TB
patients from Somalia have traveled into Kenya in East Africa in search of medical care.
Although Somalia has the ability to diagnose MDR-TB, it does not have the ability to
treat it; as a result, the majority of Somalis choose to receive treatment in neighbouring
nations [4]. According to a study on the primary causes of tuberculosis in Dar es Salaam,
Tanzania, numerous genotypes that were imported into Tanzania over the past 300 years
have dominated the TB epidemic in Dar es Salaam. Different transmission rates and lengths
of the infectious period were present in the most prevalent MTBC genotypes resulting
from these introductions, but there were few variations in overall fitness, as shown by the
effective reproductive number [5]. A further systematic review and meta-analysis on the
frequency of multi drug-resistant tuberculosis among newly diagnosed and previously
treated pulmonary tuberculosis cases was carried out in East African nations [2]. Ref. [3]
indicated the mortality rate from tuberculosis in two slum areas of Nairobi, Kenya. They
came to the conclusion that fewer people died from TB during the research period. In order
to improve early identification and treatment, it is necessary to improve TB surveillance
and access to TB diagnosis and treatment within informal settlements because men had the
highest risk of dying from the disease [9–16]. Despite the fact that most African countries
are now using the WHO-approved Bacille Calmette–Guerin (BCG) vaccine [17], there are
still a high number of reported cases in these countries. MDR-TB treatment and prevention
have become increasingly important in recent years, and they comprise the focus of this
article [18] . Other articles that deal with the modelling of TB can be found in [19–23] .

One of the most promising areas of modern research is fractional calculus [24]. Nu-
merous studies have been conducted in this field, which has resulted in amazing ap-
plications. This is because, unlike the local operator, which disregards the influence of
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larger neighbours, the fractional operator is a global operator that predicts the behaviour
of physical events at infinite tails. When the integer-order derivative is singular, real-
world issues can also be resolved using the fractional derivative. The Caputo fractional
derivative [25], the conformal fractional differential operator [26], the beta−fractional op-
erator [27], the truncated M-fractional operator [28], the Riemann–Liouville fractional
derivative [29], the Caputo–Fabrizio (CF) differential operator [30], and the fractional Atan-
gana–Baleanu–Caputo (ABC) derivative [31] are just a few notable examples of significant
fractional operators. In the field of mathematical epidemiology, these operators have nu-
merous works; recently, for instance, in [32], the Mittag–Leffler-type kernel modelling for
Ebola-malaria co-infection was investigated. Ngungu et al. [33] investigated monkeypox
dynamism with the CF operator. Addai et al. [34] studied the transmission dynamism of
SARS-CoV-2 involving Alzheimer’s disease. The authors of [35] studied the dynamics of Q
fever by employing the Mittag–Leffler kernel. And other fractional derivative models have
all been extensively described in the literature; see, for example, [36–39].

In the field of mathematical biology, the Caputo fractional-order operator has been
used over Atangana–Beleanu, beta derivatives, and a few more to design numerous epi-
demiological models such as dengue fever, smoking, COVID-19, measles, Ebola, and other
diseases. The only reason that many researchers take the Caputo fractional derivative
into consideration is due to its ability to include conventional initial and boundary con-
ditions in the formulation of the problem and the fact that the derivative for a constant is
zero. Thus, to show the dynamism of the Caputo fractional derivative concept, the work
in [40] modelled giving up smoking mathematically under the Caputo fractional deriva-
tive. In [41], the authors investigated the Caputo fractional model for Middle East Lungs
Coronavirus dynamism transmission. For more papers on the Caputo fractional derivative
see, for instance, [42,43] and the references therein.

Several researchers have used several classes of epidemic compartmental models to
investigate tuberculosis infection from a modelling standpoint. A six-compartmental deter-
ministic model was developed in [13] to study the effects of vaccination on the dynamics
of tuberculosis in a specific community. The system’s tuberculosis-free equilibrium was
found to be unstable otherwise and locally asymptotically stable when the effective repro-
duction number was R0 < 1. The theoretical findings were demonstrated and supported
by a numerical simulation. The findings indicate that minimizing actual contact with an
infected person and increasing the rate at which susceptible persons receive high-efficacy
vaccinations will lower the prevalence of tuberculosis in the general population. Ref. [14]
looked at the impact of contact rate, vaccine efficacy, and susceptibility on the dynamics of
tuberculosis transmission using the SEIR model. The six compartmental model used in
this study was similar to that in [15], but it was predicated on the idea that, in the event
of treatment failure, only a portion of the treated persons would progress to the latent TB
class, while the remainder would shift to the active TB class, which was not the case in
this article. We also extend the new model presented in this research to a fractional-order
derivative and fit the model to data from Uganda and Rwanda in order to validate our
model, which is the novelty of this work and makes it different from other approaches
in literature.

This work is motivated with the aim of using fractional-order derivatives in the
modelling approach; the dynamic system helps to describe treatment and vaccination as
essential features for intervention, which will have visible effect on the dynamics of our
model and showcase the robust behaviour of each compartment against the time t in days.
The novelty of our work is to use fractional-order derivatives to depict how TB can be
properly mitigated in East Africa by promptly treating infected individuals and ensuring
vaccines are available for the populace and to present a concise directional solution to the
government and policy makers.

The subsequent sections of this paper are structured as follows. We present the
model formulation in Section 2. Some key definitions and concepts necessary for the model
analysis are presented in Section 3. A qualitative study of the model is provided in Section 4.
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Section 5 provides the dynamics of the fundamental basic reproduction number and deals
with the global stability of the model using Lyapunov functions, while Section 6 provides
the uniqueness and existence of the model in the Caputo sense. Sections 7 and 8 include
the quantitative analysis, discussion, and conclusion, respectively.

2. Model Formulation

The population under consideration in this study is divided into six compartments
based on the epidemiological status of individuals in the population. These are susceptible
S(t), vaccinated class V(t), latent class L(t) (individuals in latent class are infected with
TB with no symptoms of the disease), active TB J(t) (individuals with full symptoms of
the disease), treated class T(t), and recovered class R(t). Total population is expressed as
N(t) = S(t) + V(t) + L(t) + J(t) + T(t) + R(t). Recruitment into the susceptible class is
at a rate φ; the recruitment rate is assumed to be by immigration or by birth. We assume
that only individuals in the active TB class can transmit the disease. Hence, the force of
infection is given as ξSJ. We assume that the vaccine was imperfect; thus, vaccinated
individuals can be infected with diseases via interaction with active TB individuals at
a reduced rate (1 − β). Therefore, the force of infection for vaccinated individuals is
expressed as ξ(1− β)V J. Parameter ρ represents the vaccine wane rate. We assume that
the natural death rate µ occurs in all the classes, while the disease-induced death rate
δ only occurs among active TB individuals. Parameter ε represents the movement of
individuals in the latent class to active TB class, while we represent the rate of treatment
for individuals in the active TB class as ω. σ represents the movement rate from the treated
class, and θ represents the treatment failure rate. We assume that a proportion of treated
individuals moved to latent class at a rate (1− θ)σ due to the remainder of the bacteria in
the body system and the rest of θσ moved to active TB class as a result of treatment failure.
The parameter γ represents the recovery rate of treated individuals. The above description
can be represented by a system of nonlinear differential equations as follows:

dS
dt = φ + ρV − ξSJ − (τ + µ)S,
dV
dt = τS− ξ(1− β)V J − (ρ + µ)V,
dL
dt = ξSJ + ξ(1− β)V J + (1− θ)σT − (ε + µ)L,
dJ
dt = εL + θσT − (µ + δ + ω)J,
dT
dt = ω J − (µ + γ + σ)T,
dR
dt = γT − µR,

(1)

where t > 0 with the initial conditions S(0) = S0 ≥ 0, V(0) = V0 ≥ 0, L(0) = L0 ≥
0, J(0) = J0 ≥ 0, T(0) = T0 ≥ 0, R(0) = R0 ≥ 0. The flow diagram of the model is
presented in Figure 1, while the description of variables and parameters is presented in
Table 1.

Figure 1. Pictorial diagram of the model.
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Table 1. Description of variables and parameter.

Variables Description

S(t) Susceptible individuals
V(t) Vaccinated individuals
L(t) Latent individuals
J(t) Active TB individuals
T(t) Treated individuals
R(t) Recovered individuals

Parameters Description

φ Recruitment rate of individuals in susceptible classes
τ Vaccine rate
ρ Vaccine wane rate
ξ Contact rate
β Efficacy of the vaccine
µ Natural death rate
δ Diseases induced death rate
ε Progression rate from latent to active TB
θ Treatment failure rate
σ Movement rate of individuals in the treated class
γ Recovery rate of treated individuals
ω Rate of treatment for active TB individuals

According to research, fractional derivative modelling capabilities are enhanced by its
non-fixed order. The selection of the Caputo operator in this research is motivated by the
fact that it allows for the use of local initial conditions to be included in the derivation of the
model solution. Additionally, the Caputo derivative for a given constant function is zero;
thus, it takes the same result for integer order derivatives. Based on the memorability nature
of the Caputo fractional operator, model parameters can be estimated well. In light of this
advantage, we use the Caputo fractional operator to investigate the effect of vaccination
and treatment on the TB burden in an East African countries. Considering the above
interrelationship and the explanation of the time-dependent kernel defined by the power
law correlation function, the Caputo fractional-order derivative model for the TB outbreak
in some East Africa countries with vaccination and treatment is given by the following
deterministic system of nonlinear differential equations:

C
0 Dα

t S(t) = φ + ρV − ξSJ − (τ + µ)S,
C
0 Dα

t V(t) = τS− α(1− β)V J − (ρ + µ)V,
C
0 Dα

t L(t) = ξSJ + ξ(1− β)V J + (1− θ)σT − (ε + µ)L,
C
0 Dα

t J(t) = εL + θσT − (µ + δ + ω)J,
C
0 Dα

t T(t) = ω J − (µ + γ + σ)T,
C
0 Dα

t R(t) = γT − µR,

(2)

where the order is 0 < α ≤ 1 and C
0 Dα

t is Caputo derivative.

3. Preliminaries

In this section, we review several key definitions, lemmas, and concepts that are
necessary to understand our suggested model.

Definition 1 ([30,31]). Given a function u : R+ → R, and α ∈ (n − 1, n), n ∈ N. The left
Caputo fractional derivative of order α of the function u is defined as

C
0 Dα

t (u(t)) =
1

Γ(n− α)

∫ t

0
un(Θ)(t−Θ)n−α−1dΘ
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Definition 2 ([30,31]). The corresponding Riemann–Liouville fractional integral associated with
the power-law kernel is defined as

C
0 Iα

t (u(t)) =
1

Γ(α)

∫ t

0
(t−Θ)α−1u(Θ)dΘ, t > 0.

Lemma 1 ([32,34]). Assuming there is a function u(t) ∈ C[0, η] of order α ∈ (0, 1), the solution
of fractional differential equation{

C
0 Dα

t u(t) = Υ(t, u(t)), t ∈ [0, η],

u(0) = u0,

is given by

u(t)− u(0) =
1

Γ(α)

∫ t

0
Υ(Θ, u(Θ))(t−Θ)α−1dΘ.

4. Non-Negativity and Boundedness of the Model Solution

In this section, we shall show the positivity and boundedness of the ODE model.
An ODE model is said to be positive and bounded if all its variables have non-negative
values ∀t > 0, as well as limited to a finite range of values.

Lemma 2. If the initial condition of the system satisfies
t = 0, (S(0), V(0), L(0), J(0), T(0), R(0) ≥ 0) ∈ R6

+,
then
{(S(t), V(t), L(t), J(t), T(t), R(t))} is the unique solution with positive initial data ∀t > 0

on the interval [0, t].

Proof. Given t f = sup{t > 0|(S(t), V(t), L(t), J(t), T(t), R(t) > 0) ∈ [0, t]}, then t f > 0.
From the S compartment

dS
dt

= φ + ρV − ξSJ − (τ + µ)S ≥ φ− ξ∗S− (τ + µ)S,

where ξ∗ = ξ J with ρ, V ≥ 0.
Also,

dS
dt

+ ξ∗S + (τ + µ)S = φ,

on using the integrating factor:

I.F = λ(t) = exp
[∫ t

0
(ξ∗ + (τ + µ))(η)dη

]
,

λ(t) = exp
[
(τ + µ)t +

∫ t

0
ξ∗(η)dη

]
,

using λ(t) · S′(t) + λ(t) · (ξ∗ + (τ + µ))S = φ · λ(t),∫ t f

0
(λ(t) · S(t))′dζ =

∫ t f

0
φ · λ(t)dζ,

λ(t) · S(t)|t f
0 =

∫ t f

0
φ · λ(t)dζ,

since

λ(t) = exp
[
(τ + µ)t f +

∫ t f

0
ξ∗(η)dη

]
,
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then

S(t f ) exp
[
(τ + µ)t f +

∫ t f

0
ξ∗(η)dη

]
− S(0) ≥

∫ t f

0
φ

(
exp
[
(τ + µ)ζ +

∫ ζ

0
ξ∗(η)dη

])
dζ,

Thus,
S(t f ) ≥ S(0) exp

[
(τ + µ)t f +

∫ t f
0 ξ∗(η)dη

]
+ exp

[
−(τ + µ)t f −

∫ t f
0 ξ∗(η)dη

]
×
∫ t f

0
φ

(
exp

[
(τ + µ)ζ +

∫ ζ

0
ξ∗(η)dη

])
dζ > 0,

and this implies that S(t f ) ≥ 0. This same approach is applicable to the rest of the model,
so V(t f ), L(t f ), J(t f ), T(t f ), R(t f ) ≥ 0.

For boundedness: consider the model with the solution of the system that remains in
Ω ⊂ R6

+ ∀t > 0.
If we let

Ω =
{
(S(t), V(t), L(t), J(t), T(t), R(t)) ∈ R6

+

}
,

and
0 < S(t), V(t), L(t), J(t), T(t), R(t), t > 0,

then (S(0), V(0), L(0), J(0), T(0), R(0) ≥ 0) ∈ Ω with the unique solution

(S(t), V(t), L(t), J(t), T(t), R(t))∀t > 0 ∈ R6
+.

On adding all of the model, we have:

dN(t)
dt

= φ− µ(S + V + L + J + T + R)− δJ ≤ φ− µN(t).

Using the integrating factor on dN(t)
dt + µN(t) = φ, the solution is:

N(t) ≤ φ

µ
+

[
N(0)− φ

µ

]
Taking the limit of both sides as t→ ∞,

Ω = {(S, V, L, J, T, R) ∈ R6
+ : S(t) + V(t) + L(t) + J(t) + T(t) + R(t) ≤ φ

µ
}

Therefore, the model Equation (1) is positively invariant.
For model Equation (2) under initial conditions, the solution of the proposed system

in Equation (2) is nonnegative and bounded in R6
+. Therefore,

limt→∞ sup S(t) ≤ S∞ = φ+ρV∞
ξ J∞+τ+µ ,

limt→∞ sup V(t) ≤ V∞ = τ
ξ(1−β)J∞+ρ+µ

,

limt→∞ sup L(t) ≤ L∞ = ξS∞ J∞+ξ(1−β)V∞ J∞+(1−θ)σT∞
ε+µ ,

limt→∞ sup J(t) ≤ J∞ = εL∞+θσT∞
µ+δ+ω ,

limt→∞ sup T(t) ≤ T∞ = ω J∞
µ+γ+σ ,

limt→∞ sup R(t) ≤ R∞ = γT∞
µ .

(3)
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Proof. Using the knowledge in [12] and with the initial values provided, we derive the
following from from model 2.2:

CDα
t S(t) = φ + ρV > 0,

CDα
t V(t) = τS > 0,

CDα
t L(t) = ξSJ + ξ(1− β)V J + (1− θ)σT > 0,

CDα
t J(t) = εL + θσT > 0,

CDα
t T(t) = ω J > 0,

CDα
t R(t) = γT > 0.

(4)

From (4), the result cannot escape from the hyperplanes since S(0) > 0, V(0) >
0, L(0) > 0, J(0) > 0, T(0) > 0, R(0) > 0, for all t > 0. Hence, system 2.2 is nonnegative
and bounded.

5. Basic Reproduction Number Dynamics and Stability Analysis
5.1. Basic Reproduction Number

In epidemiology, the basic reproduction number or basic reproductive number, de-
noted by R0, is defined as the expected number of cases directly generated by one case
in the population where all individuals are susceptible to infection or is the number of
secondary infections produced by a single infected individual; it can be expressed as the
product of the expected duration of the infectious period and the rate at which secondary
infections occur. For the general model with n disease compartments, these are computed
for each compartment hypothetically [9].

The most important use of R0 is to determine if an emerging infectious disease can
spread in the population, determining which proportion of the population would be
immunised through vaccination to eradicate a disease [10].

For model (1), together with nonnegative initial conditions, the progression through
the compartments is illustrated in Figure 1 . New infections in compartment L arise by
contact between susceptible and infected individuals in compartments S and J at a rate
αSJ. Individuals progress from compartment L to J at a rate ε. The system has a unique
disease-free equilibrium with (S0, V0, L0, J0, T0, R0) = ( φ(ρ+µ)

µ(τ+ρ+µ)
, τφ

µ(τ+ρ+µ)
, 0, 0, 0, 0). Taking

the infected compartment to be L and J gives

F =

(
0 ξS−Vξ(β− 1)
0 0

)
and

V =

(
ε + µ 0

ε µ + γ + δ

)
where F is the rate of secondary infections increase in the given compartment and V is the
rate of disease progression, death, and recovery decrease in the given compartment. Also,

V−1 =

(
1/ε + µ 0

ε/(ε + µ)(µ + γ + δ) 1/µ + γ + δ

)
The basic reproduction number R0 is given by the (i, j) entry of K, which is the expected

number of secondary infections in compartment i produced by individuals initially in
compartment j, assuming, of course, that the environment seen by the individual remains
homogeneous for the duration of its infection:

K = FV−1

where F = ∂Fi
∂xj

, V = ∂Vi
∂xj

, and K is the next generation matrix.
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Therefore,

R0 = ρFV−1 =
ξεφ(µ + ρ + τ − βτ)

µ(ε + µ)(µ + ρ + τ)(δ + µ + ω)

For common used infection models when:

• R0 > 1; this means that the infection will be able to start spreading in the population
• R0 < 1; this means that the infection will not be able to start spreading in the popula-

tion.

5.2. Global Stability

To investigate the global asymptotic stability of the DFE, we apply the process of
Lyapunov functions. First, we define a Lyapunov function K as follows:

K(t) =
1

τ + µ
T +

Ψ
Π

J (5)

with

Ψ = (µ + γ + ω)ξφ and Π = εξ(1− β)V − (ε + µ)(µ + γ + ω)

ψ = (τ + µ)[εξ(1− β)V − (ε + µ)(µ + γ + ω)]

dK(t)
dt

=
1
ψ
(ΠdT + (τ + µ)ΨdJ)

=
1
ψ
[Π(ω J − (µ + λ + σ)T) + (τ + µ)Ψ(εL + θσT + J − J − (µ + γ + ω)J)]

≤ εξ(1− βVω J)
ψ

+
Ψ
ψ
[(τ + µ)J + (τ + µ)θσT]

=(τ + µ)(J + θσT)(R0 − 1)

we obtain that
dK(t)

dt
= 0 when J = T = 0 and

dK(t)
dt
≤ 0 when R0 < 1. We can conclude

that the disease-free equilibrium (DEF) is globally asymptotically stable, when R0 < 1.
Therefore, system (1) is uniformly persistent if and only if R0 > 1 and there exists a

constant ζ > 0 such that ,

lim inf
t→∞

S(t) > ζ ; lim inf
t→∞

V(t) > ζ ; lim inf
t→∞

L(t) > ζ

lim inf
t→∞

J(t) > ζ ; lim inf
t→∞

T(t) > ζ ; lim inf
t→∞

R(t) > ζ

provided that (S(0), V(0), L(0), J(0), T(0), R(0)) ∈ Ω.
Further, the uniform persistence of the state variable together with the boundedness

of Ω is equivalent to the existence of a compact absorbing set in Ω .

6. Existence and Uniqueness Analysis for Caputo Fractional Tuberculosis
Outbreak Model

We shall prove the existence and uniqueness of our proposed model in the Caputo
operator using fixed-point theory. We assume a Banach space D(A) for an interval-defined
continuous real-valued function A = [0, ϑ] with the sub norm and Z = D(A)×D(A)×
D(A)×D(A)×D(A)×D(A) with the norm

‖ (S, V, L, J, T, R) ‖=‖ S ‖ + ‖ V ‖ + ‖ L ‖ + ‖ J ‖ + ‖ T ‖ + ‖ R ‖,

‖ S ‖= supt∈A |S|, ‖ V ‖= supt∈A |V|, ‖ L ‖= supt∈A |L|, ‖ J ‖= supt∈A |J|, ‖ T ‖=
supt∈A |T| ‖ R ‖= supt∈A |R|. From here, by applying the Caputo fractional operator and
fundamental theorem of calculus we have



Computation 2023, 11, 143 10 of 21

S(t)− S(0) = C
0Dα

t [φ + ρV − ξSJ − (τ + µ)S],

V(t)−V(0) = C
0Dα

t [τS− ξ(1− β)V J − (ρ + µ)V],

L(t)− L(0) = C
0Dα

t [ξSJ + ξ(1− β)V J + (1− θ)σT − (ε + µ)L], (6)

J(t)− J(0) = C
0Dα

t [εL + θσT − (µ + δ + ω)J],

T(t)− T(0) = C
0Dα

t [ω J − (µ + γ + σ)T],

R(t)− R(0) = C
0Dα

t [γT − µR].

Now, we let

Υ1 = φ + ρV − ξSJ − (τ + µ)S,

Υ2 = τS− ξ(1− β)V J − (ρ + µ)V,

Υ3 = ξSJ + ξ(1− β)V J + (1− θ)σT − (ε + µ)L,

Υ4 = εL + θσT − (µ + δ + ω)J, (7)

Υ5 = ω J − (µ + γ + σ)T,

Υ6 = γT − µR.

The equivalent Caputo integral of (6) can be written as

S(t)− S(0) =
1

Γ(α)

∫ t

0

Υ1(α, θ, S(θ))
(t− θ)1−α

dθ,

V(t)−V(0) =
1

Γ(α)

∫ t

0

Υ2(α, θ, V(θ))

(t− θ)1−α
dθ,

L(t)− L(0) =
1

Γ(α)

∫ t

0

Υ3(α, θ, L(θ))
(t− θ)1−α

dθ, (8)

J(t)− J(0) =
1

Γ(α)

∫ t

0

Υ4(α, θ, J(θ))
(t− θ)1−α

dθ,

T(t)− T(0) =
1

Γ(α)

∫ t

0

Υ5(α, θ, T(θ))
(t− θ)1−α

dθ,

R(t)− R(0) =
1

Γ(α)

∫ t

0

Υ6(α, θ, R(θ))
(t− θ)1−α

dθ,

We note that Υ1(S, θ), Υ2(V, θ), Υ3(L, θ), Υ4(J, θ), Υ5(T, θ), Υ6(R, θ) satisfies the Lips-
chitz condition if and only if S(t), V(t), L(t), J(t), T(t), and R(t) are bounded above. Now,
let S(t) and S∗∗ be two functions, so that we have

‖ Υ1(α, t, S(t))− Υ1(α, t, S∗∗(t)) ‖= ||(αJ(t) + τ + µ)(S(t)− S∗∗(t))||. (9)

Now, we assume that ‖J(t)‖ ≤ ω∗, and we let K̂1 := αω∗ + τ + µ; then, we have

‖ Υ1(α, t, S(t))− Υ1(α, t, S∗∗(t)) ‖≤ K̂1||(S(t)− S∗∗(t))||, (10)

similarly, we have

‖ Υ2(α, t, V(t))− Υ2(α, t, V∗∗(t)) ‖≤ K̂2||(V(t)−V∗∗(t))||,
‖ Υ3(α, t, L(t))− Υ3(α, t, L∗∗(t)) ‖≤ K̂3||(L(t)− L∗∗(t))||,
‖ Υ4(α, t, B(t))− Υ4(α, t, J∗∗(t)) ‖≤ K̂4||(J(t)− J∗∗(t))||, (11)

‖ Υ5(α, t, ST(t))− Υ5(α, t, T∗∗(t)) ‖≤ K̂5||(T(t)− T∗∗(t))||,
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‖ Υ6(α, t, IT(t))− Υ6(α, t, R∗∗(t)) ‖≤ K̂6||(R(t)− R∗∗(t))||,

where K̂2 = α(1− β)ω∗ − (ρ + µ), K̂3 = ε + µ, K̂4 = µ + δ + ω, K̂5 = µ + γ + σ, K̂6 = µ;
hence, this indicates that the Lipschitz condition is fulfilled for Υi, i = 1, 2, 3, 4, 5, 6.

Recursively, Equation (6) can be written as

Sn(t) =
1

Γ(α)

∫ t

0

Υ1(α, θ, Sn−1(θ))

(t− θ)1−α
dθ,

Vn(t) =
1

Γ(α)

∫ t

0

Υ2(α, θ, Vn−1(θ))

(t− θ)1−α
dθ,

Ln(t) =
1

Γ(α)

∫ t

0

Υ3(α, θ, Ln−1(θ))

(t− θ)1−α
dθ, (12)

Jn(t) =
1

Γ(α)

∫ t

0

Υ4(α, θ, Jn−1(θ))

(t− θ)1−α
dθ,

Tn(t) =
1

Γ(α)

∫ t

0

Υ5(α, θ, Tn−1(θ))

(t− θ)1−α
dθ,

Rn(t) =
1

Γ(α)

∫ t

0

Υ6(α, θ, Rn−1(θ))

(t− θ)1−α
dθ,

with the below initial conditions

S(t) = S(0), V0(t) = V(0), L0(t) = L(0), J(t) = J(0), T(t) = T(0), R(t) = R(0).

Taking the differences in the succession terms, we have

ΨS,n(t) = Sn(t)− Sn−1(t) =
1

Γ(α)

∫ t

0

Υ1(α, θ, Sn−1(θ))− Υ1(α, θ, Sn−2(θ))

(t− θ)1−α
dθ,

ΨV,n(t) = Vn(t)−Vn−1(t) =
1

Γ(α)

∫ t

0

Υ2(α, θ, Vn−1(θ))− Υ2(α, θ, Vn−2(θ))

(t− θ)1−α
dθ,

ΨL,n(t) = Ln(t)− Ln−1(t) =
1

Γ(α)

∫ t

0

Υ3(α, θ, Ln−1(θ))− Υ3(α, θ, Ln−2(θ))

(t− θ)1−α
dθ, (13)

ΨJ,n(t) = Jn(t)− Jn−1(t) =
1

Γ(α)

∫ t

0

Υ4(α, θ, Jn−1(θ))− Υ4(α, θ, Jn−2(θ))

(t− θ)1−α
dθ,

ΨT,n(t) = Tn(t)− Tn−1(t) =
1

Γ(α)

∫ t

0

Υ5(α, θ, Tn−1(θ))− Υ5(α, θ, Tn−2(θ))

(t− θ)1−α
dθ,

ΨR,n(t) = Rn(t)− Rn−1(t) =
1

Γ(α)

∫ t

0

Υ6(α, θ, Rn−1(θ))− Υ6(α, θ, Rn−2(θ))

(t− θ)1−α
dθ,

From (14), it is clear that

Sn(t) =
n

∑
j=0

ΨSn(t), Vn(t) =
n

∑
j=0

ΨVn(t),

Ln(t) =
n

∑
j=0

ΨLn(t), Jn(t) =
n

∑
j=0

ΨJn(t), (14)

Tn(t) =
n

∑
j=0

ΨTn(t), Rn(t) =
n

∑
j=0

ΨRn(t).
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Additionally, utilizing Equations (10) and (11) with the notion that

ΨS,n−1(t) = Sn−1(t)− Sn−2(t), ΨV,n−1(t) = Vn−1(t)−Vn−2(t),

ΨL,n−1(t) = Ln−1(t)− Ln−2(t), ΨJ,n−1(t) = Jn−1(t)− Jn−2(t),

ΨT,n−1(t) = Tn−1(t)− Tn−2(t), ΨR,n−1(t) = Rn−1(t)− Rn−2(t),

we can arrive at

||ΨS,n(t)|| =
1

Γ(α)
K̂1

∫ t

0

||ΨS,n−1(ϑ)||
(t− θ)1−θ

dθ,

||ΨV,n(t)|| =
1

Γ(α)
K̂2

∫ t

0

||ΨV,n−1(ϑ)||
(t− θ)1−θ

dθ,

||ΨL,n(t)|| =
1

Γ(α)
K̂3

∫ t

0

||ΨL,n−1(ϑ)||
(t− θ)1−θ

dθ,

||ΨV,n(t)|| =
1

Γ(α)
K̂4

∫ t

0

||ΨJ,n−1(ϑ)||
(t− θ)1−θ

dθ,

||ΨT,n(t)|| =
1

Γ(α)
K̂5

∫ t

0

||ΨT,n−1(ϑ)||
(t− θ)1−θ

dθ,

||ΨR,n(t)|| =
1

Γ(α)
K̂6

∫ t

0

||ΨR,n−1(ϑ)||
(t− θ)1−θ

dθ,

(15)

From here, we state and prove Theorem 1, to complete our proposed model in the
Caputo sense for existence and uniqueness.

Theorem 1. The Caputo fractional tuberculosis outbreak model Equation (2) has a unique solution
under the condition that

ϑα

Γ(α)
K̂i < 1, i = 1, 2, 3, 4, 5, 6. (16)

when t ∈ [0, ϑ].

Proof. As it has been established above that S(t), V(t), L(t), J(t), T(t), R(t) are bounded
and Υi, i = 1, 2, 3, 4, 5, 6 satisfy the Lipschitz condition. Thus, through the recursive principle
and Equation (6), we obtain

||ΨS,n(t)|| ≤ ||S0(t)||
(

ϑα

Γ(α)
K̂1

)n
,

||ΨV,n(t)|| ≤ ||V0(t)||
(

ϑα

Γ(α)
K̂2

)n
,

||ΨL,n(t)|| ≤ ||L0(t)||
(

ϑα

Γ(α)
K̂3

)n
, (17)

||ΨJ,n(t)|| ≤ ||J0(t)||
(

ϑα

Γ(α)
K̂4

)n
,

|||ΨT,n(t)|| ≤ ||T0(t)||
(

ϑα

Γ(α)
K̂5

)n
,

||ΨR,n(t)|| ≤ ||R0(t)||
(

ϑα

Γ(α)
K̂6

)n
.
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Which implies that

||ΨS,n(t)|| → 0, ||ΨV,n(t)|| → 0, ||ΨL,n(t)|| → 0,

||ΨJ,n(t)|| → 0, ||ΨT,n(t)|| → 0, ||ΨR,n(t)|| → 0, provided n→ ∞.

Also, with the help of the trianglar inequality together with Equation (6) for any m,
we finally attain

||Sn+q(t)− Sn(t)|| ≤
n+m

∑
j=n+1

H j
1 =

Hn+1
1 − Hn+m+1

1
1− H1

,

||Vn+m(t)−Vn(t)|| ≤
n+m

∑
j=n+1

H j
2 =

Hn+1
2 − Hn+m+1

2
1− H2

,

||Ln+m(t)− Ln(t)|| ≤
n+m

∑
j=n+1

H j
3 =

Hn+1
3 − Hn+m+1

3
1− H3

, (18)

||Jn+m(t)− Jn(t)|| ≤
n+m

∑
j=n+1

H j
4 =

Hn+1
4 − Hn+m+1

4
1− H4

,

||Tn+m(t)− Tn(t)|| ≤
n+m

∑
j=n+1

H j
5 =

Hn+1
5 − Hn+m+1

5
1− H5

,

||Rn+m(t)− Rn(t)|| ≤
n+m

∑
j=n+1

H j
6 =

Hn+1
6 − Hn+m+1

6
1− H6

.

where Hi = ϑα

Γ(α) K̂i < 1, i = 1, 2, 3, 4, 5, 6. Consequently, Sn, Vn, Ln, Jn, Tn, and Rn are
Cauchy sequences in the Banach space D(A). Therefore, the state variables converges
uniformly. Hence, via the limit theorem, we say that the limit of the sequence (6) is the
unique solution of the Caputo fractional tuberculosis outbreak model. This marks the end
of the proof.

7. Quantitative Analysis
7.1. Data Fitting

We obtained data from a public database for Uganda and Kenya for January to December 2020
to make a short-term prediction. Because the data were sparse, we only retained data for Jan-
uary 2020 for our model prediction. We used the initial values S(0) = 50, 000, 000, V(0) =
30, L(0) = 35, J(0) = 20, T(0) = 25, R(0) = 20 for Uganda, while we used the initial values
S(0) = 15, 000, 000, V(0) = 30, L(0) = 35, J(0) = 20, T(0) = 25, R(0) = 20 for Rwanda
susceptible, vaccinated, latent, and active cases, and treated and recovered individuals in the
population, respectively . The values of the parameters are shown in Table 2, and we only retain
those of Uganda, which was the best fit for our model. Some of the parameters were fitted in
order to obtain the optimal parameters, while others were assumed or taken from existing studies.
The nonlinear least squares technique was used to fit the model using Python programming, and
the graphical result obtained is presented in Figure 2 for both countries.
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Figure 2. Model fitting for January 2020 TB cases for (a) Uganda and (b) Kenya.

Table 2. Parameter values in the model (Uganda).

Parameters Values References Units

φ 5 [13] number of persons
τ 0.1 [16] persons vaccinated/N
ρ 0.067, 0.1 [13] persons loss of immunity/N
ξ 0.6501 fitted 1/days 1/persons
β 1.6583 fitted 1/days 1/persons
µ 1/67.7 fitted 1/days
δ 0.1 [13] 1/days
ε 0.00375 [13] 1/days 1/persons
θ 0–1 [14,15] 1/days 1/persons
σ 0–1 assumed 1/days 1/persons
γ 0.01 [13] 1/days
ω 0.1 [13] 1/days

7.2. Sensitivity Analysis

The sensitivity analysis evaluates how the uncertainty of the parameters can affect
the dynamics of the epidemic; this is undertaken to reveal the parameter that has the
greatest effect on the spread or contraction of the disease. The sensitivity analysis is
investigated analytically by taking the partial derivatives of the basic reproduction number
with respect to each parameter. The sensitivity analysis of the basic reproduction number
with respect to ξ, ε, φ, µ, τ, β, ρ, δ, and ω and the sensitivity index upon evaluation using
the parameter values in Table 2 are presented in Table 3. From Table 3, ξ, ε, ρ, and φ have
positive sensitivity indices, while the other parameters have negative indices. There is a
direct relationship between the positive indices parameters with R0 and an inverse relation
between the negative indices parameters. The sensitivity analysis result shows that if
we increase the vaccine rate and the treatment rate, the basic reproduction number of
the disease will decrease, which is an affirmation of the efficacy of the vaccine and the
effectiveness of treatment if the population is vaccinated and treatment is given a priority.
This will help to prevent the spread of the disease. We present the graphical result of the
sensitivity analysis in Figure 3.
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Figure 3. The sensitivity analysis of R0.

Table 3. The sensitivity index of R0.

Parameters Sensitivity Index

ξ 1
ε 0.7975
φ 1
ρ 0.0729
µ −1.8502
τ −0.0889
β −0.1977
δ −0.4656
ω −0.4656

7.3. Numerical Simulation

In this section, we present the numerical algorithms for the Caputo fractional tuber-
culosis outbreak model, using the famous fractional Adam–Bashforth technique. The pa-
rameters used for this simulation can be found in Table 2, and the initial values are
S(0) = 500, V(0) = 30, L(0) = 35, J(0) = 20, T(0) = 25, R(0) = 20. For details about this
numerical analysis, see [30]. Another numerical method to solve the fractional derivative
can also be found in [44]. The formula for the Cauchy problem of the Caputo derivative is

C
0 D

α

t Ψ(t) = Υ(t, Ψ(t)), (19)

u(0) = u0.

With the help of the Caputo integral, (19) can be transformed into

Ψ(t)−Ψ(0) =
1

Γ(α)

∫ t

0
Υ(θ, u(θ))(t− θ)α−1dθ. (20)

At the points tψ+1 = (ψ + 1)h and tψ = ψh, ψ = 0, 1, 2, 3, 4, ... with h being the time
step, Equation (20) can be formulated as:

Ψ
(
tψ+1

)
−Ψ(0) =

1
Γ(α)

∫ tψ+1

0
Υ(θ, Ψ(θ))(tψ+1 − θ)α−1dθ. (21)

To integrate (21), refs. [23,33] have applied two-step Lagrange interpolation to solve
this integration, and we use similar knowledge to write our proposed model (1) in the
following form as [20]:
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Sψ+1 = S0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Sϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Sϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
,

Vψ+1 = V0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Vϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Vϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
,

Lψ+1 = L0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Lϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Lϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
, (22)

Jψ+1 = J0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Jϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Jϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
,

Tψ+1 = T0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Tϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Tϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
,

Rψ+1 = R0 +
hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ, Rϕ)

[
(ψ− ϕ + 1)α(ψ− ϕ + 2 + α)
−(ψ− ϕ)α(ψ− ϕ + 2 + 2α)

]

− hα

Γ(α + 2)

ψ

∑
ϕ= 0

Υ(tϕ−1, Rϕ−1)

[
(ψ− ϕ + 1)α+1

−(ψ− ϕ)α(ψ− ϕ + 1 + α)

]
,

8. Discussion and Conclusions

The computational results of the assessment of our suggested Caputo fractional-
order model’s Equation (2) deterministic trajectory in the population are displayed in
Figures 4 and 5 while keeping all process parameters. We depict a predetermined pattern
by integrating all of the compartments of the framework to achieve determinism figures.
In deterministic situations, addressing the population’s contaminated individuals using the
rate τ decreases the infectious individuals and increases the population of those who take
medication for a set of amount of time. Nonetheless, the system’s Equation (2) dynamics
of the curves show realistic behaviour in relation to the mathematical model. According
Figure 4a,b, it is easy to see that the compartments start decreasing by decreasing the
fractional values, and this shows that physical processes are better explained using the
fractional-order derivatives. The operator captured low susceptibility. The biological
meaning of this dynamism of Figure 4a–c is that if people have enough knowledge about
TB and the rate of the vaccine and its efficacy increase, people will not be exposed to the
disease. The dynamics of Figure 4c ensure a low vaccination rate, its low efficacy, and a
lack of knowledge about the disease. In Figure 5a–c, compartments start increasing via
a decrease in the fractional values. In reality, when we have a large latent or exposed
population, this will significantly affect the infected or active TB population. Similarly,



Computation 2023, 11, 143 17 of 21

the active TB individuals will respond to treatment and recover due to the impact of effective
vaccination as a control strategy. In Figures 6 and 7, some of the sensitive parameters are
taken to consideration, for example, ω and τ. From Figure 6a,b,e, it is easily to see that the
susceptible, vaccination, and treatment compartments increase when the rate of treatment
for active TB individuals increases, which clearly indicates that if active TB individuals
receive good medication, the proportion of recovered people in the population will increase
while the proportion of exposed and infected people in Figure 6c,d will significantly
decline. Figures 7a–c, clarify the behaviour of the vaccine rate to TB. It is easily to see that
the vaccination compartment increases as the vaccine rate τ increases but not the same
as the susceptible and latent classes. This is because when the vaccine works with the
rest of the immune system to destroy the pathogen and stop the disease, people who are
susceptible move from the susceptible class to the vaccination compartment, which causes
a reduction in the latent class. By increasing the vaccine rate τ to TB by 5% (i.e., τ = 0.050 )
as the estimated value, a reduction in the exposed infection is observed. This means that
the higher vaccination interaction between the population, the greater the chances of a
decrease in the transmission rate to TB, which will lead to elimination of the disease .

(a) (b)

(c)

Figure 4. Numerical tuberculosis trajectory for susceptible, vaccinated, and latent individuals under
Caputo operator with different fractional order, α.

There are different phases in an epidemic curve: the exponential phase, the point of
inflections, the peaks, and the decompressed peak. These phases exhibit a slow start, a
rapid rise, a levelling off, and a decline. Also, these curves can either be concave or convex.
The epidemic curve shows that for Figure 2a, there is a sharp decline in the levelling-off
of the curve, which looks like a logarithm curve, while Figure 2b shows a rapid rise, a
levelling off, and a decline, which looks like an inverted parabolic curve or a concave curve.
We were also able to demonstrate similarity between the simulated, real, and fitted data.
Figure 2a captures the simulated active TB individuals in Figure 5a. We notice a similarity
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in the trend of the curve’s behaviour, which means that if the time is extended, it will
perfectly correspond to the nature of the real and fitted data.

(a) (b)

(c)

Figure 5. Numerical tuberculosis trajectory for active TB, treated, and recovered individuals under
Caputo operator with a different fractional order, α.

In this work, we have been able to suggest the Caputo fractional-order model Equa-
tion (2) by putting it to the test using the Adams–Bashforth approach, a numerical explicit
method with parameter values listed in Table 2. When R0 > 1, the DFE point is unstable,
and when R0 < 1, the DFE point is stable. The sensitivity analysis result was able to suggest
to us that increasing the vaccination and treatment rate will help to reduce the spread of the
disease. Also, the data fitting result was able to capture to some extent some of the trend in
the one year spread of the epidemics in East Africa, most especially in the first month in the
year 2020. This study will help public health experts to be able to properly prepare for the
pandemic in East Africa. One of the limitations of this work is that the obtained data trend
is inconsistent and not fine grain data, which makes it difficult to properly fit the data and
affects the nature of the predicted curve. In future work, we suggest that machine learning
techniques or different fractional operators or statistical methods could be used to develop
this model to mitigate the disease in a different dimension.
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(a) (b)

(c) (d)

(e)

Figure 6. Fractional dynamics for susceptible, vaccinated, and latent individuals when one varies
active TB treatment rate with fractional order α = 0.95.

(a) (b)

(c)

Figure 7. Fractional dynamics for active TB, treated, and recovered individuals when one varies
vaccine rate with fractional order α = 0.95.



Computation 2023, 11, 143 20 of 21

Author Contributions: Conceptualisation, O.J.P., K.O. and E.A.; methodology, O.J.P., K.O., E.M.,
O.B., I.V.N., I.S., U.M.A. and E.A.; software, K.O., E.A., E.M., O.B., and U.M.A.; validation, O.J.P., K.O.
and E.A.; formal analysis, K.O., E.M., O.B., I.V.N., I.S., U.M.A. and E.A.; investigation, O.J.P., K.O.
and E.A.; resources, K.O. and A.A.; data curation, E.A., O.B. and U.M.A.; writing—original draft
preparation, K.O., J.O.A., U.M.A., E.M., I.S. and E.A.; writing—review and editing, E.A. and K.O.;
visualisation, E.A., O.B. and U.M.A.; supervision, K.O. and O.J.P.; and project administration, K.O.
and O.J.P. All of the authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data used for this research are available on public databases.

Acknowledgments: The authors would like to appreciate Black in Mathematics Association (BMA)
for giving us the platform to collaborate as young researchers in order to carry out this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tuberculosis Model, a Case Study of Tigania West, Kenya. Available online: https://www.researchgate.net/publication/308631904

(accessed on 2 January 2023).
2. Molla, K.A.; Reta, M.A.; Ayene, Y.Y. Prevalence of multi drug-resistant tuberculosis in East Africa: A systematic review and

meta-analysis. PLoS ONE 2022, 17, e0270272. [CrossRef] [PubMed]
3. Gichuki, J.; Mategula, D. Characterisation of tuberculosis mortality in informal settlements in Nairobi, Kenya: Analysis of data

between 2002 and 2016. BMC Infect. Dis. 2021, 21, 718. [CrossRef] [PubMed]
4. Tuberculosis Regional Factsheet. Available online: https://files.aho.afro.who.int/afahobckpcontainer/production/files/iAHO_

TB_regional_Factsheet.pdf (accessed on 2 January 2023).
5. Mnyambwa, N.P.; Philbert, D.; Kimaro, G.; Wandiga, S.; Kirenga, B.; Mmbaga, B.T.; Ngadaya, E. Gaps related to screening and

diagnosis of tuberculosis in care cascade in selected health facilities in East Africa countries: A retrospective study. J. Clin. Tuberc.
Other Mycobact. Dis. 2021, 25, 100278. [CrossRef]

6. Porous Border Blamed for TB Cases in Kenya and Ethiopia. Available online: https://www.theeastafrican.co.ke/tea/science-
health/porous-border-blamed-for-tb-cases-in-kenya-and-ethiopia-3764090 (accessed on 2 January 2023).

7. Tuberculosis in Kenya. Available online: https://www.tbonline.info/media/uploads/documents/guidelines-on-management-
of-leprosy-and-tuberculosis-in-kenya- (accessed on 2 January 2023).

8. Gakii, G.; Malonza, D. Mathematical Modeling of TB—HIV Co Infection, Case Study of Tigania West Sub County, Kenya. J. Adv.
Math. Comput. Sci. 2018, 27, 1–18.

9. Milligan, G.N.; Barrett, A.D. Vaccinology: An Essential Guide; Wiley Blackwell: Chichester, West Sussex, UK, 2015; p. 310.
10. Fine, P.; Eames, K.; Heymann, D.L. Herd Immunity’: A Rough Guide. Clin. Infect. Dis. 2011, 52, 911–916. [CrossRef] [PubMed]
11. Liu, X.; ur Mati, R.; Ahmad, S.; Baleanu, D.; Anjam Y.N. A new fractional infectious disease model under the non-singular

Mittag–Leffler derivative. Waves Random Complex Media 2022, 1–27. [CrossRef]
12. Ahmed, E.; El-Sayed, A.M.A.; El-Saka, H.A. Equilibrium points, stability and numerical solutions of fractional-order predator

prey and rabies models. J. Math. Anal. Appl. 2007, 325, 542–553. [CrossRef]
13. Ojo, M.M.; Peter, O.J.; Goufo, E.F.D.; Panigoro, H.S.; Oguntolu, F.A. Mathematical model for control of tuberculosis epidemiology.

J. Appl. Math. Comput. 2022, 69, 1865–2085. [CrossRef]
14. Adewale, S.O.; Podder, C.N.; Gumel, A.B. Mathematical analysis of a TB transmission model with DOTS. Can. Appl. Math. Q.

2009, 17, 1–36.
15. Gomes, M.G.M.; Aguas, R.; Lopes, J.S.; Nunes, M.C.; Rebelo, C.; Rodrigues P.; Struchiner C.J. How host heterogeneity governs

tuberculosis reinfection? Proc. Roy. Soc. B-Biol. Sci. 2012, 279, 2473–2478. [CrossRef]
16. Sterne, J.; Rodrigues, L.; Guedes, I. Does the efficacy of BCG decline with time since vaccination. Int. J. Tuberc. Lung Dis. 2022, 2,

200–207.
17. GHO|By Category|BCG—Immunization Coverage Estimates by Country. Retrieved 25 March 2023. 2023. Available online:

https://apps.who.int/gho/data/view.main.80500?lang=en (accessed on 2 April 2023).
18. Kasereka Kabunga, S.; Doungmo Goufo, E.F.; Ho Tuong, V. Analysis and simulation of a mathematical model of tuberculosis

transmission in Democratic Republic of the Congo. Adv. Differ. Equ. 2020, 2020, 642. [CrossRef]
19. Okuonghae, D.; Ikhimwin, B.O. Dynamics of a Mathematical Model for Tuberculosis with Variability in Susceptibility and Disease

Progressions Due to Difference in Awareness Level. Front Microbiol. 2016, 2016, 1530. [CrossRef]
20. Nayeem, J.; Sultana, I. Mathematical Analysis of the Transmission Dynamics of Tuberculosis. Am. J. Comput. Math. 2019, 9,

158–173. [CrossRef]
21. Mekonen, K.G.; Balcha, S.F.; Obsu, L.L.; Hassen, A. Mathematical Modeling and Analysis of TB and COVID-19 Coinfection. J.

Appl. Math. 2022, 2022, 2449710. [CrossRef]
22. Inayaturohmat, F.; Anggriani, N.; Supriatna, A.K. A mathematical model of tuberculosis and COVID-19 coinfection with the

effect of isolation and treatment. Front. Appl. Math. 2022, 8, 2297–4687. [CrossRef]

https://www.researchgate.net/publication/308631904
http://doi.org/10.1371/journal.pone.0270272
http://www.ncbi.nlm.nih.gov/pubmed/35771884
http://dx.doi.org/10.1186/s12879-021-06464-2
http://www.ncbi.nlm.nih.gov/pubmed/34332534
https://files.aho.afro.who.int/afahobckpcontainer/production/files/iAHO_TB_regional_Factsheet.pdf
https://files.aho.afro.who.int/afahobckpcontainer/production/files/iAHO_TB_regional_Factsheet.pdf
http://dx.doi.org/10.1016/j.jctube.2021.100278
https://www.theeastafrican.co.ke/tea/science-health/porous-border-blamed-for-tb-cases-in-kenya-and-ethiopia-3764090
https://www.theeastafrican.co.ke/tea/science-health/porous-border-blamed-for-tb-cases-in-kenya-and-ethiopia-3764090
https://www.tbonline.info/media/uploads/documents/guidelines-on-management-of-leprosy-and-tuberculosis-in-kenya-
https://www.tbonline.info/media/uploads/documents/guidelines-on-management-of-leprosy-and-tuberculosis-in-kenya-
http://dx.doi.org/10.1093/cid/cir007
http://www.ncbi.nlm.nih.gov/pubmed/21427399
http://dx.doi.org/10.1080/17455030.2022.2036386
http://dx.doi.org/10.1016/j.jmaa.2006.01.087
http://dx.doi.org/10.1007/s12190-022-01734-x
http://dx.doi.org/10.1098/rspb.2011.2712
https://apps.who.int/gho/data/view.main.80500?lang=en
http://dx.doi.org/10.1186/s13662-020-03091-0
http://dx.doi.org/10.3389/fmicb.2015.01530
http://dx.doi.org/10.4236/ajcm.2019.93012
http://dx.doi.org/10.1155/2022/2449710
http://dx.doi.org/10.3389/fams.2022.958081


Computation 2023, 11, 143 21 of 21

23. Lee, S.; Park, H.-Y.; Ryu, H.; Kwon, J.-W. Age-Specific Mathematical Model for Tuberculosis Transmission Dynamics in South
Korea. Mathematics 2021, 9, 804. [CrossRef]

24. Addai, E.; Adeniji, A.; Peter, O.J.; Agbaje, J.O.; Oshinubi, K. Dynamics of Age-Structure Smoking Models with Government
Intervention Coverage under Fractal-fractional-order derivatives. Fractal Fract. 2023, 7, 370. [CrossRef]

25. Almeida, R.A. Caputo fractional derivative of a function with respect to another function. Communic Nonline Sci. Nume. Simul.
2017, 44, 460–481. [CrossRef]

26. Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264,
65–70. [CrossRef]

27. Scott, A.C. Encyclopedia of Nonlinear Science; Routledge, Taylor and Francis Group: New York, NY, USA, 2005.
28. Sousa, J.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical

properties. Int. J. Anal. Appl. 2018, 16, 83–96.
29. Jumarie, G. Modified Riemann Liouville derivative and fractional Taylor series of no-differentiable functions further results.

Comput. Math. Appl. 2006, 51, 1367–1376.
30. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85.
31. Atangana, A.; Baleanu, D. New fractional derivative without non-local and non-singular kernel: Theory and application to heat

transfer model. Therm. Sci. 2016, 20, 763–769. [CrossRef]
32. Zhang, L.; Addai, E.; Ackora-Prah, J.; Dissou Arthur, Y.; Asamoah, J.K.K. Fractional-Order Ebola-Malaria Coinfection Model with

a Focus on Detection and Treatment Rate. Comput. Math. Methods Med. 2022, 2022, 6502598. [CrossRef]
33. Ngungu, M.; Addai, E.; Adeniji, A.; Adam, U.M.; Oshinubi, K. Mathematical epidemiological modeling and analysis of

monkeypox dynamism with nonpharmaceutical intervention using real data from United Kingdom. Front. Public Health 2023, 11,
1101436. [CrossRef]

34. Addai, E.; Zhang, L.; Preko, A.K.; Asamoah, J.K.K. Fractional order epidemiological model of SARS-CoV-2 dynamism involving
Alzheimer’s disease. Healthc. Anal. 2022, 2, 2100114. [CrossRef]

35. Asamoah, J.K.K.; Okyere, E.; Yankson, E.; Opoku, A.A.; Adom-Konadu, A.; Acheampong, E.; Dissou Arthur, Y. Non-fractional
and fractional mathematical analysis and simulations for Q fever. Chaos Solitons Fractals 2022, 156, 111821. [CrossRef]

36. Baba, I.A. Existence and uniqueness of a fractional order tuberculosis model. Eur. Phys. J. Plus 2019, 134, 489. [CrossRef]
37. Higazy, M.; Alyami, M.A. New Caputo–Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with

genetic algorithm based control strategy. Alex. Eng. J. 2020, 59, 4719–4736. [CrossRef]
38. Owolabi, K.M.; Atangana, A. Mathematical modelling and analysis of fractional epidemic models using derivative with

exponential kernel. In Fractional Calculus in Medical and Health Science; CRC Press: Boca Raton, FL, USA, 2020; pp. 109–128.
39. Djida, J.D.; Atangana, A. More generalized groundwater model with space-time Caputo Fabrizio fractional differentiation. Numer.

Methods Partial Differ. Equ. 2017, 33, 1616–1627. [CrossRef]
40. Singh, J.; Kumar, D.; Qurashi, M.A.; Baleanu, D. A new fractional model for giving up smoking dynamics. Adv. Differ. Equ. 2017,

2017, 88. [CrossRef]
41. Ain, Q.T.; Anjum, N.; Din, A.; Zeb, A.; Djilali, S.; Khan, Z.A. On the analysis of Caputo fractional order dynamics of Middle East

Lungs Coronavirus (MERS-CoV) model. Alex. Eng. J. 2022, 61, 5123–5131. [CrossRef]
42. Mustapha, U.T.; Qureshi, S.; Yusuf, A.; Hincal, E. Fractional modeling for the spread of Hookworm infection under Caputo

operator. Chaos Solitons Fractals 2020, 137, 109878. [CrossRef]
43. Ahmed, I.; Baba, I.A.; Yusuf, A.; Kumam, P.; Kumam, W. Analysis of Caputo fractional-order model for COVID-19 with lockdown.

Adv. Differ. Equ. 2020, 2020, 394. [CrossRef]
44. Mahatekar, Y.; Scindia, P.S.; Kumar, P. A new numerical method to solve fractional differential equations in terms of Ca-

puto–Fabrizio derivatives. Phys. Scr. 2023, 98, 024001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9080804
http://dx.doi.org/10.3390/fractalfract7050370
http://dx.doi.org/10.1016/j.cnsns.2016.09.006
http://dx.doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/10.2298/TSCI160111018A
http://dx.doi.org/10.1155/2022/6502598
http://dx.doi.org/10.3389/fpubh.2023.1101436
http://dx.doi.org/10.1016/j.health.2022.100114
http://dx.doi.org/10.1016/j.chaos.2022.111821
http://dx.doi.org/10.1140/epjp/i2019-13009-1
http://dx.doi.org/10.1016/j.aej.2020.08.034
http://dx.doi.org/10.1002/num.22156
http://dx.doi.org/10.1186/s13662-017-1139-9
http://dx.doi.org/10.1016/j.aej.2021.10.016
http://dx.doi.org/10.1016/j.chaos.2020.109878
http://dx.doi.org/10.1186/s13662-020-02853-0
http://dx.doi.org/10.1088/1402-4896/acaf1a

	Introduction
	Model Formulation
	Preliminaries
	Non-Negativity and Boundedness of the Model Solution
	Basic Reproduction Number Dynamics and Stability Analysis
	Basic Reproduction Number
	Global Stability

	Existence and Uniqueness Analysis for Caputo Fractional Tuberculosis Outbreak Model
	Quantitative Analysis
	Data Fitting
	Sensitivity Analysis
	Numerical Simulation

	Discussion and Conclusions
	References

